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Abstract 
 

The specifications of a program can be dynamically 
inferred from its executions, or equivalently, from the 
program plus a test suite. A deficient test suite or a subset 
of a sufficient test suite may not help to infer 
generalizable program properties. But the partial 
specifications inferred from the test suite constitute a 
summary proxy for the test execution history. When a new 
test is executed on the program, a violation of a 
previously inferred specification indicates the need for a 
potential test augmentation. Developers can inspect the 
test and the violated specification to make a decision 
whether to add the new test to the existing test suite after 
equipping the test with an oracle. By selectively 
augmenting the existing test suite, the quality of the 
inferred specifications in the next cycle can be improved 
while avoiding noisy data such as illegal inputs. To 
experiment with this approach, we integrated the use of 
Daikon (a dynamic invariant detection tool) and Jtest (a 
commercial Java unit testing tool). This paper presents 
several techniques to exploit the synergy between testing 
and inferred partial specifications in unit test data 
selection. 
 
1. Introduction 
 

Given that specifications play an important role in a 
variety of software engineering tasks and that the 
specifications are often absent from a program, 
dynamically inferring program specifications from its 
executions is a useful technique [3]. The output of the 
dynamic specification inference has been used to aid 
program evolution in general [3] and program refactoring 
in particular [7]. Most of the applications can achieve 
better results if the inferred specifications are closer to the 
oracle specifications. Like other dynamic analysis 
techniques, the dynamic specification inference is also 
constrained by the quality of the test suite for the program. 
Usually it is unlikely that the inferred properties are true 
over all possible executions. When properly applied, static 

verification tools can filter out false positives in the 
inferred specifications [8]. 

Different from previous applications that use the final 
inferred specifications from all the available tests, two 
recent approaches have begun to use the intermediate 
partial specifications inferred from a subset. Both are 
based on the fact that the inferred specifications may 
change when new tests are added to the existing test suite. 
The first, called the operational difference (OD) 
technique, makes use of the differences in inferred 
specifications between test executions to generate, 
augment, and minimize the test suites [5]. The second, as 
implemented in the tool DIDUCE, can continuously check 
a program’s behavior against the incrementally inferred 
partial specifications during the run(s), and produce a 
report of all violations detected along the way [4]. This 
can help detect bugs and track down the root causes. It is 
noteworthy that “partial specification” also carries the 
denotation that the specification is not complete or 
accurate in terms of an oracle specification. Thus there is 
a convergence of the two meanings when the 
specifications inferred from the whole test suite are used 
to approximate the oracle specification. 

In this research, we further exploit the synergy between 
testing and inferred partial specifications. All available 
tests in this context are a small size of the existing unit test 
suite plus a large size of the automatically generated unit 
tests. The purpose is to tackle the problem of selecting 
automatically generated tests to augment the existing unit 
test suite. Violations of the inferred partial specifications 
from the existing unit test suite can help this unit test data 
selection. Moreover, selectively augmenting the existing 
test suite can prevent introducing noisy data, e.g. illegal 
inputs, from negatively affecting the specification 
inference. 

The next section presents background materials on unit 
test selection and two third-party tools that are integrated 
in our approach. Section 3 illustrates our specification 
violation approach through a motivating example. Section 
4 explains the effects of inferred specifications on test 
generation. Section 5 describes our experimental results 



for the motivating example. Section 6 discusses related 
work. Section 7 makes conclusions. 

 
2. Background 
 

The “test first” principle, as advocated by Extreme 
Programming (XP) development process [1], requires unit 
tests to be constructed and maintained before, during, and 
after the source code is written. Developers need to 
manually generate the test inputs and oracles based on the 
requirements in mind or in documentation. They need to 
decide whether enough test cases have been written to 
cover the features in their code thoroughly. Some 
commercial tools for Java unit testing, e.g. ParaSoft Jtest 
[10], attempt to fill the “holes” left by the execution of the 
manually generated unit tests. These tools can 
automatically generate a large number of unit tests to 
exercise the program. However, there are two main issues 
in automatic unit test generation. First, there are no test 
oracles for these automatically generated tests unless 
developers write down some formal specifications or 
runtime assertions [2]. Second, only a relatively small size 
of automatically generated tests can be added to the 
existing unit test suite. This is because the unit test suite 
needs to be maintainable, as is advocated by the XP 
approach [1]. 

