

Exploiting Synergy Between Testing and Inferred Partial Specifications

Tao Xie David Notkin
Department of Computer Science & Engineering, University of Washington

{taoxie, notkin}@cs.washington.edu
Technical Report UW-CSE-03-04-02

April 2003

Abstract

The specifications of a program can be dynamically
inferred from its executions, or equivalently, from the
program plus a test suite. A deficient test suite or a subset
of a sufficient test suite may not help to infer
generalizable program properties. But the partial
specifications inferred from the test suite constitute a
summary proxy for the test execution history. When a new
test is executed on the program, a violation of a
previously inferred specification indicates the need for a
potential test augmentation. Developers can inspect the
test and the violated specification to make a decision
whether to add the new test to the existing test suite after
equipping the test with an oracle. By selectively
augmenting the existing test suite, the quality of the
inferred specifications in the next cycle can be improved
while avoiding noisy data such as illegal inputs. To
experiment with this approach, we integrated the use of
Daikon (a dynamic invariant detection tool) and Jtest (a
commercial Java unit testing tool). This paper presents
several techniques to exploit the synergy between testing
and inferred partial specifications in unit test data
selection.

1. Introduction

Given that specifications play an important role in a
variety of software engineering tasks and that the
specifications are often absent from a program,
dynamically inferring program specifications from its
executions is a useful technique [3]. The output of the
dynamic specification inference has been used to aid
program evolution in general [3] and program refactoring
in particular [7]. Most of the applications can achieve
better results if the inferred specifications are closer to the
oracle specifications. Like other dynamic analysis
techniques, the dynamic specification inference is also
constrained by the quality of the test suite for the program.
Usually it is unlikely that the inferred properties are true
over all possible executions. When properly applied, static

verification tools can filter out false positives in the
inferred specifications [8].

Different from previous applications that use the final
inferred specifications from all the available tests, two
recent approaches have begun to use the intermediate
partial specifications inferred from a subset. Both are
based on the fact that the inferred specifications may
change when new tests are added to the existing test suite.
The first, called the operational difference (OD)
technique, makes use of the differences in inferred
specifications between test executions to generate,
augment, and minimize the test suites [5]. The second, as
implemented in the tool DIDUCE, can continuously check
a program’s behavior against the incrementally inferred
partial specifications during the run(s), and produce a
report of all violations detected along the way [4]. This
can help detect bugs and track down the root causes. It is
noteworthy that “partial specification” also carries the
denotation that the specification is not complete or
accurate in terms of an oracle specification. Thus there is
a convergence of the two meanings when the
specifications inferred from the whole test suite are used
to approximate the oracle specification.

In this research, we further exploit the synergy between
testing and inferred partial specifications. All available
tests in this context are a small size of the existing unit test
suite plus a large size of the automatically generated unit
tests. The purpose is to tackle the problem of selecting
automatically generated tests to augment the existing unit
test suite. Violations of the inferred partial specifications
from the existing unit test suite can help this unit test data
selection. Moreover, selectively augmenting the existing
test suite can prevent introducing noisy data, e.g. illegal
inputs, from negatively affecting the specification
inference.

The next section presents background materials on unit
test selection and two third-party tools that are integrated
in our approach. Section 3 illustrates our specification
violation approach through a motivating example. Section
4 explains the effects of inferred specifications on test
generation. Section 5 describes our experimental results

for the motivating example. Section 6 discusses related
work. Section 7 makes conclusions.

2. Background

The “test first” principle, as advocated by Extreme
Programming (XP) development process [1], requires unit
tests to be constructed and maintained before, during, and
after the source code is written. Developers need to
manually generate the test inputs and oracles based on the
requirements in mind or in documentation. They need to
decide whether enough test cases have been written to
cover the features in their code thoroughly. Some
commercial tools for Java unit testing, e.g. ParaSoft Jtest
[10], attempt to fill the “holes” left by the execution of the
manually generated unit tests. These tools can
automatically generate a large number of unit tests to
exercise the program. However, there are two main issues
in automatic unit test generation. First, there are no test
oracles for these automatically generated tests unless
developers write down some formal specifications or
runtime assertions [2]. Second, only a relatively small size
of automatically generated tests can be added to the
existing unit test suite. This is because the unit test suite
needs to be maintainable, as is advocated by the XP
approach [1].

