
PARSEWeb: A Programmer Assistant for Reusing Open
Source Code on the Web

Suresh Thummalapenta
Department of Computer Science

North Carolina State University
Raleigh, USA

sthumma@ncsu.edu

Tao Xie
Department of Computer Science

North Carolina State University
Raleigh, USA

xie@csc.ncsu.edu

ABSTRACT

Programmers commonly reuse existing frameworks or li-
braries to reduce software development efforts. One com-
mon problem in reusing the existing frameworks or libraries
is that the programmers know what type of object that they
need, but do not know how to get that object with a spe-
cific method sequence. To help programmers to address this
issue, we have developed an approach that takes queries of
the form “Source object type → Destination object type” as
input, and suggests relevant method-invocation sequences
that can serve as solutions that yield the destination object
from the source object given in the query. Our approach in-
teracts with a code search engine (CSE) to gather relevant
code samples and performs static analysis over the gath-
ered samples to extract required sequences. As code sam-
ples are collected on demand through CSE, our approach
is not limited to queries of any specific set of frameworks
or libraries. We have implemented our approach with a tool
called PARSEWeb, and conducted four different evaluations
to show that our approach is effective in addressing program-
mers’ queries. We also show that PARSEWeb performs bet-
ter than existing related tools: Prospector and Strathcona.

Categories and Subject Descriptors: D.2.3 [Software
Engineering]: Coding Tools and Techniques—Object-oriented

programming ; D.2.6 [Software Engineering]: Programming
Environments—Integrated environments;

General Terms: Languages, Experimentation.

Keywords: Code reuse, Code search engine, Code exam-
ples, Ranking code samples

1. INTRODUCTION
The primary goal of software development is to deliver

high-quality software efficiently and in the least amount
of time whenever possible. To achieve the preceding goal,
programmers often want to reuse existing frameworks or
libraries instead of developing similar code artifacts from
scratch. The challenging aspect for programmers in reusing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’07, November 4–9, 2007, Atlanta, Georgia, USA.
Copyright 2007 ACM 978-1-59593-882-4/07/0011 ...$5.00.

the existing frameworks or libraries is to understand the us-
age of Application Programming Interfaces (APIs) exposed
by those frameworks or libraries, because many of the exist-
ing frameworks or libraries are not well-documented. Even
when such documentations exist, they are often outdated [9].

In general, the reuse of existing frameworks or libraries
involve instantiation of several object types of those frame-
works or libraries. For example, consider the programming
task of parsing code in a dirty editor (editor whose content
is not yet saved) of the Eclipse IDE framework. As a dirty
editor is represented as an object of the IEditorPart type
and the programmer needs an object of ICompilationUnit for
parsing, the programmer has to identify a method sequence
that takes the IEditorPart object as input and results in
an object of ICompilationUnit. One such possible method
sequence is shown below:

IEditorPart iep = ...
IEditorInput editorInp = iep.getEditorInput();
IWorkingCopyManager wcm = JavaUI.getWorkingCopyManager();
ICompilationUnit icu = wcm.getWorkingCopy(editorInp);

The code sample shown above exhibits the difficulties faced
by programmers in reusing the existing frameworks or li-
braries. A programmer unfamiliar to Eclipse may take long
time to identify that an IWorkingCopyManager object is needed
for getting the ICompilationUnit object from an object of the
IEditorInput type. Furthermore, it is not trivial to find an
appropriate way of instantiating the IWorkingCopyManager ob-
ject as the instantiation requires a static method invocation
on the JavaUI class.

In many such situations, programmers know what type of
object that they need to instantiate (like ICompilationUnit),
but do not know how to write code to get that object from
a known object type (like IEditorPart). For simplicity, we
refer the known object type as Source and the required ob-
ject type as Destination. Therefore, the proposed problem
can be translated to a query of the form “Source → Des-

tination”. There are several existing approaches [6, 11, 14]
that address the described problem. But the common issue
faced by these existing approaches is that the scope of these
approaches is limited to the information available in a fixed
(often small) set of applications reusing the frameworks or
libraries of interest. Many code search engines (CSE) such
as Google [5] and Koders [8] are available on the web. These
CSEs can be used to assist programmers by providing rel-
evant code examples with usages of the given query from
a large number of publicly accessible source code reposi-
tories. For the preceding example, programmers can issue
the query “IEditorPart ICompilationUnit” to gather relevant

01:FileName:0 UserBean.java MethodName:ingest Rank:1 NumberOfOccurrences:6
02:QueueConnectionFactory,createQueueConnection() ReturnType:QueueConnection
03:QueueConnection,createQueueSession(boolean,Session.AUTO ACKNOWLEDGE) ReturnType:QueueSession
04:QueueSession,createSender(Queue) ReturnType:QueueSender

Figure 1: Method sequence suggested by PARSEWeb.

01:QueueConnectionFactory qcf;
02:QueueConnection queueConn = qcf.createQueueConnection();
03:QueueSession qs = queueConn.createQueueSession(true,Session.AUTO ACKNOWLEDGE);
04:QueueSender queueSender = qs.createSender(new Queue());

Figure 2: Equivalent Java code for the method sequence suggested by PARSEWeb.

code samples with usages of the object types IEditorPart

and ICompilationUnit. However, these CSEs are not quite
helpful in addressing the described problem because we ob-
served that Google Code Search Engine (GCSE) [5] returns
nearly 100 results for this query and the desired method se-
quence shown above is present in the 25th source file among
those results.

Our approach addresses the described problem by accept-
ing queries of the form “Source → Destination” and sug-
gests frequently used Method-Invocation Sequences (MIS)
that can transform an object of the Source type to an ob-
ject of the Destination type. Our approach also suggests
relevant code samples that are extracted from a large num-
ber of publicly accessible source code repositories. These
suggested MISs along with the code samples can help pro-
grammers in addressing the described problem and thereby
help reduce programmers’ effort in reusing existing frame-
works or libraries.

We have implemented the proposed approach with a tool
called PARSEWeb for helping reuse Java code. PARSEWeb
interacts with GCSE [5] to search for code samples with the
usages of the given Source and Destination object types, and
downloads the code example results to form a local source
code repository. PARSEWeb analyzes the local source code
repository to extract different MISs and clusters similar MISs
using a sequence postprocessor. These extracted MISs can
serve as a solution for the given query. PARSEWeb also
sorts the final set of MISs using several ranking heuristics.
PARSEWeb uses an additional heuristic called query split-
ting that helps address the problem where code samples for
the given query are split among different source files.