 Two main unit test selection methods are available. In 
white box testing (e.g., the residual structural coverage 
[11]), users select tests that provide new structural 
coverage unachieved by the existing test suite. In black 
box testing, the operational difference (OD) technique is 
applicable in augmenting a test suite [5]. However, the 
OD technique for this unit test augmentation problem 
might select a relatively large set of tests because the 
specification generator’s statistical tests usually require 
multiple executions before outputting a specification 
clause. Additionally, OD requires frequent generation of 
specifications, and the existing dynamic specification 
generation is computationally expensive. Therefore, 
instead of using OD in the unit test selection, we adopt a 
specification violation approach similar to DIDUCE [4].  

Our approach is implemented by integrating Daikon 
and Jtest. Daikon [3], a dynamic invariant detection tool, 
is used to infer specifications from program executions of 
test suites. The probability limit for justifying invariants is 
set by Daikon users. The probability is Daikon’s estimate 
of how likely the invariant is to occur by chance. It ranges 
from 0 to 100% with a default value of 1%. Smaller 
values yield stronger filtering. Daikon includes a 
MergeESC tool, which inserts inferred specifications to 
the code as ESC/Java annotations [12]. ParaSoft Jtest 
[10], on the other hand, is a commercial Java unit testing 
tool, which automatically generates unit test data for a 
Java class. It instruments and compiles the code that 

contains Java Design-by-Contract (DbC) comments, then 
automatically checks at runtime whether the specified 
contracts are violated. We modified MergeESC to enable 
Daikon to insert the inferred specifications into the code 
as DbC comments. Since ESC/Java has better 
expressiveness than Jtest’s DbC, a perl script is written to 
filter out the specifications whose annotations cannot be 
supported by Jtest’s DbC. After being fed with a Java 
class annotated with DbC comments, Jtest uses them to 
automatically create and execute test cases and then verify 
whether a class behaves as expected. It suppresses any 
problems found for the test inputs that violate the 
preconditions of the class under test. But it still reports 
precondition violations for those methods called indirectly 
from outside the class. Note that DIDUCE tool reports all 
precondition violations [4]. By default, Jtest tests each 
method by generating arguments for them and calling 
them independently. In other words, Jtest basically tries 
the calling sequences of length 1 by default. Tool users 
can set the length of calling sequences in the range of 1 to 
3. If a calling sequence of length 3 is specified, Jtest first 
tries all calling sequences of length 1 followed by all those 
of length 2 and 3 sequentially. 
 
3. Specification Violation Approach 
 

This section describes the specification violation 
approach. Section 3.1 introduces the motivating example 
we will use to illustrate our approach. Section 3.2 explains 
the basic technique of the approach. Section 3.3 presents 
the precondition guard removal technique to improve the 
effectiveness of the basic technique. Section 3.4 describes 
the iterative process of applying these techniques.  

 
3.1.  Motivating Example 
 

The Java class in Figure 1 will be used as a running 
example to illustrate our approach. It implements a 
bounded stack of unique elements of integer type. Authors 
of [13] coded this Java implementation to experiment 
their algebraic-specification-based method for 
systematically creating complete and consistent test 
classes for JUnit. Its source code and associated test suites 
are available at a web link contained in their paper. Two 
unit test suites are designed for this class: a basic JUnit 
test suite (8 tests), in which one test-class method is 
generated for each method in the target class; a JAX test 
suite (16 tests), in which one test-class method is 
generated for each axiom in the ADT specification. The 
basic JUnit test suite does not expose any fault but the 
JAX test suite exposes one fault. The fault exposed by the 
JAX test suite is that the code is unable to handle a pop 
operation on an empty stack. 



public class uniqueBoundedStack {
private int[] elems;
private int numberOfElements;
private int max;

uniqueBoundedStack(){…};
void push(int k) {…};
void pop() {…};
int top() {…};
boolean isEmpty() {…};
int maxSize() {…};
boolean isMember(int k) {…};
boolean equals(uniqueBoundedStack s) {…}
int[] getArray() {…};
int getNumberOfElements() {…};
public boolean isFull() {…};

}; 
 

Figure 1. uniqueBoundedStack program 
 
3.2. Basic Technique 

      Figure 2. An overview of the basic technique 
 
In our approach, partial specifications are inferred from 

program executions of the existing unit test suite by using 
Daikon (Figure 2). The partial specifications are inserted 
into the code as DbC comments. The resulting code is fed 
to Jtest. Initially, Jtest’s calling sequence length is set to 1 
and Jtest is run to automatically generate and execute test 
data. When a certain number of specification violations 
have occurred before Jtest exhausts its testing repository, 
it stops generating test data and reports specification 
violations. For each reported specification violation, i.e., 
the violated specification and the violating test, 
developers inspect them to decide whether to equip the 
test with an oracle and add it to the existing test suite. 
Then developers disable each violated specification by 
commenting them out and rerun Jtest repeating the above 
procedure until no specification violations are reported. 
The whole process is iteratively applied by setting the 
length of calling sequences as 2 and subsequently 3. 