 Two main unit test selection methods are available. In
white box testing (e.g., the residual structural coverage
[11]), users select tests that provide new structural
coverage unachieved by the existing test suite. In black
box testing, the operational difference (OD) technique is
applicable in augmenting a test suite [5]. However, the
OD technique for this unit test augmentation problem
might select a relatively large set of tests because the
specification generator’s statistical tests usually require
multiple executions before outputting a specification
clause. Additionally, OD requires frequent generation of
specifications, and the existing dynamic specification
generation is computationally expensive. Therefore,
instead of using OD in the unit test selection, we adopt a
specification violation approach similar to DIDUCE [4].

Our approach is implemented by integrating Daikon
and Jtest. Daikon [3], a dynamic invariant detection tool,
is used to infer specifications from program executions of
test suites. The probability limit for justifying invariants is
set by Daikon users. The probability is Daikon’s estimate
of how likely the invariant is to occur by chance. It ranges
from 0 to 100% with a default value of 1%. Smaller
values yield stronger filtering. Daikon includes a
MergeESC tool, which inserts inferred specifications to
the code as ESC/Java annotations [12]. ParaSoft Jtest
[10], on the other hand, is a commercial Java unit testing
tool, which automatically generates unit test data for a
Java class. It instruments and compiles the code that

contains Java Design-by-Contract (DbC) comments, then
automatically checks at runtime whether the specified
contracts are violated. We modified MergeESC to enable
Daikon to insert the inferred specifications into the code
as DbC comments. Since ESC/Java has better
expressiveness than Jtest’s DbC, a perl script is written to
filter out the specifications whose annotations cannot be
supported by Jtest’s DbC. After being fed with a Java
class annotated with DbC comments, Jtest uses them to
automatically create and execute test cases and then verify
whether a class behaves as expected. It suppresses any
problems found for the test inputs that violate the
preconditions of the class under test. But it still reports
precondition violations for those methods called indirectly
from outside the class. Note that DIDUCE tool reports all
precondition violations [4]. By default, Jtest tests each
method by generating arguments for them and calling
them independently. In other words, Jtest basically tries
the calling sequences of length 1 by default. Tool users
can set the length of calling sequences in the range of 1 to
3. If a calling sequence of length 3 is specified, Jtest first
tries all calling sequences of length 1 followed by all those
of length 2 and 3 sequentially.

3. Specification Violation Approach

This section describes the specification violation
approach. Section 3.1 introduces the motivating example
we will use to illustrate our approach. Section 3.2 explains
the basic technique of the approach. Section 3.3 presents
the precondition guard removal technique to improve the
effectiveness of the basic technique. Section 3.4 describes
the iterative process of applying these techniques.

3.1. Motivating Example

The Java class in Figure 1 will be used as a running
example to illustrate our approach. It implements a
bounded stack of unique elements of integer type. Authors
of [13] coded this Java implementation to experiment
their algebraic-specification-based method for
systematically creating complete and consistent test
classes for JUnit. Its source code and associated test suites
are available at a web link contained in their paper. Two
unit test suites are designed for this class: a basic JUnit
test suite (8 tests), in which one test-class method is
generated for each method in the target class; a JAX test
suite (16 tests), in which one test-class method is
generated for each axiom in the ADT specification. The
basic JUnit test suite does not expose any fault but the
JAX test suite exposes one fault. The fault exposed by the
JAX test suite is that the code is unable to handle a pop
operation on an empty stack.

public class uniqueBoundedStack {
private int[] elems;
private int numberOfElements;
private int max;

uniqueBoundedStack(){…};
void push(int k) {…};
void pop() {…};
int top() {…};
boolean isEmpty() {…};
int maxSize() {…};
boolean isMember(int k) {…};
boolean equals(uniqueBoundedStack s) {…}
int[] getArray() {…};
int getNumberOfElements() {…};
public boolean isFull() {…};

};

