Research Skills
(for career and life)

Tao Xie
Department of Computer Science
North Carolina State University
http://www.csc.ncsu.edu/faculty/xie/

Slides at
http://people.engr.ncsu.edu/txie/advice/researchskills.pdf
Motivation for This Talk

• Many students lack important (research) skills to succeed in academic or professional career
 – Many students don’t realize that
 – Not to say that they know how to improve
• This talk intends to increase awareness of
 – Important research skills
 – (high-level) ways of improving these skills
• This talk is based on my own experience and observation while working with students
• Many skills described here applicable not only to research, but also to career and life
Important Research Skills

- Self-directed and motivated
- Problem solving skills
- Engineering skills
- Innovation skills
- Communication skills
- Learning skills
- ...

3
Self-directed and Motivated

• If you need someone to push you to do your research, it often doesn’t work well

• Research driven by passion:
 – Community/upper/peer recognition
 – Intellectual curiosity
 – Make impact (on the research field, practice, world)
 – Learning new things
 – Better understanding (of things)
 – ...
 – Better career path

• Work hard and strategically
 – “strategically” related to engineering skills
 – effectively and efficiently
Research Ethics

• Absolutely follow (research) ethics
 – Responsible and responsive
 – Absolutely no fabrication or fraud of data
 – Absolutely avoid plagiarism
 • Plagiarism ex: copy a sentence from another source (even wiki) to your paper without citing the source
 • Plagiarism ex: copy a sentence from another source (even wiki) to your paper without rephrasing even when citing the source
 – http://www.acm.org/publications/policies/plagiarism_policy
 – ...
 http://www.chass.ncsu.edu/ethics/
Avoid Duplicate Submissions

http://www.acm.org/publications/policies/sim_submissions/
http://www.ieee.org/web/publications/rights/Multi_Sub_Guidelines_Intro.html
http://www.icse-conferences.org/sc/guidelines/duplicateSubmissions.html

“if there is substantial overlap in the technical content of the conference submission and any other work that is:

– under review at another publication,
– has been accepted by another publication, or
– has appeared in another publication, at any time before the conference review process is complete.”

“publication”: any peer-reviewed scientific archive such as a conference, journal, or technical book.

Also avoid LPU: Least Publishable Unit

http://en.wikipedia.org/wiki/Least_publishable_unit
Research Paper Lifecycle

W: Workshop position paper (4-7 pages)

[Note that some workshop accepts full research paper, which shall be viewed as conference full paper]

→ **C**: Conference full paper (10-11 pages)

→ **J**: Journal paper (15-20 pages)

[At least 30% new content over C]

C/J can treat W/C as a previous version of C/J, and claim contributions of W/C as C/J’s contributions (need to explicitly state so and explain the main differences of two versions, e.g., in footnote)

But some PC members may evaluate C based on only the diffs of C and W → then publishing W is discouraged
Self-directed and Motivated cont.

• Try to improve external factors
 – Your assigned project idea may not be always promising
 • Try your best to improve the idea
 • Try your best to change to another idea
 • Ex. my past summer internship experience

• Try to do/try your best with the external factors
 – Sometimes you cannot change these factors
 • Ex. My past master thesis research

• Seemingly negative factors can turn out to be positive one (if you treat them right)
 – Ex. hands-off vs. hands-on advising style
Problem Solving Skills

• Examples of lacking debugging skills
 – A student came to me informing me that the Java code doesn’t compile, giving some error messages; I found out that the student didn’t set classpath correctly for the required jar files
 – A student complained to a third-party tool’s developers that the new release of the tool didn’t work with an example input; I found out that the example input didn’t even work with the old release
 – A student presented me a Java file telling me that the file cannot be processed by a tool whereas the tool can deal with other files; I had to narrow down the cause to specific constructs for the student.
Problem Solving Skills cont.

• Debugging skills
 – Having a passing case and a failing case \rightarrow the failure-inducing input portion(s)
 – Having a passing old version and a failing new version \rightarrow the failure-inducing change(s)
 – Delta debugging http://www.st.cs.uni-sb.de/dd/
 – Where to seek help?
 • Google the error message
 • Contact relevant people (tool authors, etc.) with “minimal” or “reduced” failure-causing inputs (cc. your advisor)
 • Seek upper/peer support
 • Tradeoff between “try hard yourself vs. ask others for help”
Problem Solving Skills cont.

- Improving debugging skills

http://www.whyprogramsfail.com/
Problem Solving Skills cont.

• Tool-development skills
 – Programming skills
 – Program understanding skills
 – Software reuse skills (sometimes you can reuse without requiring to understand everything)
 – Think about alternative easier way of implementation

• Searching skills (“Google” skills)
 – Which keywords to pick
 – How to find out what you want in query result sets
 – How to refine keywords based on query result sets
 – Options: “filetype:ppt”, ...
 – Ex: searching available NSF proposals on the web
Engineering Skills

• Cost-benefit analysis
 – Example cost:
 • How much development effort?
 • How much evaluation effort?
 • Any existing infrastructures to exploit or reuse?
 – Example benefit:
 • How much novelty of the work?
 • How much research/practical value of the work?
 • How much you accumulate infrastructures for next idea?
 • How much you get yourself skills to get into an area if you want? (real option value)

• Always think about alternative (easier) ways of implementation (especially in feasibility study)
• Help decide do it (or not) or do it now (or later)
Engineering Skills cont.

• Automate (or not) in experiment: I wrote my paper’s LaTeX source files so that when I update my experimental data by redoing my experiment, my LaTeX source files are automatically updated
 – Cost: constructing macros (if you haven’t done it, learning curve cost)
 – Benefit: when rerunning experiments, you don’t need to do extra work
 – Analysis: benefit > cost?