This paper makes the following main contributions:

• An approach for reducing programmers’ effort while
reusing existing frameworks or libraries by providing
frequently used MISs and relevant code samples.

• A technique for collecting relevant code samples dy-
namically from the web. This contribution has an
added advantage of not limiting the scope of the ap-
proach to any specific set of frameworks or libraries.

• A technique for analyzing partial code samples through
Abstract Syntax Trees (AST) and Directed Acyclic
Graphs (DAG) that can handle control-flow informa-
tion and method inlining.

• An Eclipse plugin tool implemented for the proposed
approach and several evaluations to assess the effec-
tiveness of the tool.

The rest of the paper is organized as follows. Section
2 explains the approach through an example. Section 3
presents related work. Section 4 describes key aspects of
the approach. Section 5 describes implementation details.

Section 6 discusses evaluation results. Section 7 discusses
limitations and future work. Finally, Section 8 concludes.

2. EXAMPLE
We next use an example to illustrate our approach and

how our approach can help in reducing programmers’ ef-
fort when reusing existing frameworks or libraries. We use
object types QueueConnectionFactory and QueueSender from
the OpenJMS library1, which is an open source implemen-
tation of Sun’s Java Message Service API 1.1 Specifica-
tion. Consider that a programmer has an object of type
QueueConnectionFactory and does not know how to write
code to get a QueueSender object, which is required for send-
ing messages.

To address the problem, the programmer can use our
PARSEWeb tool (implemented for our approach) in the
following way. The programmer first translates the prob-
lem into a “QueueConnectionFactory → QueueSender” query.
Given this query, PARSEWeb requests GCSE for relevant
code samples with usages of the given Source and Destina-

tion object types, and downloads the code samples to form a
local source code repository. The downloaded code samples
are often partial and not compilable as GCSE retrieves (and
subsequently PARSEWeb downloads) only source files with
usages of the given object types instead of entire projects.
PARSEWeb analyzes each partial code sample using an Ab-
stract Syntax Tree (AST) and builds a Directed Acyclic
Graph (DAG) that represents each given code sample in or-
der to capture control-flow information in the code example.
PARSEWeb traverses this DAG to extract MISs that take
QueueConnectionFactory as input and result in an object of
QueueSender. The output of PARSEWeb for the given query
is shown in Figure 1. The sequence starts with the invo-
cation of the createQueueConnection method that results in
an instance of QueueConnection type. Similarly, by follow-
ing other method invocations, the method sequence finally
results in the QueueSender object, which is the desired desti-
nation object of the given query.

The sample output also shows additional details such as
FileName, MethodName, Rank, and NumberOfOccurrences. The
details FileName and MethodName indicate the source file that
the programmer can browse to find a relevant code sam-
ple for this MIS. For example, a code sample of the given
query can be found in method ingest of file 0 UserBean.java.
The prefix of the file name gives the index of the source file
that contained the suggested solution among the results of
GCSE. In this example, the code sample for the suggested
method-invocation sequence can be found in the first source
file returned by GCSE as the prefix value is zero. Gener-
ally, many queries result in more than one possible solution.
The Rank attribute gives the rank of the corresponding MIS

1http://java.sun.com/products/jms

among the complete set of results. PARSEWeb derives the
rank of a MIS based on the NumberOfOccurrences attribute
and some other heuristics described in Section 4.4.2. The
suggested MIS contains all necessary information for the
programmer to write code for getting the Destination ob-
ject from the given Source object. The suggested MIS can
be transformed to equivalent Java code by introducing re-
quired intermediate variables. The code sample suggested
along with the MIS can assist programmers in gathering this
additional information regarding the intermediate variables.
Figure 2 shows equivalent Java code for the suggested MIS.

3. RELATED WORK
The problems faced by programmers in reusing existing

frameworks or libraries are addressed by different approaches.
Earlier research in this area mainly concentrated on identi-
fying related samples by matching keywords [12] or com-
ments [16]. But solutions suggested based on these ap-
proaches often cannot effectively help programmers in reusing
the existing code samples.

Mandelin et al. developed Prospector [11], a tool that
accepts queries in the form of a pair (Tin, Tout), where Tin

and Tout are class types, and suggests solutions by traversing
all paths among types of API signatures between Tin and
Tout. A solution to the query is a synthesized code sam-
ple that takes an input object of type Tin and returns an
output object of type Tout. Their approach uses API sig-
natures for suggesting solutions to the given query. As API
signatures are used for addressing the query, Prospector re-
turns many irrelevant examples, as shown in our evaluation.
Our approach is different from Prospector as Prospector uses
API signatures, whereas our approach uses code samples for
solving the given query. This feature helps PARSEWeb in
identifying more relevant code samples by giving higher pref-
erence to code samples that are often used.

Strathcona developed by Holmes and Murphy [6] main-
tains an example repository and compares the context of
the code under development with the code samples in the ex-
ample repository, and recommends relevant examples. Both
PARSEWeb and Strathcona suggest relevant code samples,
but the Strathcona approach is based on heuristics that
are generic and are not tuned for addressing the described
problem. This limitation often results in irrelevant exam-
ples as shown in our evaluation. XSnippet developed by
Sahavechaphan and Claypool [14] also tries to address the
described problem by suggesting relevant code snippets for
the object instantiation task at hand. These suggested code
snippets are selected from a sample repository. The major
problem with both Strathcona and XSnippet is the avail-
ability of limited code samples stored in the repository.

Coogle developed by Sager et al. [13] extends the concept
of similarity measures (often used to find similar documents
for a given query) to source code repositories. Their ap-
proach detects similar Java classes in software projects using
tree similarity algorithms. Both PARSEWeb and Coogle use
ASTs for parsing Java code, but a structural similarity at
the Java class level may not effectively address the described
problem. Similar to Strathcona, Coogle may also result in
many irrelevant examples.

Another related tool MAPO, developed by Xie and Pei [15],
generates frequent usage patterns of an API by extract-
ing and mining code samples from open source repositories
through CSEs. Both MAPO and PARSEWeb exploit CSEs

Figure 3: Overview of PARSEWeb

for gathering relevant code samples, but MAPO cannot solve
queries of the form “Source → Destination”. Programmers
need to know the API to be used for using MAPO to iden-
tify usage patterns of that API. Moreover, our approach is
more effective than MAPO as we consider control-flow infor-
mation while generating MISs for the given query, whereas
MAPO does not consider the control-flow information.