Figure 1. uniqueBoundedStack program

3.2. Basic Technique

 Figure 2. An overview of the basic technique

In our approach, partial specifications are inferred from

program executions of the existing unit test suite by using
Daikon (Figure 2). The partial specifications are inserted
into the code as DbC comments. The resulting code is fed
to Jtest. Initially, Jtest’s calling sequence length is set to 1
and Jtest is run to automatically generate and execute test
data. When a certain number of specification violations
have occurred before Jtest exhausts its testing repository,
it stops generating test data and reports specification
violations. For each reported specification violation, i.e.,
the violated specification and the violating test,
developers inspect them to decide whether to equip the
test with an oracle and add it to the existing test suite.
Then developers disable each violated specification by
commenting them out and rerun Jtest repeating the above
procedure until no specification violations are reported.
The whole process is iteratively applied by setting the
length of calling sequences as 2 and subsequently 3.

The rationale behind the basic technique is that if a
new test violates an inferred partial specification, it is
likely that this test exercises a new feature of the program
uncovered by the existing test suite. This technique
guarantees that the new test does not overlap with any
others from the existing test suite in terms of the violated
specification. In addition, the violating tests have a

relatively high probability of exposing faults in the code if
there are any. It is because that running the existing test
suite on the code exhibits the normal behavior reflected by
the inferred specifications and the violating tests might
make the code exhibit the abnormal behavior.

The symptoms of specification violations can be that
the boolean value of a specification predicate is false or
exceptions are thrown. In order for the inferred
specifications to be violated, we set the probability limit
to be 100%.

Two examples of specification violations are shown in
Figure 3. The example in the upper part indicates a
deficiency of the JAX test suite. The example starts with
method isMember’s two violated postconditions each of
which is prefixed with a “@post”. They are followed by
the violating test inputs. Below the separator line, the
implementation of the method isMember is shown. In the
postconditions, $pre is used to refer to the value of an
expression immediately before calling the method. The
syntax to use it is $pre (ExpressionType, Expression). In
addition, $result is used to represent the return value of
the method.

Replacing the implementation of isMember method
with “if (k==3) return true else return false;” can make
all existing unit tests pass. This violating test is preferable
to add to the existing test suite to fill this “hole”. The
example in the lower part shows a deficiency of the basic
JUnit test suite. The existing test suite for the stack
implementation only pushes the integer element of 2 or 3
into the stack, which is queried with method top. Thus one
of the inferred postconditions for method top is that the
return value is 2 or 3. The automatically generated tests
that push the element of 1 into the stack and then query
the stack with method top violate this specification.
However, since the element of 1 is not so different than 2
or 3 for the purpose of testing this stack implementation,
developers might not select the violating test to the
existing test suite.

Invariants

Call length 3

Call length 2

Call length 1

Jtest

Manually
maintained
test su ite

Run Data trace Detect
invariants

Insert as
DbC comm ents

Run &
Check

Violating
tests

Annotated
program

Autom atically
generated
test suite

Daikon

Violated
specs

Com ment
 out

Selected
tests

Select

isMember: @post: [($pre(int , k) == 3) == ($result == true)]
isMember: @post: [($pre(int , k) == 3) == (this.numberOfElements == 1)]
For input:
 uniqueBoundedStack THIS = new uniqueBoundedStack ();
 boolean RETVAL = THIS.isMember (3);
--
boolean isMember(int k) {
 for(int index=0; index<numberOfElements; index++)
 if(k==elems[index])
 return true;
 return false;
}

$top: @post: [$result == 2 || $result == 3]
For input:
 uniqueBoundedStack THIS = new uniqueBoundedStack ();
 THIS.push (1);
 int RETVAL = THIS.top ();
--
void top() {
 if (numberOfElements < 1) {

 System.out.println("Empty Stack");
 return -1;
 } else
 return elems[numberOfElements-1];
}

Figure 3. Examples of specification violations

3.3. Precondition Guard Removal

In our basic technique, when the existing test suite is
deficient, the inferred preconditions might be so
restrictive as to filter out those legal test data inputs in
Jtest test data generation and execution. This over-
restrictiveness of preconditions also makes static
verification of inferred specifications less effective [8].
Even if a static verifier could confirm an inferred post-
condition specification given some over-restrictive
preconditions, it is hard to tell whether it is generalizable
to the actual preconditions.

