
Automatic Construction of an Effective Training Set for

Prioritizing Static Analysis Warnings

Guangtai Liang1,2, Ling Wu1,2, Qian Wu1,2, Qianxiang Wang1,2, Tao Xie3, Hong Mei1,2

1
Institute of Software, School of Electronics Engineering and Computer Science

2
Key Laboratory of High Confidence Software Technologies (Peking University), Ministry of Education

Peking University, Beijing, 100871, China

{lianggt08, wuling07, wuqian08, wqx, meih}@sei.pku.edu.cn
3
Department of Computer Science, North Carolina State University, Raleigh, NC 27695, USA

xie@csc.ncsu.edu

ABSTRACT

In order to improve ineffective warning prioritization of static

analysis tools, various approaches have been proposed to compute

a ranking score for each warning. In these approaches, an effec-

tive training set is vital in exploring which factors impact the

ranking score and how. While manual approaches to build a train-

ing set can achieve high effectiveness but suffer from low effi-

ciency (i.e., high cost), existing automatic approaches suffer from

low effectiveness. In this paper, we propose an automatic ap-

proach for constructing an effective training set. In our approach,

we select three categories of impact factors as input attributes of

the training set, and propose a new heuristic for identifying ac-

tionable warnings to automatically label the training set. Our em-

pirical evaluations show that the precision of the top 22 warnings

for Lucene, 20 for ANT, and 6 for Spring can achieve 100% with

the help of our constructed training set.

Categories and Subject Descriptors

D.2.4 [Software/Program Verification]: Reliability, Statistical

methods; F3.2 [Semantics of Programming Languages]: Pro-

gram analysis; G.3 [Probability and Statistics]: Correlation and

regression analysis

General Terms

Algorithms, Experimentation, Measurement

Keywords

Static analysis tools, warning prioritization, training-set construc-

tion, generic-bug-related lines

1. INTRODUCTION
Lightweight static analysis tools such as FindBugs [15], PMD

[24], Jlint [1], and Lint4j [22] aim at detecting generic bugs by

analyzing source code or bytecode against pre-defined bug pat-

terns without executing the program. Compared with formal veri-

fication techniques such as model checking and theorem proving,

these bug-pattern-based tools use lightweight analysis techniques,

and they are effective in detecting generic bugs in large software

[10]. However, there are two main challenges for these existing

tools: (1) their reported warnings often have a high false-positive

rate [18, 21, 17, 2], and (2) even if some warnings reveal true

bugs, they are not always acted on by developers [25]. Research-

ers pointed out that more efforts should be spent on refining these

tools’ warning reports [6].

To address these challenges faced by existing tools, various

prioritization approaches have been proposed to reorder warnings

by assigning each warning with a ranking score [18, 25, 21, 32,

17]. To calculate the ranking score for each specific warning,

different approaches use different impact factors, e.g., warning

category [18, 25], warning priority [25], warning accuracy [17],

code features [25, 17], and code locality [3]. However, in order to

generate an accurate ranking score for each warning, assigning

reasonable weights for different impact factors of the ranking

score is needed but challenging.

A training set, also called a sample set, plays a key role in

learning weights for different impact factors [18, 25, 32, 20, 16].

A training set consists of a vector of input attributes (multiple

impact factors for a specific warning) and an output attribute (the

warning being actionable or not). A training set is used to train a

predictor, e.g., a neural network or a naïve Bayes classifier [31],

which learns and records a weight for each impact factor.

A training set can be constructed manually or automatically. A

manual approach usually achieves high effectiveness but suffers

from low efficiency (i.e., high cost) [25, 16], while an automatic

approach achieves high efficiency but suffers from low effective-

ness [18, 32, 20]. Given that software-related data is growing

rapidly [4], an automatic approach with higher effectiveness is

highly desirable.

For example, open-source projects usually have thousands of

revisions stored in their source-code repositories. Among these

revisions, “bug-fix revisions” are those revisions aiming at fixing

bugs and they can be further divided into two groups: generic

ones and project-specific ones. “Generic-bug-fix revisions” are

responsible for fixing generic bugs while “project-specific-bug-fix

revisions” are responsible for fixing project-specific bugs. Generic

bugs are those bugs that appear across projects such as “dead

lock”, “null pointer dereference”, and “resource leak”. Most static

analysis tools can report only generic bugs unless developers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.
ASE’10, September 20–24, 2010, Antwerp, Belgium.

