
java.sun.com/javaone/sf

An Introduction To Software
Agitation

Alberto Savoia
Chief Technology Officer

Agitar Software Inc.
www.agitar.com

Agenda

• The Developer Testing Revolution

• Four Types of Tests

• Software Agitation

The Developer Testing Revolution

• Agile/XP methodology are cool

• Developer testing is part of Agile/XP

• Developer testing is cool

Developer Testing Trends

• 5 years ago – Ignorance and resistance

• Today – The Developer Testing Paradox

• 5 Years from now – Common practice???

Test

• It’s your code, and
your responsibility

• Do it for your current
colleagues

• Do it for future
generations of
colleagues

• Do it for yourself
Foo.java FooTest.java

java.sun.com/javaone/sf

My View of Unit
Testing

What’s a Unit in Unit Testing?

• What’s a Unit

─ A single method/function/procedure

─ A collection or related methods/functions/procedures (e.g. a Java class)

• In an ideal world …

─ A unit is independent, self-sufficient, stand-alone

─ No need to deal with other units for testing purposes

• In the real world …

─ Most code has lots of dependencies

─ Testing a unit, typically involves other units

Basic Structure of Unit Tests

1. Set-up

─ Create initial state
─ Initialize method parameters
─ Store pre-execution values

2. Execute code under test

3. Compare actual results against expected results

Partial Correctness Assertions
• Notation introduced by C.A.R. Hoare in the context of formal verification

{ P } S { Q }

If P is true at the time S executes, then Q must be true after S completes

{
IntStack s
s.size() == 0

}
s.push(42);
int val = s.top();

{
val == 42;
s.size() == 1;

}

• Think of tests as executable PCAs
─ Make P true
─ Execute S
─ Check if Q is true

Example

public void testIntStackPushTop() {

// setup : make P true

IntStack s = new IntStack();

// execute code under test: S

s.push(42);

int val = s.top();

// compare actual vs. expected results: check Q

assertEquals(42, val);

assertTrue(s.size() == 1);

}

Basic Components of Unit Testing

• Code under test

• Test data

─ Several interesting instances of each of the types and objects needed
to execute the code under test

• Test assertions

─ Boolean-valued expressions built from a dictionary of predicates and
various logical/mathematical operators

Four Test Modes

• Test Data can be specific or general

─ Specific: int acctNum = 1234

─ General: forall int acctNum [acctNum > 0]

• Test Assertions can be weak or strong

─ Weak: getBalance(acctNum) >= MIN_BALANCE

─ Strong: getBalance(acctNum) == 344.32

Weak Assertions

• Weak Assertions

─ An assertion is considered weak if it can evaluate to true even if the
aspect of the implementation that it’s testing is incorrect:

Example of weak assertion:

// after the withdraw operation completes
getBalance(acctNum) >= MIN_BALANCE

─ Weak assertions are still useful because they can detect problems
when they evaluate to false

─ WA == false bug
─ Bug ! WA == false

Strong Assertions

• Strong Assertions

─ An assertion is considered strong if it will evaluate to true iff the
aspect of implementation that it’s testing is correct (for the test data
used in the test case)

─ Example:

// after the withdraw operation completes

getBalance(acctNum) == 344.32

─ SA == false bug
─ Bug SA == false

Strong != Infallible

• It’s possible to have a faulty implementation even if all strong assertions
pass.

• Consider the following test:

{
Bank bank
bank.totalDeposits() == 10000000.0
bank.getBalance(1234) == 1000.0

}
bank.deposit(1234, 500.0)

{
bank.totalDeposits() == 1000500.0
bank.getBalance(1234) == 1500.0

}

• The 2 strong assertions can evaluate to true even though deposit
has unwanted side effects

Four Test Modes

GW GS

SW
SS

Test
Data

Test Assertions

General

Specific

Weak Strong

Test by Example

Test by Contract

Two Basic Types Of Tests

Test by Example

{
IntStack s
s.size == 0

}
s.push(42);
int val = s.top();

{
val == 42
s.size() == 1

}

• Characterized by:
– Single initial state
– Single/specific set of test data
– Strong assertions

Test by Contract

{
IntStack s
int n
s.size < IntStack.MAX_SIZE

}
s.push(n);
int val = s.top();

{
val == n
s.size() == @PRE(s.size()) + 1

}

• Characterized by:
– Multiple initial states
– Multiple sets of test data
– Strong and weak assertions

Four Modes Exercise

• Let’s create tests for the method

int nextPrime(int n)

• Test by Example
─ Specific data

• Test by Contract
─ General data

Test by Example for nextPrime(int n)
{

n == 0

}

np = nextPrime(n)

{

np == 2

}

{

n == 2

}

np = nextPrime(n)

{

np == 3

}

{

n == 31

}

np = nextPrime(n)

{

np == 37

}

{

n == 0

}

np = nextPrime(n)

{

np > 0

}

{

n == 2

}

np = nextPrime(n)

{

isPrime(np)

}

{

n == 3

}

np = nextPrime(n)

{

np % 2 == 1

}

Weak Assertions

Test by Contract for nextPrime(int n)

{

n >= 0

}

np = nextPrime(n)

{

np % 2 == 1

}

{

n >= 0

}

np = nextPrime(n)

{

isPrime(np)

np > n

}

{

isPrime(n)

}

np = nextPrime(n)

{

prevPrime(np) == n

}

Can you spot the
bug in this example?