To assure better quality of the unit under test, we need
to exercise the unit under more circumstances than what is
constrained by the inferred preconditions. Before the code
that is annotated with DbC comments is fed to Jtest, all
precondition comments are removed. In the preliminary
experiment, we observed that precondition guard removal
techniques reported more violations and exposed more
faults than the basic technique (Section 3.1). Indeed,
removing precondition guards produces more false
positives by allowing some illegal inputs. Yet the tool
only reports those illegal inputs that cause postcondition
or invariant violations.

Two examples of specification violations after
removing precondition guards are shown in Figure 4. The
example in the upper part indicates a deficiency of the
basic JUnit test suite and the violating test exposes the
fault that is detected by the JAX test suite. In the example,
@invariant is used to denote class invariants, which are
contracts that the objects of the class should always

satisfy. They are checked for every non-static, non-private
method entry and exit and for every non-private
constructor exit. The example in the lower part shows a
deficiency of the JAX test suite and exposes another
potential fault. If this stack implementation can
accommodate negative integer elements, this specification
violation shows that using –1 as an exception indicator
makes the top method work incorrectly when an integer
element in top of the stack is –1. Using Java exception
mechanisms can fix this problem. This is a typical value-
sensitive fault and even full-path-coverage test suite
cannot guarantee to expose this type of faults. However,
this violation is not reported before the precondition
guards are removed, since there are several inferred
preconditions for method top to prevent –1 to be on the
top of the stack, such as @pre { for (int i = 0 ; i <=
this.elems.length-1; i++) $assert ((this.elems[i] >= 0));
}, where @pre is used to denote a precondition and
$assert is used to represent an assertion.

pop: @post: [this.elems[this.numberOfElements] ==
 this.elems[$pre(int, this.numberOfElements)
pop: @post: [this.numberOfElements == 0 ||
 this.numberOfElements == 1]
pop: @invariant: [this.numberOfElements == 0 ||
 this.numberOfElements == 1 || this.numberOfElements == 2]
For input:
 uniqueBoundedStack THIS = new uniqueBoundedStack ();
 THIS.pop ();
--
 void pop(){ numberOfElements --; }

top: @post: [($result == -1) == (this.numberOfElements == 0)]
For input:
 uniqueBoundedStack THIS = new uniqueBoundedStack ();
 THIS.push (-1);
 int RETVAL = THIS.top ();

Figure 4. Specification violations without

precondition guards

3.4. Iterations

After the new test augmentations using the 3.2 and 3.3
techniques, all the violating tests with legal inputs,
whether selected or unselected, can be further run together
with the existing ones to infer new specifications.
Although those unselected violating tests with legal inputs
might not exercise any interesting new features, running
them in the specification inference can relax the violated
specifications to reduce the false positives in the next
iteration. The same process described in Section 3.2 and
3.3 is repeated until there are no specification violations
or no test data selected from the violating tests. In the
preliminary experiment, most of the specification
violations were observed in the first iteration, and all
specification violations were observed before the third
iteration.

Figure 5 shows two specification violations from the
first and second iterations on the JAX test suite. After the
first iteration, a violating test is added to the existing test
suite to weaken the “==” predicate to the “$implies”
predicate, where a $implies b is equivalent to !a or b.
After the second iteration, another violating test further
removes this “$implies” predicate since it is inferred just
due to the deficiency of the tests. In our preliminary
experiment on the motivating example, most of the
specification violations are observed in the first iteration
and all specification violations are observed before the
third iteration.

(1st iteration)
isMember: @post: [($result == true) == (this.numberOfElements == 1)]
For input:
 uniqueBoundedStack THIS = new uniqueBoundedStack ();
 THIS.top ();
 THIS.push (2);
 boolean RETVAL = THIS.isMember (1);

(2nd iteration)
isMember: @post: [($result == true) $implies (this.numberOfElements == 1)]
For input:
 uniqueBoundedStack THIS = new uniqueBoundedStack ();
 THIS.push (2);
 THIS.push (0);
 boolean RETVAL = THIS.isMember (0);