The rationale behind the basic technique is that if a 
new test violates an inferred partial specification, it is 
likely that this test exercises a new feature of the program 
uncovered by the existing test suite. This technique 
guarantees that the new test does not overlap with any 
others from the existing test suite in terms of the violated 
specification. In addition, the violating tests have a 

relatively high probability of exposing faults in the code if 
there are any. It is because that running the existing test 
suite on the code exhibits the normal behavior reflected by 
the inferred specifications and the violating tests might 
make the code exhibit the abnormal behavior. 

The symptoms of specification violations can be that 
the boolean value of a specification predicate is false or 
exceptions are thrown. In order for the inferred 
specifications to be violated, we set the probability limit 
to be 100%.  

Two examples of specification violations are shown in 
Figure 3. The example in the upper part indicates a 
deficiency of the JAX test suite. The example starts with 
method isMember’s two violated postconditions each of 
which is prefixed with a “@post”. They are followed by 
the violating test inputs. Below the separator line, the 
implementation of the method isMember is shown. In the 
postconditions, $pre is used to refer to the value of an 
expression immediately before calling the method. The 
syntax to use it is $pre (ExpressionType, Expression).  In 
addition, $result is used to represent the return value of 
the method.  

Replacing the implementation of isMember method 
with “if (k==3) return true else return false;” can make 
all existing unit tests pass. This violating test is preferable 
to add to the existing test suite to fill this “hole”. The 
example in the lower part shows a deficiency of the basic 
JUnit test suite. The existing test suite for the stack 
implementation only pushes the integer element of 2 or 3 
into the stack, which is queried with method top. Thus one 
of the inferred postconditions for method top is that the 
return value is 2 or 3. The automatically generated tests 
that push the element of 1 into the stack and then query 
the stack with method top violate this specification.  
However, since the element of 1 is not so different than 2 
or 3 for the purpose of testing this stack implementation, 
developers might not select the violating test to the 
existing test suite. 
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isMember: @post: [($pre(int , k) == 3) == ($result == true)]  
isMember: @post: [($pre(int , k) == 3) == (this.numberOfElements == 1)]  
For input:   
 uniqueBoundedStack THIS = new uniqueBoundedStack ();  
 boolean RETVAL = THIS.isMember (3);  
---------------------------------------------------------------- 
boolean isMember(int k) { 
   for( int index=0; index<numberOfElements; index++) 
         if( k==elems[index]) 
  return true; 
  return false;   
} 

 
$top: @post: [$result == 2 || $result == 3]  
For input:   
 uniqueBoundedStack THIS = new uniqueBoundedStack ();  
 THIS.push (1);  
 int RETVAL = THIS.top ();  
---------------------------------------------------------------- 
void top()   { 
 if ( numberOfElements < 1) { 

 System.out.println("Empty Stack"); 
  return -1; 
 } else 
  return elems[numberOfElements-1]; 
}  

Figure 3.  Examples of specification violations 
 
 
3.3. Precondition Guard Removal 
 

In our basic technique, when the existing test suite is 
deficient, the inferred preconditions might be so 
restrictive as to filter out those legal test data inputs in 
Jtest test data generation and execution. This over-
restrictiveness of preconditions also makes static 
verification of inferred specifications less effective [8]. 
Even if a static verifier could confirm an inferred post-
condition specification given some over-restrictive 
preconditions, it is hard to tell whether it is generalizable 
to the actual preconditions.  

To assure better quality of the unit under test, we need 
to exercise the unit under more circumstances than what is 
constrained by the inferred preconditions. Before the code 
that is annotated with DbC comments is fed to Jtest, all 
precondition comments are removed. In the preliminary 
experiment, we observed that precondition guard removal 
techniques reported more violations and exposed more 
faults than the basic technique (Section 3.1). Indeed, 
removing precondition guards produces more false 
positives by allowing some illegal inputs. Yet the tool 
only reports those illegal inputs that cause postcondition 
or invariant violations. 