Test by Contract

{

n >= 0

}

np = nextPrime(n)

{

isPrime(np)

np > n

numOfPrimesBetween(n, np) == 0

}

By combining multiple weak assertions you can create a strong test

4 Modes Summary

GW

nextPrime(n) > n

isPrime(nextPrime(n))

GS
isPrime(n)

prevPrime(nextPrime(n)) == n

SW

nextPrime(7) > 7

isPrime(nextPrime(7))

SS

nextPrime(7) == 11

Test
Data

Test Assertions

General

Specific

Weak Strong

Class Invariants

• A class invariant is a property that is true of all objects of a given
class before and after each public method call

─ Examples for IntStack class
─ size() >= 0

─ size() <= MAX_SIZE

─ Examples for Employee class
─ hourlySalary >= HRSystem.MINIMUM_WAGE

─ getManager() != null

─ getSSN.matches(“[0-9]{3}-[0-9]{2}-[0-9]{4}”)

• Class invariants are a cheap and powerful testing tool, but
unfortunately rarely used in manual unit testing

The Bottom Line

• Unit testing is not easy

• Solid testing effort ~=> implementation effort
─ ~3-4 lines of JUnit for every 1 lines of Java for 90-100% code coverage

• Good set of tests include
─ Specific and general test data combined with
─ Strong and weak assertions
─ (general test data + strong assertions is best but can be hard to achieve)

• Additional challenges
─ It’s difficult to create test data/tests for situations you did not consider when writing the

code
─ It’s difficult to be aware of all the properties and behaviors of code that you depend on

• As a result:
─ Currently >90% of unit tests are of the test-by-example variety
─ Most unit tests focus on normal conditions and most common paths

The Bottom Line

• The nature and challenges of unit testing make
automation and computer assistance a necessity

• Unit testing tools can help:
─ Simplify test creation
─ Test data generation
─ Assertion generation
─ Test execution
─ Test analysis

─Code coverage
─Results

Unit Testing Tools

─ Testing Frameworks (e.g. JUnit)
─Simplify test creation
─Automate test execution and reporting

─ Automated Test Generators
─Automate and accelerate test creation
─Enable exploratory testing

– Use unexpected test data
– Discover method and class invariants

─Automate test execution and reporting

Modern Automated Test Generation

• Historically
─ ATG Automated Test Data Generation

• More recently
─ ATG Automated Test Data Generation &

Automated Assertion Generation

Automated Assertion Generation

Code
Discovered
Invariants

Execute
Several Times &

Track State
Changes

Tests or
Code

Exerciser

+

Likely
Specification

(Candidate Assertions)

Test
Generator

Regression
Test for Likely
Specification

Help w/ Bug
Detection in

Current Version

Execution Spec Tests (via invariants discovery)
• Michael Ernst - MIT
• David Notkin, Tao Xie – University of Washington, North Carolina State University
• Johannes Henkel, Amer Diwan – University of Colorado at Boulder

TYPE IntStack

AXIOMS
forall s : IntStack, i : int
pop(push(s,i).state).retval = i
pop(push(s,i).state).state = s
pop(IntStack().state).retval ~> EmptyStackException

SAMPLE TEST
Stack s = new Stack();
s.push(7);
s.push(9);
s.pop();
assertTrue(s.pop(), 7);

Too Much Automation?

• There is such a thing as too much test
automation

• Developer out of the loop tests that verify
that the code does what the code does

• The developer should be involved in reviewing,
approving, and, if necessary, modify and
augment the tests

My Automated Test Generation
Philosophy

Automate everything that
can and should be automated

Make everything else as
efficient as possible

Test Automation

Test Amplification

Software Agitation: Making Invariants
Detection Idea Practical

• Automated invariants detection is a brilliant idea but:
─ Need an automated way to execute/drive the code
─ Must use developer-friendly language/expressions
─ Must be integrated with IDE to maximize adoption
─ The developer needs to be involved somewhere in the cycle

• Software Agitation combines invariants detection with
─ Test data generation
─ Automated execution
─ Invariants in programmer-friendly syntax
─ IDE integration

Execution Observations Asserts

Code

Software
Agitation

Observations
on code behavior

If an observation
reveals a bug, fix it

If it describes desired behavior,
click to promote it to an assertion

java.sun.com/javaone/sfAgitator Demo

Conclusion

• Early stage developer/unit testing is critical to
software quality

• Trend
─ Old/Current: pass the buck to QA
─ Future: pass the buck to QA after unit testing

• Unit testing can be as challenging, and often
more challenging, that development – lots of
interesting theory and problems

• New test automation technology can
developer/unit testing easier, faster, and more
thorough

Final Word

Good test automation should not replace
human intelligence, creativity, and

developer participation in the testing process.

Instead, it should help developers focus on the
activities

that require human intelligence, creativity, and
insight.

java.sun.com/javaone/sfQ&A

Contact: alberto@agitar.com

	An Introduction To Software Agitation
	Agenda
	The Developer Testing Revolution
	Developer Testing Trends
	Test
	My View of Unit Testing
	What’s a Unit in Unit Testing?
	Basic Structure of Unit Tests
	Partial Correctness Assertions
	Example
	Basic Components of Unit Testing
	Four Test Modes
	Weak Assertions
	Strong Assertions
	Strong != Infallible
	Four Test Modes
	Two Basic Types Of Tests
	Four Modes Exercise
	Test by Example for nextPrime(int n)
	Test by Contract for nextPrime(int n)
	Test by Contract
	4 Modes Summary
	Class Invariants
	The Bottom Line
	The Bottom Line
	Unit Testing Tools
	Modern Automated Test Generation
	Automated Assertion Generation
	Execution  Spec  Tests (via invariants discovery)
	Too Much Automation?
	My Automated Test Generation Philosophy
	Software Agitation: Making Invariants Detection Idea Practical
	Execution  Observations  Asserts
	Agitator Demo
	Conclusion
	Final Word
	Q&A