Figure 5. Specification violations during iterations

4. Effect of Inferred Specifications on Test
Generation

In previous sections, we showed that the inferred
specifications can be used to select unit test data and
improve the specification quality. Furthermore, we
observed that the inferred specifications also had an effect
on Jtest’s automatic test generation. As is described in
Jtest’s manual [6], if the code has preconditions, Jtest tries
to find inputs that satisfy all of them. If the code has
postconditions, Jtest creates test cases that verify whether
the code satisfies these conditions. If the code has
invariants, Jtest creates test cases that try to make them
fail. The preliminary experiment showed that
preconditions have greater impacts on Jtest’s test
generation than either postconditions or invariants.
Sometimes Jtest, equipped with specifications, could
automatically generate tests that achieve better code
coverage than the one without specifications. For the test
length of two, the former Jtest automatically generated
more tests for the stack implementation than the latter one.
It suggests that inferred specifications are able to guide
Jtest to generate better tests.

5. Quantitative Experimental Results

Table 1-3 show the results of our preliminary
experiment on the bounded stack example. Table 1 shows

the number of executed tests, inferred Jcontract DbC
specifications and inferred ESC/Java specifications for
three iterations. The second and the third columns are
results for the basic JUnit test suite. The fourth and the
fifth columns are those for the JAX test suite. In the
second and the fourth columns, the numbers of the tests
executed to infer specifications are shown. In the third and
the fifth columns, the number of inferred Jcontract DbC
specifications and the number of inferred ESC/Java
specifications are separated by a “/”. It is observed that
executing violating tests in addition to the original test
suite can reduce the number of inferred specifications.
Most of these reduced specifications are inferred initially
due to the deficiency of the test suite.

Table 2 shows the number of selected tests, violating
tests, and violated specifications for the combination of
test calling sequence lengths, iterations and specification
types. The specification types comprise four categories:
full specifications inferred by using the basic JUnit test
suite (Basic Full); specifications with preconditions
removed inferred by using the basic JUnit test suite (Basic
No Pre); full specifications inferred by using the JAX test
suite (JAX Full); specifications with precondition
removed inferred by using the JAX test suite (JAX No
Pre). In the second or the third iteration, the existing test
suite in addition to all violating tests from previous
iteration(s) is run to infer specifications. In the column 2
to 4, the results are showed in a form of “a/b: c” with a as
the number of selected tests, b as the number of violating
tests, and c as the violated specifications. In our
experiment, the criteria for test data selection from
candidates are subjective. However, we found that the
violating specifications can be very helpful in the decision
process. We usually do not select those violating tests
similar to the second example in Figure 3. All entries that
contain non-zero selected tests are marked in the bold
font.

It is observed that using the inferred specifications with
preconditions removed is more effective in assisting unit
test data selection. The number of unit test data candidates
for selection (violating tests) is not too large for
developers to inspect. The number of selected unit test
data is also not too large to enhance the existing test suite.

Table 3 shows the number of generated tests by Jtest
and their achieved statement coverage for the combination
of test calling sequence lengths, iterations, and
specification types. The results are showed in a form of “a
(b%)” with a as the number of generated tests and b as the
achieved statement coverage. The first row shows the
results for the original program without any inferred
specifications. All entries that contain more generated
tests than the ones generated without any inferred
specifications. are marked in the bold font. It is observed
that when the specifications with preconditions removed
are fed to Jtest together with the code, Jtest generates the

same number of the tests and achieves the same statement
coverage as the ones when the code without specifications
is provided to Jtest. This lets us hypothesize that the
postconditions and invariants have little impact on Jtest’s
test data generation. When the code with full
specifications is fed to Jtest, Jtest can usually generate
more tests with calling sequence length of 2 than the one
without specifications or without precondition
specifications. Moreover, when the code with full
specifications is fed to Jtest, sometimes Jtest can generate
tests with the calling sequence length of 3 achieving better
statement coverage than the one without specifications or
without precondition specifications. These let us
hypothesize that precondition specifications can guide
Jtest to better generate test data.