Two examples of specification violations after 
removing precondition guards are shown in Figure 4. The 
example in the upper part indicates a deficiency of the 
basic JUnit test suite and the violating test exposes the 
fault that is detected by the JAX test suite. In the example, 
@invariant is used to denote class invariants, which are 
contracts that the objects of the class should always 

satisfy. They are checked for every non-static, non-private 
method entry and exit and for every non-private 
constructor exit. The example in the lower part shows a 
deficiency of the JAX test suite and exposes another 
potential fault. If this stack implementation can 
accommodate negative integer elements, this specification 
violation shows that using –1 as an exception indicator 
makes the top method work incorrectly when an integer 
element in top of the stack is –1.  Using Java exception 
mechanisms can fix this problem. This is a typical value-
sensitive fault and even full-path-coverage test suite 
cannot guarantee to expose this type of faults. However, 
this violation is not reported before the precondition 
guards are removed, since there are several inferred 
preconditions for method top to prevent –1 to be on the 
top of the stack, such as @pre {  for (int i = 0 ; i <= 
this.elems.length-1; i++)  $assert ((this.elems[i] >= 0)); 
}, where @pre is used to denote a precondition and 
$assert is used to represent an assertion. 

 
pop: @post: [this.elems[this.numberOfElements] == 
                      this.elems[$pre(int, this.numberOfElements)  
pop: @post: [this.numberOfElements == 0 ||  
                      this.numberOfElements == 1]  
pop: @invariant: [this.numberOfElements == 0 ||  
     this.numberOfElements == 1 || this.numberOfElements == 2] 
For input:   
 uniqueBoundedStack THIS = new uniqueBoundedStack ();  
 THIS.pop (); 
---------------------------------------- 
    void pop(){ numberOfElements --; } 
 
 
top: @post: [($result == -1) == (this.numberOfElements == 0)]  
For input:   
 uniqueBoundedStack THIS = new uniqueBoundedStack ();  
 THIS.push (-1);  
 int RETVAL = THIS.top (); 

 
Figure 4.  Specification violations without 

precondition guards 
 
3.4. Iterations 
 

After the new test augmentations using the 3.2 and 3.3 
techniques, all the violating tests with legal inputs, 
whether selected or unselected, can be further run together 
with the existing ones to infer new specifications. 
Although those unselected violating tests with legal inputs 
might not exercise any interesting new features, running 
them in the specification inference can relax the violated 
specifications to reduce the false positives in the next 
iteration. The same process described in Section 3.2 and 
3.3 is repeated until there are no specification violations 
or no test data selected from the violating tests. In the 
preliminary experiment, most of the specification 
violations were observed in the first iteration, and all 
specification violations were observed before the third 
iteration. 



Figure 5 shows two specification violations from the 
first and second iterations on the JAX test suite. After the 
first iteration, a violating test is added to the existing test 
suite to weaken the “==” predicate to the “$implies” 
predicate, where a $implies b is equivalent to !a or b. 
After the second iteration, another violating test further 
removes this “$implies” predicate since it is inferred just 
due to the deficiency of the tests. In our preliminary 
experiment on the motivating example, most of the 
specification violations are observed in the first iteration 
and all specification violations are observed before the 
third iteration. 

(1st iteration) 
isMember: @post: [($result == true) == (this.numberOfElements == 1)]   
For input:   
 uniqueBoundedStack THIS = new uniqueBoundedStack ();  
 THIS.top ();  
 THIS.push (2);  
 boolean RETVAL = THIS.isMember (1); 

 
(2nd iteration) 
isMember: @post: [($result == true) $implies (this.numberOfElements == 1)]  
For input:   
 uniqueBoundedStack THIS = new uniqueBoundedStack ();  
 THIS.push (2);  
 THIS.push (0);  
 boolean RETVAL = THIS.isMember (0); 

Figure 5.  Specification violations during iterations 
 

4. Effect of Inferred Specifications on Test 
Generation  
 

In previous sections, we showed that the inferred 
specifications can be used to select unit test data and 
improve the specification quality. Furthermore, we 
observed that the inferred specifications also had an effect 
on Jtest’s automatic test generation. As is described in 
Jtest’s manual [6], if the code has preconditions, Jtest tries 
to find inputs that satisfy all of them. If the code has 
postconditions, Jtest creates test cases that verify whether 
the code satisfies these conditions. If the code has 
invariants, Jtest creates test cases that try to make them 
fail. The preliminary experiment showed that 
preconditions have greater impacts on Jtest’s test 
generation than either postconditions or invariants. 
Sometimes Jtest, equipped with specifications, could 
automatically generate tests that achieve better code 
coverage than the one without specifications. For the test 
length of two, the former Jtest automatically generated 
more tests for the stack implementation than the latter one. 
It suggests that inferred specifications are able to guide 
Jtest to generate better tests.  
 