4. APPROACH
Our approach consists of five major components: code

search engine, code downloader, code analyzer, sequence
postprocessor, and query splitter. Figure 3 shows an overview
of all components. Our approach consists of three main
phases. These phases may be iterated more than once. In
Phase 1, the code downloader accepts a query from the pro-
grammer and forms a local source code repository with the
code samples collected through CSE. In Phase 2, the code
analyzer analyzes the code samples stored in the repository
and generates MISs. In Phase 3, the sequence postprocessor
clusters similar MISs and ranks the clustered MISs. If the
result of the sequence postprocessor consists of any MISs
that can serve as a solution for the given query, the query
splitter simply outputs the result. If there are no solution
MISs in the result generated by the sequence postprocessor,
the query splitter instead splits the given query into differ-
ent sub-queries and iterates all the preceding three phases
for each sub-query. Finally, the query splitter gathers re-
sults of all sub-queries and generates the final output. We
next present the details of each component.

4.1 Code Search Engine
On the web, there are a variety of CSEs2 available to as-

sist programmers in searching for relevant code samples like
Google [5] and Koders [8]. The main reason for using CSEs
in our approach is that many new frameworks or libraries
emerge from day to day and it is not practical for our own
approach to maintain a repository of all the available frame-
works or libraries, and extract results of given queries from
that repository. Therefore, our approach uses CSEs as an al-
ternative to search in the available open source frameworks
or libraries on the web and gathers the relevant code samples
on demand. Moreover, our idea of gathering code samples
on demand makes our approach independent of any specific
set of frameworks or libraries.

In our approach, we used GCSE [5] for collecting relevant
code samples for the given query, partly because GCSE pro-
vides convenient open APIs for the third-party tools to in-
teract with and it has been consistently improved and main-

2http://gonzui.sourceforge.net/links.html

tained. However, our approach is independent of the under-
lying CSE and can be extended easily to any other CSE.

4.2 Code Downloader
The code downloader component accepts queries of the

form “Source → Destination” from the programmer and
constructs a request for a CSE. The constructed request con-
tains both Source and Destination object types. The code
downloader component submits the constructed request to
CSE and downloads code samples returned by CSE to form
a local source code repository. The code samples stored in
the local source code repository are often partial and not
compilable, because the code downloader downloads only
individual source files with usages of the given Source and
Destination object types, instead of entire projects.

4.3 Code Analyzer
The code analyzer component takes code samples stored

in the local source code repository as input and analyzes
them to extract MISs that can serve as solutions for the
given query of the form “Source → Destination”.

As code samples (i.e., source files) stored in the local
source code repository are often partial and not compilable,
our approach converts each code sample into an intermedi-
ate form. We developed the following graph-based in the
conversion process to support method inlining and to pre-
serve control-flow information in the intermediate form.

Initially, the code analyzer creates an Abstract Syntax
Tree (AST) for each code sample. The code analyzer uses
the created AST to build a Directed Acyclic Graph (DAG).
A node in the constructed DAG contains a single state-
ment and an edge represents the control flow between the
two statements. The primary advantage of DAG is that
DAG supports control-flow information through branches
and joins, and provides an effective mechanism for identify-
ing paths between any two nodes in the graph. The state-
ments inside loops like while and for may be executed either
several times or zero time. Considering these statements
once can help generate the MIS associated with the loop.
Therefore, our approach treats the statements inside loops
like while and for as a group of statements that are executed
either once or not. While constructing DAG, the code an-
alyzer performs method inlining by replacing the method
invocations of the class under analysis with the body of the
corresponding method declarations. Our approach cannot
perform method inlining if the corresponding method dec-
laration is abstract. This method inlining process helps to
identify MISs that are split among methods of the class un-
der analysis (shown in Section 6.4). If the current class does
not contain the method declaration of a method invocation
whose receiver type is this (either explicitly or implicitly
stated at the call site), the code analyzer assumes that this
method belongs to the parent class and associates a special
context called parent context (Section 4.3.2) with that node.
When needed, the code analyzer can use this parent context
for identifying the Source object type.

The nodes in the constructed DAG contain only those
statements that result in a transformation from one object
type to another. In particular, the statements that are in-
cluded in the intermediate form belong to one of the types
described below:

• Method Invocation: Generally, a method invocation
with a non-void return type can be considered as a

statement that transforms either the receiver type or
argument types to the return type. For example, the
method invocation ReturnObj obj1 = RefObj.method(Arg1,

Arg2) can be considered as a statement that transforms
objects of type RefObj, Arg1 or Arg2 to ReturnObj.

• Constructor: As a constructor generally takes some
arguments, it can be considered as a statement that
transforms objects of its argument types to the newly
created object type.

• Typecast: A typecast can be considered as a trans-
formation statement, because it performs an explicit
transformation from one object type to another.

Along with identifying the preceding statement types, our
approach uses several heuristics (Section 4.3.1) to gather
additional type information for each statement and this ad-
ditional type information is associated with the correspond-
ing node in the graph. For example, the additional type
information for method-invocation statements include the
receiver object type, the return object type, and argument
types. When any of receiver, return, or argument types
matches with the given Source object type, the code ana-
lyzer marks the corresponding node as a Source node. When
the return type of any statement matches with the required
Destination type, the code analyzer marks the correspond-
ing node as a Destination node.