Table 1. The number of executed tests, inferred
Jcontract DbC specifications and inferred ESC/Java

specifications
Iteration Basic Test

Size
Basic Test
Spec Size

JAX Test
Size

JAX Test
Spec Size

1(original) 8 81/100 16 131/159

2 34 34/43 47 48/55

3 36 31/40 51 42/49

Table 2. The number of selected tests, violating tests,

and violated specifications
Iteration. Type Test call

length 1
Test call
length 2

Test call
length 3

1. Basic Full 0/1: 2 0/3: 3 0/0: 0

1. Basic No Pre 5/7: 15 8/13: 15 1/2: 2
1. JAX Full 1/3: 3 0/0: 0 1/1: 1

1. JAX No Pre 1/3: 6 10/24: 41 0/0: 0
2. Basic Full 0/0: 0 0/0: 0 0/0: 0

2. Basic No Pre 0/0: 0 0/1: 1 1/1: 1
2. JAX Full 0/0: 0 0/0: 0 1/2: 2

2. JAX No Pre 0/0: 0 0/1: 1 1/1: 1
3. Basic Full 0/0: 0 0/0: 0 0/0: 0

3. Basic No Pre 0/0: 0 0/0: 0 0/0: 0
3. JAX Full 0/0: 0 0/0: 0 0/0: 0

3. JAX No Pre 0/0: 0 0/0: 0 0/0: 0

Table 3. The number of generated tests and achieved

statement coverage
Iteration. Type Test (cov)

(length 1)
Test (cov)
(length 2)

Test (cov)
(length 3)

Original 14 (63%) 96 (86%) 1745 (86%)

1. Basic Full 10 (47%) 59 (65%) 339 (73%)

1. Basic No Pre 14 (63%) 96 (86%) 1745 (86%)
1. JAX Full 14 (63%) 113 (80%) 1010 (84%)

1. JAX No Pre 14 (63%) 96 (86%) 1745 (86%)

2. Basic Full 10 (63%) 169 (86%) 1623 (86%)

2. Basic No Pre 14 (63%) 96 (86%) 1745 (86%)
2. JAX Full 13 (63%) 171 (86%) 1671 (91%)

2. JAX No Pre 14 (63%) 96 (86%) 1745 (86%)
3. Basic Full 14 (63%) 171 (86%) 1638 (91%)

3. Basic No Pre 14 (63%) 96 (86%) 1745 (86%)
3. JAX Full 13 (63%) 158 (86%) 1539 (91%)

3. JAX No Pre 14 (63%) 96 (86%) 1745 (86%)

6. Related Work

As is described in Section 1 and 2, operational
difference technique is used to generate, augment, and
minimize test suites [5]. But its cost is more expensive
than our approach since it requires
O(size_of_generated_tests) times of specification
inferences and it tends to select more tests than our
approach, increasing the human inspection efforts.

DIDUCE checks a program’s behavior continuously
against the dynamically inferred specifications and finally
reports all detected violations along the way [4]. Our
approach is similar to theirs since both make use of
specification violations. DIDUCE’s main purpose is to
track down the bugs but our apporach’s main purpose is to
select the tests to augment the existing test suite. Indeed,
the selected tests are likely to detect the bugs.

Context-sensitive analysis provides a way to select
predicates for implications during specification inference
[14]. The invariants inferred for a method called from a
unit test can indicate deficiencies in the unit test.
Developers can inspect the inferred invariants to know the
limitations of the unit test. In our approach, only violated
invariants are reported together with a concrete violating
test case.

 Failed static verification attempts are used to indicate
the deficiencies in the unit tests [15]. The unverifiable
invariants indicate the unintended properties and
developers can get hints on how to improve the tests. Our
specification violation approach reports not only the
violated invariants but also the executable
counterexamples to them.

When specifications are provided for a unit a priori,
specification coverage criteria are used to suggest a
candidate set of test cases that exercise new aspects of the
specification [16]. Like above other related work on
inferred specifications, our approach does not require a
specification a priori.