5. Quantitative Experimental Results 
 

Table 1-3 show the results of our preliminary 
experiment on the bounded stack example. Table 1 shows 

the number of executed tests, inferred Jcontract DbC 
specifications and inferred ESC/Java specifications for 
three iterations. The second and the third columns are 
results for the basic JUnit test suite. The fourth and the 
fifth columns are those for the JAX test suite. In the 
second and the fourth columns, the numbers of the tests 
executed to infer specifications are shown. In the third and 
the fifth columns, the number of inferred Jcontract DbC 
specifications and the number of inferred ESC/Java 
specifications are separated by a “/”. It is observed that 
executing violating tests in addition to the original test 
suite can reduce the number of inferred specifications. 
Most of these reduced specifications are inferred initially 
due to the deficiency of the test suite. 

Table 2 shows the number of selected tests, violating 
tests, and violated specifications for the combination of 
test calling sequence lengths, iterations and specification 
types. The specification types comprise four categories: 
full specifications inferred by using the basic JUnit test 
suite (Basic Full); specifications with preconditions 
removed inferred by using the basic JUnit test suite (Basic 
No Pre); full specifications inferred by using the JAX test 
suite (JAX Full); specifications with precondition 
removed inferred by using the JAX test suite (JAX No 
Pre). In the second or the third iteration, the existing test 
suite in addition to all violating tests from previous 
iteration(s) is run to infer specifications. In the column 2 
to 4, the results are showed in a form of “a/b: c” with a as 
the number of selected tests, b as the number of violating 
tests, and c as the violated specifications. In our 
experiment, the criteria for test data selection from 
candidates are subjective. However, we found that the 
violating specifications can be very helpful in the decision 
process. We usually do not select those violating tests 
similar to the second example in Figure 3. All entries that 
contain non-zero selected tests are marked in the bold 
font. 

It is observed that using the inferred specifications with 
preconditions removed is more effective in assisting unit 
test data selection. The number of unit test data candidates 
for selection (violating tests) is not too large for 
developers to inspect. The number of selected unit test 
data is also not too large to enhance the existing test suite. 

Table 3 shows the number of generated tests by Jtest 
and their achieved statement coverage for the combination 
of test calling sequence lengths, iterations, and 
specification types. The results are showed in a form of “a 
(b%)” with a as the number of generated tests and b as the 
achieved statement coverage. The first row shows the 
results for the original program without any inferred 
specifications. All entries that contain more generated 
tests than the ones generated without any inferred 
specifications. are marked in the bold font. It is observed 
that when the specifications with preconditions removed 
are fed to Jtest together with the code, Jtest generates the 



same number of the tests and achieves the same statement 
coverage as the ones when the code without specifications 
is provided to Jtest. This lets us hypothesize that the 
postconditions and invariants have little impact on Jtest’s 
test data generation. When the code with full 
specifications is fed to Jtest, Jtest can usually generate 
more tests with calling sequence length of 2 than the one 
without specifications or without precondition 
specifications. Moreover, when the code with full 
specifications is fed to Jtest, sometimes Jtest can generate 
tests with the calling sequence length of 3 achieving better 
statement coverage than the one without specifications or 
without precondition specifications. These let us 
hypothesize that precondition specifications can guide 
Jtest to better generate test data.  
 

Table 1. The number of executed tests, inferred 
Jcontract DbC specifications and inferred ESC/Java 

specifications 
Iteration Basic Test 

Size  
Basic Test 
Spec Size 

JAX Test 
Size  

JAX Test
Spec Size 

1(original) 8 81/100 16 131/159 

2  34 34/43 47 48/55 

3 36 31/40 51 42/49 

 
Table 2. The number of selected tests, violating tests, 

and violated specifications 
Iteration. Type Test call 

length 1 
Test call 
length 2 

Test call 
length 3 

1. Basic Full 0/1: 2 0/3: 3 0/0: 0 

1. Basic No Pre 5/7: 15 8/13: 15 1/2: 2 
1. JAX Full 1/3: 3 0/0: 0  1/1: 1 

1. JAX No Pre 1/3: 6 10/24: 41 0/0: 0 
2. Basic Full 0/0: 0 0/0: 0 0/0: 0 

2. Basic No Pre 0/0: 0 0/1: 1 1/1: 1 
2. JAX Full 0/0: 0 0/0: 0  1/2: 2 

2. JAX No Pre 0/0: 0 0/1: 1 1/1: 1 
3. Basic Full 0/0: 0 0/0: 0 0/0: 0 

3. Basic No Pre 0/0: 0 0/0: 0 0/0: 0 
3. JAX Full 0/0: 0 0/0: 0  0/0: 0 

3. JAX No Pre 0/0: 0 0/0: 0 0/0: 0 

 
Table 3. The number of generated tests and achieved 

statement coverage 
Iteration. Type Test (cov)  