The code analyzer extracts a MIS from the DAG by cal-
culating the shortest path from a Source node to a Desti-

nation node. The shortest path is sufficient as every path
from Source to Destination nodes contain a desired method-
invocation sequence. Once a possible sequence is identified
from the DAG, the minimization process of the code an-
alyzer extracts a minimal MIS from the possible sequence
by eliminating the extra method invocations that are not
related to the given query. This minimal MIS is identified
by traversing the sequence in the reverse direction from the
Destination node to the Source node by continuously match-
ing the receiver type and argument types of each statement
with the return type of the preceding statements. For exam-
ple, consider a possible sequence for the query “IEditorPart
→ ICompilationUnit” (where each statement consists of the
receiver type, method name, arguments, and return type):

01:IEditorPart,getEditorInput() : IEditorInput
02:CONSTRUCTOR,Shell() : Shell
03:Shell,setText(String) : void
04:JavaUI,getWorkingCopyManager() : IWorkingCopyManager
05:IWorkingCopyManager,connect(IEditorInput) : void
06:IWorkingCopyManager,getWorkingCopy(IEditorInput)

: ICompilationUnit

The minimization process maintains a special set called
a look-up set that initially contains only the required Des-

tination object. For the given possible sequence, the pro-
cess starts from Statement 6 and adds the receiver type
IWorkingCopyManager and the argument type IEditorInput

to the look-up set, and removes ICompilationUnit from the
look-up set. The minimization process retains Statement 5
in the minimal MIS as its receiver type matches with one
of the types in the look-up set. In Statement 4, the mini-
mization process adds JavaUI to the look-up set and removes
IWorkingCopyManager. The process ignores Statements 3 and
2 as none of its object types match with the object types in
the look-up set. The minimization process ends with State-
ment 1 and generates the minimal MIS as “1,4,5,6”. These

minimal MISs are given as input to the sequence postpro-
cessor component (Section 4.4).

4.3.1 Type Resolution

Heuristics play a major role in the static analysis phase
of our approach. As the downloaded code samples are of-
ten partial and not compilable, our approach relies on these
heuristics to gather information like the receiver object type,
argument types, and the return object type of each method
invocation. Our approach uses five heuristics for identify-
ing the receiver object type and argument types, and uses
ten heuristics for identifying the return object type. Our
heuristics are based on simple language semantics like ob-
ject types of left and right hand expressions of an assignment
statement are either same or related to each other through
inheritance. Due to space limit, we explain only two of our
major heuristics used for identifying the return type of a
method invocation.

Type Heuristic 1: The return type of a method-invocation

statement contained in an initialization expression is the

same as the type of the declared variable.
Consider the code sample shown below:

QueueConnection connect; QueueSession session =
connect.createQueueSession(false,int)

The receiver type of the method createQueueSession is the
type of connect variable. Therefore, the receiver type can be
simply inferred by looking at the declaration of the connect

variable. But as our approach mainly deals with code that
is partial and not compilable, it is difficult to get the re-
turn type of the method-invocation createQueueSession. The
reason is the lack of access to method declarations. How-
ever, the return type can be inferred from the type of vari-
able session on the left hand side of the assignment state-
ment. As the type of variable session is QueueSession, we
can infer that the return type of the method-invocation
createQueueSession is QueueSession.

Type Heuristic 2: The return type of an outermost

method-invocation contained in a return statement is the

same as the return type of the enclosing method declaration.
Consider code sample presented below:

public QueueSession test() { ...
return connect.createQueueSession(false,int);}

In this code sample, the method-invocation statement
createQueueSession is a part of the return statement of the
method declaration. In this scenario, we can infer the return
type of this method-invocation from the return type of the
method test. As the method test returns QueueSession,
we can infer that the return type of the method-invocation
createQueueSession is also QueueSession.

4.3.2 Parent Context

A parent context includes the parent object type, if any,
and interfaces implemented by the class in the given code
sample. In some of the code samples, we observed that the
Source object type is not explicitly available in the code
sample but is described as a parent class. The code ana-
lyzer component handles this aspect by identifying the par-
ent context as possible Source object types. Consider the
query “TextEditorAction → ITextSelection” and a related
code sample shown below:
01:public class OpenAction extends TextEditorAction {
02: public void run() {

03: ITextEditor editor = getTextEditor();
04: ISelectionProvider provider =

editor.getSelectionProvider();
05: ITextSelection textSelection = (ITextSelection)

provider.getSelection(); } }

In the preceding sample, class OpenAction declares only
a run method. Although the code sample includes a so-
lution for the given query, it is not explicitly available as
the method declaration of getTextEditor is not available. In
this case, we can consider that the method getTextEditor

is defined in either TextEditorAction or its parent classes.
Therefore, class TextEditorAction can be considered as re-
ceiver type for the method getTextEditor. With this consid-
eration, our approach can identify that this code sample is
a possible solution for the given query.

4.4 Sequence Postprocessor
The sequence postprocessor component clusters similar

MISs and ranks the clustered MISs. Clustering of MISs
helps to identify distinct possible MISs and also reduces the
total number of MISs. This reduction of the number of re-
sults can help programmers quickly identify the desired MIS
for the given query. To further assist programmers, the se-
quence postprocessor also sorts the clustered results. These
sorted results can help programmers identify sequences that
are more frequently used for addressing the given query.

4.4.1 Sequence Clustering

We next describe the heuristic used by our approach for
identifying and clustering similar MISs. To identify simi-
lar MISs, our approach ignores the order of statements in
the extracted MISs. Our approach considers MISs with the
same set of statements and with a different order as similar.
For example, consider MISs “2,3,4,5” and “2,4,3,5” where
each number indicates a single statement associated with
the node in the constructed DAG. Our approach considers
these sequences as similar because different programmers
may write intermediate statements in different orders and
these statements may be independent from one another.

To further cluster the identified MISs, our approach iden-
tifies MISs with minor differences and clusters those identi-
fied MISs. We introduce an attribute, called cluster preci-

sion, which defines the number of statements by which two
given MISs differ each other. This attribute is configurable
and helps the sequence postprocessor in further clustering
the identified MISs. Our approach considers MISs that differ
by the given cluster precision value as similar, irrespective
of the order of statements in those MISs. For example, con-
sider MISs “8,9,6,7” and “8,6,10,7”. These two sequences
have three common statements (8,6,7) and differ by a sin-
gle statement. Our approach considers these two MISs as
similar under a cluster precision value of one, as both the se-
quences differ by only one method invocation. This heuristic
is based on the observation that different MISs in the final
set of sequences often contain overloaded forms of the same
method invocation.

4.4.2 Sequence Ranking

In general, many queries result in more than one possible
solution, and not all solutions are of the same importance
to the programmer. To assist the programmer in quickly
identifying the desired MISs, our approach uses two ranking
heuristics and sorts the final set of MISs.

Ranking Heuristic 1: Higher the frequency → Higher

the rank

This heuristic is based on the observation that more-used
MISs might be more likely to be used compared to less-used
MISs. Therefore, MISs with higher frequencies are given a
higher preference.