7. Concluding Remarks

In sum, selecting automatically generated tests to
augment the existing unit test suite is an important step in
the unit testing practice. Inferred partial specifications act
as a proxy for the existing test execution history. A new

test that violates an inferred specification is a good
candidate for developers to inspect for test data selection.
The violating test also has a high probability to expose
faults in the code. Instead of considering the test
augmentation as a one-time phase, it should be considered
as a frequent activity in software evolution, if not as
frequent as regression unit testing. When a program is
changed, the specifications inferred from the same unit
test suite might change as well, giving rights to possible
test violations. Tool-assisted unit test augmentation can be
a means to evolving unit tests and assuring better unit
quality. Moreover, augmenting unit test suite in a
controlled way can lead to better quality of inferred
specifications. In future work, we plan to apply the
specification violation techniques in connecting system
testing and unit testing. Specifications are to be inferred
from system testing and specification violations by the
generated unit tests are used to guide unit test data
selection. Also, the partial specifications inferred from
testing done by component providers are to be delivered
as component metadata [9], which will aid component
users to perform test augmentations. Finally, we plan to
apply the specification violation techniques in other kinds
of inferred specifications, e.g. sequencing constraints or
protocols.

8. Acknowledgement

We thank Michael Ernst and the Daikon project
members at MIT for their assistance in our installation and
use of the Daikon tool. This work was supported in part
by the National Science Foundation under grant ITR
0086003. The authors wish to acknowledge support
through the High Dependability Computing Program from
NASA Ames cooperative agreement NCC-2-1298.

9. References

[1] K. Beck. Extreme programming explained. Addison-
Wesley, 2000.

[2] Y. Cheon and G. T. Leavens. A simple and practical
approach to unit testing: The JML and JUnit way. In
Proceedings of 16th European Conference Object-
Oriented Programming (ECOOP), 2002, pp. 231-255.

[3] M. D. Ernst, J. Cockrell, W. G. Griswold, and D.
Notkin. Dynamically discovering likely program
invariants to support program evolution. IEEE
Transactions on Software Engineering, vol. 27, no. 2, Feb.
2001, pp. 1-25.

[4] S. Hangal and M. S. Lam. Tracking down software
bugs using automatic anomaly detection. In Proceedings

of the International Conference on Software Engineering,
May 2002, pp. 291-301.

[5] M. Harder, J. Mellen, and M. D. Ernst. Improving test
suites via operational abstraction. In Proceedings of the
International Conference on Software Engineering,
(Portland, Oregon), May 6-8, 2003.

[6] Jtest manuals version 4.5. Parasoft Corporation,
October 23, 2002.

[7] Y. Kataoka, M. D. Ernst, W. G. Griswold, and D.
Notkin. Automated support for program refactoring using
invariants. In Proceedings of ICSM 2001, November,
2001, pp. 736-743.

[8] J. W. Nimmer and M. D. Ernst. Static verification of
dynamically detected program invariants: Integrating
Daikon and ESC/Java. In Proceedings of RV'01, First
Workshop on Runtime Verification, (Paris, France),
July 23, 2001.

[9] A. Orso, M. J. Harrold, and D. Rosenblum.
Component metadata for software engineering tasks, In
Proceedings of the 2nd International Workshop on
Engineering Distributed Objects, November 2000, pp.
129-144.

[10] ParaSoft Corportation. http://www.parasoft.com/

[11] C. Pavlopoulou and M. Young. Residual test
coverage monitoring. In Proceedings of ICSE 1999, pp.
277-284.

[12] K. Rustan, M. Leino, G. Nelson, and J. B. Saxe.
ESC/Java user’s manual. Technical Report 2000-002,
Compaq Systems Research Center, Palo Alto, California,
Oct 12, 2000.

[13] P. D. Stotts, M. Lindsey, A. Antley. An informal
formal method for systematic JUnit test case generation.
XP/Agile Universe 2002, pp 131-143.

[14] N. Dodoo, A. Donovan, L. Lin, and M. D. Ernst.
Selecting predicates for implications in program analysis.
March 16, 2002.

[15] J. W. Nimmer and M. D. Ernst. Static verification of
dynamically detected program invariants: Integrating
Daikon and ESC/Java. In Proceedings of RV'01, First
Workshop on Runtime Verification, (Paris, France),
July 23, 2001

[16] J. Chang, D. J. Richardson: Structural Specification-
Based Testing: Automated Support and Experimental

Evaluation. In Proceedings of ESEC/SIGSOFT FSE. pp.
285-302, Sept. 1999.