(length 1) 
Test (cov) 
(length 2) 

Test (cov) 
(length 3) 

Original 14 (63%) 96 (86%) 1745 (86%) 

1. Basic Full 10 (47%) 59 (65%) 339 (73%) 

1. Basic No Pre 14 (63%) 96 (86%) 1745 (86%) 
1. JAX Full 14 (63%) 113 (80%)  1010 (84%) 

1. JAX No Pre 14 (63%) 96 (86%) 1745 (86%) 

2. Basic Full 10 (63%) 169 (86%) 1623 (86%) 

2. Basic No Pre 14 (63%) 96 (86%) 1745 (86%) 
2. JAX Full 13 (63%) 171 (86%)  1671 (91%) 

2. JAX No Pre 14 (63%) 96 (86%) 1745 (86%) 
3. Basic Full 14 (63%) 171 (86%) 1638 (91%) 

3. Basic No Pre 14 (63%) 96 (86%) 1745 (86%) 
3. JAX Full 13 (63%) 158 (86%)  1539 (91%) 

3. JAX No Pre 14 (63%) 96 (86%) 1745 (86%) 

 
6. Related Work 

As is described in Section 1 and 2, operational 
difference technique is used to generate, augment, and 
minimize test suites [5]. But its cost is more expensive 
than our approach since it requires 
O(size_of_generated_tests) times of specification 
inferences and it tends to select more tests than our 
approach, increasing the human inspection efforts. 

DIDUCE checks a program’s behavior continuously 
against the dynamically inferred specifications and finally 
reports all detected violations along the way [4]. Our 
approach is similar to theirs since both make use of 
specification violations. DIDUCE’s main purpose is to 
track down the bugs but our apporach’s main purpose is to 
select the tests to augment the existing test suite. Indeed, 
the selected tests are likely to detect the bugs. 

Context-sensitive analysis provides a way to select 
predicates for implications during specification inference  
[14].  The invariants inferred for a method called from a 
unit test can indicate deficiencies in the unit test. 
Developers can inspect the inferred invariants to know the 
limitations of the unit test. In our approach, only violated 
invariants are reported together with a concrete violating 
test case. 

 Failed static verification attempts are used to indicate 
the deficiencies in the unit tests [15]. The unverifiable 
invariants indicate the unintended properties and 
developers can get hints on how to improve the tests. Our 
specification violation approach reports not only the 
violated invariants but also the executable 
counterexamples to them. 

When specifications are provided for a unit a priori, 
specification coverage criteria are used to suggest a 
candidate set of test cases that exercise new aspects of the 
specification [16]. Like above other related work on 
inferred specifications, our approach does not require a 
specification a priori. 
 
7. Concluding Remarks 
 

In sum, selecting automatically generated tests to 
augment the existing unit test suite is an important step in 
the unit testing practice. Inferred partial specifications act 
as a proxy for the existing test execution history. A new 



test that violates an inferred specification is a good 
candidate for developers to inspect for test data selection. 
The violating test also has a high probability to expose 
faults in the code. Instead of considering the test 
augmentation as a one-time phase, it should be considered 
as a frequent activity in software evolution, if not as 
frequent as regression unit testing. When a program is 
changed, the specifications inferred from the same unit 
test suite might change as well, giving rights to possible 
test violations. Tool-assisted unit test augmentation can be 
a means to evolving unit tests and assuring better unit 
quality. Moreover, augmenting unit test suite in a 
controlled way can lead to better quality of inferred 
specifications. In future work, we plan to apply the 
specification violation techniques in connecting system 
testing and unit testing. Specifications are to be inferred 
from system testing and specification violations by the 
generated unit tests are used to guide unit test data 
selection. Also, the partial specifications inferred from 
testing done by component providers are to be delivered 
as component metadata [9], which will aid component 
users to perform test augmentations. Finally, we plan to 
apply the specification violation techniques in other kinds 
of inferred specifications, e.g. sequencing constraints or 
protocols. 
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