Ranking Heuristic 2: Shorter the length → Higher the

rank

This ranking heuristic, which was originally proposed in
the Prospector [11] approach, is based on the length of
the MIS. Shorter sequences are given a higher preference
to longer sequences. This heuristic is considered based on
the observation that programmers would often tend to use
shorter sequences instead of longer ones to achieve their task.

4.5 Query Splitter
Query splitting is an additional heuristic used by our ap-

proach to address the problem of lack of code samples in the
results of CSE. We observed that a code sample for some of
the queries is split among different files instead of having the
entire sample in the same file. The query splitting heuristic
helps to address this problem by splitting the given query
into multiple sub-queries. The algorithm of our approach
including the query splitting heuristic is described in Algo-
rithm 1.

Initially, our approach accepts the query of the form “Source

→ Destination” and tries to suggest solutions. If no possi-
ble MISs are found, our approach tries to infer the immedi-
ate alternate destinations (AltDest) by constructing a new
query that includes only the Destination object type. A
query with just the Destination object type provides differ-
ent possible MISs, referred as DestOnlyMISs, that result in
the object of the Destination type. In these DestOnlyMISs,
the Source can be of any object type. Our approach infers
the AltDestSet by identifying the receiver type and argu-
ment types in the last method invocation (lastMI) of each
MIS in the DestOnlyMISs set. The primitive types, such as
int, are ignored while identifying the AltDest. For each of
the AltDest, new MISs are generated by constructing queries
of the form “Source → AltDest”. The lastMI of the earlier
sequence is appended to the new set of sequences to generate
a complete MIS. In case our approach including the query
splitting is not able to suggest any MISs, we simply return
the DestOnlyMISs.

5. IMPLEMENTATION
We used Google Code Search Engine (GCSE) [5] as an

underlying CSE for the code downloader component. To
improve performance, the code downloader uses the multi-
threading feature of the Java programming language, and
invokes a post processor written in the Perl language to
transform the source files returned by GCSE from HTML to
Java. Eclipse JDT Compiler [1] is used for building ASTs
from Java files. We used Dijkstra’s shortest path algorithm
from the Jung [7] library to gather the required path from
Source to Destination object types.

We developed an Eclipse plugin, called PARSEWeb3, that
integrates all described aspects of our approach. PARSEWeb
displays the suggested MISs for the given query in a tree-
structured tabular form. A snapshot of our PARSEWeb
output is shown in Figure 4. Each MIS is associated with

3Available at http://ase.csc.ncsu.edu/parseweb/

Input: Source and Destination object types
Output: Method-Invocation Sequences
Extract MISs for the Query “Source→Destination”;
if MISs are not empty then

return MISs;
end

//Query Splitting
Extract DestOnlyMISs for the Query “Destination”;
for MIS in DestOnlyMISs do

lastMI = MIS.lastMethodInvocation();
AltDestSet = ReceiverType and ArgTypes of lastMI;
Intialize F inalMISs;
for AltDest in AltDestSet do

Extract AltMIS for the Query “Source→AltDest”;
Append lastMI to AltMIS;
Add AltMIS to F inalMISs;

end

end

if F inalMISs are not empty then
return F inalMISs

end

else
return DestOnlyMISs;

end

Algorithm 1: Pseudocode of the PARSEWeb algorithm
with the query splitting heuristic

additional information like rank, frequency, and length. Pro-
grammers can browse the relevant code sample of the sug-
gested MIS by double clicking on the corresponding entry.

The current implementation of PARSEWeb shows only
the first ten MISs that can serve as a solution for the given
query. Furthermore, the query splitter is configured to it-
erate all three main phases for only the first five elements
in DestOnlyMISs (shown in Algorithm 1). However, both
these parameters are configurable through the property file.

6. EVALUATION
We conducted four different evaluations on PARSEWeb to

show that PARSEWeb is effective in solving programmers’
queries. In the first evaluation, we showed that PARSEWeb
is able to solve programming problems posted in developer
forums of existing libraries. In the second evaluation, we
showed that PARSEWeb-suggested solutions are available
in a real project. We also analyzed the PARSEWeb results
with the results of two other related tools: Prospector4 [11]
and Strathcona5 [6]. Prospector tries to solve the queries
related to a specific set of frameworks or libraries by using
API signatures. Strathcona tries to suggest similar code
examples stored in an example repository by matching the
context of the code under development with the samples
stored in the example repository. In the third evaluation,
we compared PARSEWeb with Prospector. We showed that
PARSEWeb performs better than Prospector. Moreover,
PARSEWeb is not limited to the queries of any specific set
of frameworks or libraries as Prospector is. In the fourth
evaluation, we showed the significance of different techniques
used in PARSEWeb.

6.1 Programming Problems
The purpose of this evaluation is to show that PARSEWeb

is not limited to the queries of any specific set of frameworks
or libraries. We collected two programming problems that

4http://snobol.cs.berkeley.edu/prospector/
5http://strathcona.cpsc.ucalgary.ca/

Figure 4: A snapshot of PARSEWeb plugin interface

were posted by developers in forums of existing open source
frameworks or libraries and checked whether PARSEWeb is
able to suggest solutions for those problems; existing tools
such as Prospector and Strathcona cannot address these
problems because the queries for these problems fall out of
the scope of these two tools: J2SE, Eclipse, and Eclipse
GEF (Graphical Editing Framework). The results indicate
that PARSEWeb is able to solve these real programming
problems.

6.1.1 Jakarta BCEL User Forum

The Byte Code Engineering Library (BCEL) provides the
ability to analyze, create, and manipulate Java bytecode
files. We collected the programming problem “How to disas-
semble Java byte code” posted in the BCEL forum [3]. The
programming problem describes that the programmer is us-
ing the BCEL library and has Java byte code under analysis.
In the BCEL library, Java byte code is represented through
the Code class. The programmer wants to obtain a Java as-
sembler command list, which is represented in the form of
instructions in the BCEL library. Therefore, we identified
the relevant query for the given problem description as “Code
→ Instruction”. PARSEWeb suggested a solution for the
query as shown below:

01:FileName:2 RepMIStubGenerator.java MethodName:
isWriteMethod Rank:1 NumberOfOccurrences:1

02:Code,getCode() ReturnType:#UNKNOWN#
03:CONSTRUCTOR,InstructionList(#UNKNOWN#)

ReturnType:InstructionList
04:InstructionList,getInstructions()

ReturnType:Instruction

The suggested solution is the same as the response posted
in the forum. The programmer can refer to a related code
sample by browsing the isWriteMethod method in the file
2 RepMIStubGenerator.java. The original code sample col-
lected from the preceding method is shown below:

Code code;
InstructionList il = new InstructionList(code.getCode());
Instruction[] ins = il.getInstructions();

In the code sample suggested by PARSEWeb, the return
type of getCode method is described as UNKNOWN. The keyword
UNKNOWN denotes that the PARSEWeb is not able to infer the
return type through its heuristics, because the return type of
getCode method is not explicitly specified in the code sample.
However, PARSEWeb still correctly suggested to pass the
return type directly to the constructor of InstructionList.