• Remember your ultimate goal
 – Often you need to convince readers that you research idea works with prototype/evaluation
 – Indeed, sometimes evaluation or your research goal calls for a highly usable tool in practice
Engineering Skills cont.

- Risk-reduction skills (spiral model)
 - Research full of risk (just like software development)
 - Initial ideas/whole direction may not work
 - Choosing the wrong existing infrastructure
 - You misinterpret your advisor’s ideas/mind
 - Counter-measures
 - (Heavy) manual feasibility study phase, e.g., mining code for bugs
 - At least you need to find out one convincing, motivating example before you go ahead
 - Prototype features iteratively and try subjects to get feedback
 - Formal writing of abstract, intro, example, approach sections sent to advisor before doing full tool development; experiment design section before doing full experiment
Engineering Skills cont.

• Deadline-making skills
 – Some people are last-minute persons and some are not
 – But many students are not good last-minute persons and finish work (or not) to the last minute before the deadline
 • Late submission to your advisor → no or insufficient help from your advisor to improve your submission
 – Many students don’t have good sense of
 • Task selection/prioritization: which tasks to focus first given the limited time (acceptance chance/time spent)
 – Many students tend to postpone their writing to the last minute (they don’t like writing; few does)
 – Goal: anytime you are stopped, you shall have a good-shape draft (incremental style towards the deadline)
Innovation Skills

• Critical thinking/questioning skills/assessment skills
 – Not every idea of your advisor or authority in your area is correct or the best
 – Questioning almost anything (not just questioning others and also yourself)
 • Ex. A student questions almost every idea that I gave him (not enough, need constructive solving skills)
 – Capability of judging research is not easy (Ex. reviewing papers)
 • Requiring the knowledge breadth and depth of the subarea, insights, ...
 • Always think about whether and how the paper convinces the readers that the work is indeed useful.
Innovation Skills cont.

• Constructive invention skills (Not easy at all!)
 – Require months/years of accumulation, learning, training, thinking, exercising ...
 – Need to force yourself to think
 • I got many new ideas when I stared at the blank research task portion in my proposal being written
 • New ideas generated while joggling, attending talks, even in dreams, ...
 – Need to know about background and related work
 • WebMon: http://www.markwell.btinternet.co.uk/webmon/
 – Need to have the habits of (creative) thinking
 • Can I apply this idea from field A to my field B?
 • Can I address this solution for problem A to my problem B?
 • ...

My Advice on Getting a Start into Research
http://people.engr.ncsu.edu/txie/adviceonresearch.html
Choose Research Problem/Idea

- Novelty: is the problem novel? Or is the solution novel?
- Utility: can the research produce practical impact? E.g., with help of industrial collaborators
- Risk: how likely the research could fail? Reduced with significant feasibility studies and risk management in the research development process
- Cost: how high effort investment would be needed? Sometimes being able to be reduced with using tools and infrastructures available to us.
Choose Research Problem/Idea cont.

• Competitive advantages:
 – what is it that your group has that places you at an advantage with respect to others -- a particular tool, a particular technique, some colleagues, an insight, etc.
 – “secret weapon”

• Underlying assumptions and principles
 – core values that drive your research agenda in some broad way
 – “how do you choose what to pursue?”
 – can be problem-driven or solution-driven

Contributed by David Notkin
Communication Skills

• Technical writing
 – Avoid lacking of logical thinking, ex.
 • Use before define, define without explanation
 • No strong causal/transition relationships between sentences
 – Countering careless mistakes
 • Use spell check (or style check in MS Word)
 • Customize style-check with historical issue patterns
 • Ask for peer review before submitting to your advisor
 – Learn from patterns and anti-patterns

Advice on Writing Research Papers:
http://people.engr.ncsu.edu/txie/publications/writepapers.pdf

Common Technical Writing Issues:
http://people.engr.ncsu.edu/txie/publications/writeissues.pdf

Tools and Tips for Writing Papers:
http://people.engr.ncsu.edu/txie/publications/writingtools.html
Communication Skills cont.

• Oral communication
 – Presentation skills
 – Effective meeting with advisor (be prepared)
 • Bring in an agenda (discussion items listed)
 • Prepare backup discussion items in case you still have time in your allocated time
 • Use written materials to help oral communication
 – 5-mins elevator talk
 • Most students would start with low-level details of their research, forgetting about the motivation, problem domain
 • Lose the big picture due to being too familiar or excited about the solutions
 • Don’t address “why do I care?” “how can you convince me that your work is useful?”
Learning Skills

• Traditional learning skills
• Be mindful and learn from your successful and failing experience
 – After you finish doing something, you shall be able to abstract and summarize your lessons learned and convey to others your tips
 • Studying for a course, preparing for your GRE, applying for grad schools, contacting professors during application, getting started in a new research area, working with your advisor, writing high-quality papers, preparing for job interviews and applying for jobs, negotiating your hiring packages, writing funding proposals, increasing visibility in community, ...
 – Opportunities are visible to only people who keep their eyes wide open and think proactively
Summary

• Self-directed and motivated
• Problem solving skills
• Engineering skills
• Innovation skills
• Communication skills
• Learning skills
• ...

Welcome additional skills that you feel important but are not described here!
Let me know!
What next?

• Now you know what skills are important
• Next you need to think about improving these skills in your professional and personal development
 – Not an easy task but you shall try and try hard
• Browse my advice collections at:
 – http://people.engr.ncsu.edu/txie/advice/

My research group/research web at:
https://sites.google.com/site/asergrp/

We always look for motivated students/researchers to collaborate with