6.1.2 Dev2Dev Newsgroups

We applied PARSEWeb on another problem “how to con-
nect db by sessionBean” posted in the Dev2Dev Newsgroups [4].
We transformed the question into the query “InitialContext
→ Connection” and used PARSEWeb to obtain the solution.
PARSEWeb suggested the following solution, which is the
same as the one described in the forum.

01:FileName:3 AddrBean.java MethodName:getNextUniqueKey
Rank:1 NumberOfOccurrences:34

02:InitialContext,lookup(String) ReturnType:DataSource
03:DataSource,getConnection() ReturnType:Connection

6.2 Real Project
We next show that PARSEWeb-suggested MISs exist in

a real project, and compare the results with those of two
related tools: Prospector and Strathcona. As described by
Bajracharya et al. [2], there is still a need (but lack) of a
benchmark for open source code search that can be used
by similar tools for comparing their results. In our evalua-
tion, we used an open source project Logic [10] as a subject
project. The Logic project was developed based on Eclipse
Graphical Editing Framework (GEF). The reason for choos-
ing Logic for evaluation is that Logic is one of the standard
example projects delivered with the Eclipse GEF framework.

To be fair in evaluation, we chose all queries from the
largest source file (“LogicEditor.java”) of the subject project.
By choosing the largest file, we can also find many queries
that can be used to evaluate all three tools. Within the
source file, we picked the first ten available queries of the
form “Source → Destination” from the beginning of the
class, and used all three tools to suggest solutions for each
query. The query selection process is based on two crite-
ria: a new object type is instantiated from one of the known
object types and the selected query is the maximal possible
query, which we shall explain next through the code sample
extracted from the source file used in the evaluation:

01:public void createControl(Composite parent){
02: PageBook pageBook = new PageBook(parent, SWT.NONE);
03: Control outline = getViewer().createControl(pageBook);
04: Canvas overview = new Canvas(pageBook, SWT.NONE);
05: pageBook.showPage(outline);
06: configureOutlineViewer();
07: hookOutlineViewer();
08: initializeOutlineViewer();}

The possible queries that can be extracted from this code
sample are “Composite → PageBook”, “Composite → Con-
trol”, and “Composite → Canvas”. However, the maximal

Table 1: Evaluation results of programming tasks

from the Logic Project
Query PARSE PROS Strath GCSE

Source Destination No Ra No Ra No Ra

IPageSite IActionBars 1 1 3 1 10 7 1
ActionRegistry IAction 3 1 4 1 10 3 2
ActionRegistry ContextMenu Nil Nil 2 2 10 3 NA

Provider
IPageSite ISelection 1 1 12 1 10 Nil 5

Provider
IPageSite IToolBar 2 1 12 1 10 6 9

Manager
String ImageDescriptor 10 6 12 Nil 10 Nil 28
Composite Control 10 2 12 Nil 10 Nil 72
Composite Canvas 10 5 12 Nil 10 Nil 28
GraphicalViewer Scrollable 2 1 12 8 10 7 2
Thumbnail
GraphicalViewer IFigure 1 Nil 12 Nil 10 Nil NA
PARSE: PARSEWeb, PROS: Prospector, Strath: Strathcona

No: Number, Ra: Rank

possible query among these three queries is “Composite →

Canvas”, as this query subsumes the other two queries. We
consider a task as successful only when the suggested code
sample is the same as the code snippet in the corresponding
subject project. As our approach tries to suggest solutions
from available open source repositories, which may include
the subject project under consideration, we excluded the
results of PARSEWeb that are suggested from the subject
project under consideration.

As both PARSEWeb and Prospector accept the query of
the preceding form, we gave constructed queries directly as
input. Strathcona compares the context of code given as in-
put and suggests relevant code samples. Therefore, for each
evaluation, we built separate driver code that can convey
the context of the query. In the driver code, we declared
two local variables with the Source and Destination object
types, respectively.

We used PARSEWeb, Prospector, and Strathcona to sug-
gest solutions for each query. The results of our evaluation
are shown in Table 1. In Columns “PARSE”, “PROS”, and
“Strath”, Sub-columns “No” and “Ra” show the number of
results returned by each tool, and rank of the suggested so-
lution that matches with the original source code of the sub-
ject project from which the query is constructed. The max-
imum number of results returned by PARSEWeb, Prospec-
tor, and Strathcona are 10, 12, and 10, respectively. The
last column “GCSE” shows the index of the source file that
contained the solution among the results by GCSE. This in-
dex information is extracted by identifying the first source
file in which the resultant MIS is found. We found that both
PARSEWeb and Prospector performed better than Strath-
cona. Between PARSEWeb and Prospector, PARSEWeb
performed better than Prospector. We next discuss the re-
sults of each tool individually.

From the results, we observed that PARSEWeb suggested
solutions for all queries except for two. The reason behind
the better performance of PARSEWeb is that PARSEWeb
suggests solutions from reusable code samples. We inspected
queries for which PARSEWeb could not suggest any solution
and found the reason is a limitation of our approach in ana-
lyzing partial code samples. We elaborate this limitation in
Section 7.

Prospector tries to solve the given query using API signa-
tures. Therefore, it can often find some feasible solution for

a given query, as it can find a path from the given Source

to Destination. One reason for not getting complete results
with Prospector in our evaluation could be that Prospector
shows only first twelve results of the given query. Due to this
limitation, the required solution might not have shown in
the suggested set of solutions. Prospector solves the queries
through API signatures and has no knowledge of which MISs
are often used compared to other MISs that can also serve as
a solution for the given query. PARSEWeb performs better
in this scenario because PARSEWeb tries to suggest solu-
tions from reusable code samples and is able to identify MISs
that are often used for solving a given query. For example,
for query “Composite → Canvas”, the solution is through an
additional class called PageBook. Although this solution is
often used, Prospector is not able to identify the solution as
it can be a less favorable solution from the API signature
point-of-view.

We suspect that the reason for not getting good results
with Strathcona is that Strathcona cannot effectively ad-
dress the queries of the form “Source → Destination”. We
observed that Strathcona generates relevant solutions when
the exact API is included in the search context. But our de-
scribed problem is to identify that API, as the programmer
has no knowledge of which API has to be used for solving
the query. Moreover, we found that many code samples
returned by Strathcona contain both Source and Destina-

tion object types in either import statements or in different
method declarations. Therefore, those code samples cannot
address our query as no MIS can be derived to lead from
Source to Destination object types.

The results shown in Column “GCSE” indicate the prob-
lems that may be faced by programmers in using CSEs di-
rectly. For example, to find the solution for the seventh task,
the programmer has to check 72 files in the results of GCSE.

6.3 Comparison of PARSEWeb and
Prospector

We next present the evaluation results of PARSEWeb and
Prospector6 for 12 specific programming tasks. These tasks
are based on Eclipse plugin examples from the Java Devel-

oper’s Guide to Eclipse [1] and are the same as the first 12
tasks used by Sahavechaphan and Claypool [14] in evaluat-
ing their XSnippet tool. We have not chosen the remaining
5 tasks used in evaluating the XSnippet tool as they are
the same as some previous tasks, but differ in the code con-
text where the tasks are executed. As neither PARSEWeb
nor Prospector considers the code context, these 5 tasks are
redundant to use in our evaluation.

The primary reason for selecting these tasks are that their
characteristics include different Java programming aspects
like object instantiation via a constructor, a static method,
and a non-static method from a parent class. These tasks
also require downcasts and have reasonable difficulty levels.
For each task, all necessary Java source files and Jar files
are provided and code for getting the Destination object
from the Source object is left incomplete. We used open
source projects such as org.eclipse.jdt.ui, and examples
from Eclipse corner articles7 for creating the necessary en-

6We chose only Prospector for detailed comparison because
another related tool XSnippet [14] was not available and
Strathcona did not perform well in addressing the described
problem based on the previous evaluation.
7http://www.eclipse.org/articles/

Table 2: Evaluation results of programming tasks

previously used in evaluating the XSnippet tool
Query PARSE PROS

Source Destination

ISelection ICompilationUnit Yes No
IStructuredSelection ICompilationUnit Yes Yes
ElementChangedEvent ICompilationUnit Yes Yes
IEditorPart ICompilationUnit Yes Yes
IEditorPart IEditorInput Yes Yes
ViewPart ISelectionService Yes Yes
TextEditorAction ITextEditor Yes No
TextEditorAction ITextSelection Yes No
ITextEditor ITextSelection Yes Yes
AbstractDecorated ProjectViewer No No
TextEditor
TextEditor IDocument Yes No
TextEditor ITextSelection Yes Yes

vironment. We used PARSEWeb and Prospector to suggest
solutions for each query. A task is considered as successful
if the final code can be compiled and executed, and the re-
quired functionality is enabled with at least one suggested
solution. The task is also considered as successful if the sug-
gested solution acts as a starting point and the final code
could be compiled with some additional code. Prospector
can generate compilable code for its suggested solutions, but
the current implementation of PARSEWeb suggests only the
frequent MISs and code samples, but cannot directly gen-
erate compilable code. Therefore, we manually transformed
the suggested sequences into appropriate code snippets.

The results of our evaluation for the 12 programming
tasks are shown in Table 2. PARSEWeb is not able to sug-
gest solution for only one query, whereas Prospector failed
to suggest solutions for five queries. This result demon-
strates the strength of PARSEWeb as it suggests solutions
from reusable code samples gathered from publicly available
source code repositories. A summary of percentage of tasks
successfully completed by each tool along with the results
collected from the XSnippet [14] approach is shown in Fig-
ure 5. The x axis shows different tools and the y axis shows
the percentage of tasks successfully completed by each tool.
The “XSnippet1” and “XSnippet2” entries show two XSnip-
pet query-type techniques: Type-Based Instantiation Query

(IQT) and Generalized Instantiation Query (IQG), respec-
tively. PARSEWeb performed better than Prospector and
XSnippet’s IQT query type. The results of PARSEWeb are
at par with XSnippet’s IQG query type. However, the IQG

query type of XSnippet cannot effectively address the issue
targeted by PARSEWeb as this query type simply returns
the set of all code samples contained in the sample reposi-
tory that instantiate the given Destination object type, ir-
respective of the Source object type. Moreover, XSnippet is
also limited to the queries of a specific set of frameworks or
libraries.

6.4 Significance of PARSEWeb Techniques
We next show the significance and impact of different tech-

niques used in PARSEWeb. We picked some of the queries
in preceding evaluations and analyzed different techniques
of our approach. The results of our analysis are shown in
Table 3. The table shows the number of identified MISs
after applying respective techniques. As shown in the re-
sults, the method inlining technique increases the possible
number of sequences, whereas the sequence postprocessing

Table 3: Evaluation results of PARSEWeb internal

techniques
Query Simple Method Post Query

Source Destination Inline Process Split

TableViewer TableColumn 21 23 2 2
IWorkbench IEditorPart 13 17 8 8
IWorkBench IStructured 5 6 1 1
Page Selection
Composite Control 26 29 24 24
IEditorSite ISelectionService Nil Nil Nil 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PARSEWeb Prospector XSnippet1 XSnippet2

T
a
s
k
s
 (

%
)

Figure 5: Percentage of tasks successfully completed

by PARSEWeb, Prospector, and XSnippet

technique helps in reducing the number of sequences by clus-
tering similar sequences. The query splitting heuristic helps
address the lack of code samples by splitting the query into
different sub-queries.

6.5 Summary
The primary advantage of PARSEWeb compared to other

related tools is that PARSEWeb is not limited to the queries
of any specific set of frameworks or libraries. We showed
this advantage in the first part of our evaluation. Although
Prospector solves the queries of a specific set of frameworks
or libraries from the API signatures, we showed that the re-
sults of PARSEWeb are better than the results of Prospec-
tor. The reason is that Prospector has no knowledge of
which MISs are often used compared to other possible sets
of sequences. This lack of information often results in irrel-
evant solutions. Although both PARSEWeb and Strath-
cona suggest solutions from code samples, the results of
PARSEWeb are better than Strathcona because the number
of available code samples are limited for Strathcona. More-
over, PARSEWeb has many specialized heuristics compared
to Strathcona for helping identify the required MIS. We also
showed that GCSE alone cannot handle the queries of the
form “Source → Destination”, and showed the significance
and impact of different techniques in PARSEWeb.

7. DISCUSSION AND FUTURE WORK
In our current implementation, PARSEWeb interacts with

Google Code Search Engine [5] for gathering relevant code
samples. Therefore, our current results are dependent on
code samples returned by GCSE. We observed that PARSEWeb
is not able to suggest solutions for some of the queries due
to lack of relevant code samples in the results returned by
GCSE. We found this limitation when we evaluated with
open source projects ASTView8 and Flow4j 9, where Prospec-
tor or Strathcona also could not work well. We alleviated

8http://www.eclipse.org/jdt/ui/astview/index.php
9http://sourceforge.net/projects/flow4jeclipse

this problem to a certain extent through the query splitting
heuristic. To address the problem further, We plan to ex-
tend our tool to collect code samples from other CSEs such
as Koders [8], and analyze the results to compare differ-
ent CSEs. We expect that the addition of new source code
repositories to CSEs can also help in alleviating the current
problem.

As our approach deals with code samples that are often
partial and not compilable, there are a few limitations in in-
ferring the information related to method invocations. We
explain the limitation of our approach through the code sam-
ple shown below:

QueueConnectionFactory factory = jndiContext.lookup("t");
QueueSession session = factory.createQueueConnection()

.createQueueSession(false,Session.AUTOACKNOWLEDGE);

In the second expression of this code sample, our heuris-
tics cannot infer the receiver type of the createQueueSession

method and the return type of the createQueueConnection

method. The reason is lack of information regarding the
intermediate object returned by the createQueueConnection

method. If this intermediate object is either Source or Des-

tination of the given query, we cannot suggest this MIS as a
solution. Because of this limitation, our approach could not
suggest solutions to some of the queries used in evaluation.

Another issue addressed by our approach is the processing
of data returned by GCSE [5]. A query such as “Enumeration
→ Iterator” results in nearly 22, 000 entries. To avoid high
runtime costs of downloading and analyzing the code sam-
ples, PARSEWeb downloads only a fixed number of samples,
say N . This parameter N is made as a configurable param-
eter. The default value of N is set to 200, which is derived
from our experiments and identified to be large enough to
make sure that only little useful information is lost during
downloading.

The current implementation of PARSEWeb can also ac-
cept queries including only the Destination object type. Such
queries can help programmers if they are not aware of the
Source object type. However, the number of results returned
by PARSEWeb for such queries are often large (10 to 50)
due to lack of knowledge of the Source object type. There-
fore, to reduce the number of results and help programmers
in quickly identifying the desired MIS, we plan to extend
our tool to infer the Source object type from the given code
context. We also plan to extend our tool to automatically
generate compilable source code from the selected MIS.

8. CONCLUSION
We have developed PARSEWeb, an approach for address-

ing problems faced by programmers in reusing existing frame-
works or libraries. Our approach accepts queries of the
form “Source → Destination” as input and suggests method-
invocation sequences that can take the Source object type
as input and result in the Destination object type. Our
approach collects the relevant code samples, which include
Source and Destination object types, on demand from CSE.
This new idea of collecting sources on demand makes our
approach independent of any specific set of frameworks or
libraries. Our approach includes several heuristics to deal
with partial and non-compilable code downloaded from CSE.
Our query splitting heuristic addresses the problem of lack
of code samples by splitting the given query into multiple
sub-queries. We have conducted four different evaluations

on our approach. Through these evaluations, we showed
that our approach is effective in addressing the issues faced
by programmers and performed better than existing related
tools.

Acknowledgments

This work is supported in part by NSF grant CNS-0720641
and ARO grant W911NF-07-1-0431.

9. REFERENCES
[1] J. Anjou, S. Fairbrother, D. Kehn, J. Kellerman, and

P. McCarthy. The Java Developer’s Guide to Eclipse.
Addison-Wesley Professional, 2004.

[2] S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor,
P. Baldi, and C. Lopes. Sourcerer: A search engine for
open source code supporting structure-based search.
In Proc. of OOPSLA Companion, 2006.

[3] Jakarta BCEL user forum, 2001.
http://mail-archives.apache.org/mod_mbox/

jakarta-bcel-user/200609.mbox/thread.

[4] Dev2Dev Newsgroups by developers, for developers,
2006. http://forums.bea.com/bea/message.jspa?
messageID=202265042&tstart=0.

[5] Google Code Search Engine, 2006.
http://www.google.com/codesearch.

[6] R. Holmes and G. Murphy. Using structural context
to recommend source code examples. In Proc. of

ICSE, pages 117–125, 2005.

[7] Jung the Java Universal Network/Graph Framework,
2005. http://jung.sourceforge.net/.

[8] The Koders source code search engine, 2005.
http://www.koders.com.

[9] T. Lethbridge, J. Singer, and A. Forward. How
software engineers use documentation: The state of
the practice. In IEEE Software, pages 35–39, 2003.

[10] Logic Project based on Eclipse GEF, 2006.
http://www.eclipse.org/downloads/download.php?

file=/tools/gef/downloads/drops/R-3.2.

1-&200609211617/GEF-examples-3.2.1.zip.

[11] D. Mandelin, L. Xu, R. Bodik, and D. Kimelman.
Jungloid mining: helping to navigate the API jungle.
In Proc. of PLDI, pages 48–61, 2005.

[12] Y. Matsumoto. A Software Factory: An Overall

Approach to Software Production. In P. Freeman ed.,
Software Reusability. IEEE CS Press, 1987.

[13] T. Sager, A. Bernstein, M. Pinzger, and C. Kiefer.
Detecting similar Java classes using tree algorithms.
In Proc. of MSR, pages 65–71, 2006.

[14] N. Sahavechaphan and K. Claypool. XSnippet:
Mining for sample code. In Proc. of OOPSLA, pages
413–430, 2006.

[15] T. Xie and J. Pei. MAPO: Mining API usages from
open source repositories. In Proc. of MSR, pages
54–57, 2006.

[16] Y. Ye and G. Fischer. Supporting reuse by delivering
taskrelevant and personalized information. In Proc. of

ICSE, pages 513–523, 2002.