Copyright 2010 ACM 978-1-4503-0116-9/10/09...$10.00.

write project-specific bug patterns. The lines modified in generic-

bug-fix revisions are called “generic-bug-related lines” and the

lines modified in project-specific-bug-fix revisions are called

“project-specific-bug-related lines”. A warning reported by static

analysis tools may have multiple manifestations or multiple possi-

ble fixes, but a good static analysis tool should be able to indicate

at least one of them to a developer, and ideally should indicate

lines that the developer can choose to fix. Therefore, these “gener-

ic-bug-related lines” can be used to evaluate static analysis warn-

ings and then construct a training set for warning prioritization.

However, a previous approach by Kim and Ernst [18] used all

bug-related lines directly to evaluate these warnings. Actually we

found that more than 60% of bug-related lines computed by their

approach were related to project-specific bugs (which static analy-

sis tools cannot detect or report). Those project-specific-bug-

related lines need to be eliminated when being used to evaluate

static analysis warnings; otherwise, effectiveness would be greatly

compromised, as shown in our evaluation (Section 5).

In this paper, we propose an automatic approach to construct an

effective training set for warning prioritization, which is based on

“generic-bug-related lines”. To the best of our knowledge, we

are the first to point out the importance of “generic-bug-related

lines” in evaluating static analysis warnings. In addition, we also

propose an automatic technique for identifying “generic-bug-

related lines”.

In order to automatically construct a training set for warning

prioritization using “generic-bug-related lines”, we need to ad-

dress the following challenges:

(1) How to automatically identify “generic-bug-fix revisions”

from thousands of revisions of open-source projects?

(2) How to accurately identify “generic-bug-related lines” for a

specific revision?

(3) How to construct a training set based on “generic-bug-

related lines” (i.e., how to extract input attributes and label

output attributes for the training set)?

To address the first challenge, we propose a technique based on

natural language processing (NLP) to assist in identifying “gener-

ic-bug-fix revisions” effectively. To address the second challenge,

we propose a new algorithm to effectively identify accurate “ge-

neric-bug-related lines”. To address the third challenge, we select

three categories of impact factors as a warning’s input attributes:

descriptors of the warning, statistics of warnings from different

tools, and features of the buggy source code related to the warning;

we propose a new heuristic to label actionable warnings: a warn-

ing is labeled as actionable if it disappears in later revisions and is

revised during a generic-bug-fix revision.

Based on our approach, we develop and release an online Code

Defect Analysis Service (CODAS: http://codas.seforge.org),

which integrates multiple static analysis tools (including Find-

Bugs, PMD, Jlint, and Lint4j) and prioritizes warnings with the

help of our predictor trained with our effective training set.

This paper makes the following main contributions:

 The first to identify the importance of “generic-bug-related

lines” and use them to automatically construct an effective

training set for warning prioritization.

 New techniques to identify “generic-bug-fix revisions” and

“generic-bug-related lines”.

 Empirical evaluations, using open-source projects, which

show the effectiveness of our training-set construction.

 A publicly available online defect analysis service, which

integrates four static analysis tools and prioritizes warnings

with a predictor trained with our effective training set.

In the rest of this paper, Section 2 presents background on

software repositories, static analysis tools, and machine learning

workbench. Section 3 presents an overview of our automatic ap-

proach of building a training set. Section 4 describes the details of

our training-set construction. Section 5 describes our evaluation

results. Section 6 discusses related work and Section 7 concludes.

2. BACKGROUND

2.1 Software Repositories
In recent years, many software projects publish their software

repositories over the Internet. These open-source projects provide

sufficient historical data for building a training set. Our approach

computes generic-bug-fix information for subject projects, and

uses the information to label the training set (by determining

whether the warnings are actionable or not). We retrieve bug-fix

information with the help of software repositories, such as source-

code repositories (e.g., CVS or SVN) and issue-tracking systems.

A source-code repository keeps track of changes performed on

source code: who changed what, when, why, and how. A change

transforms an old revision r1 to a new revision r2 by inserting,

deleting, or modifying lines. Source-code repositories handle

revisions of textual files by storing the difference between revi-

sions. When comparing two different files, they use diff tools to

find groups of differing lines [23].

2.2 Static Analysis Tools
Static analysis tools for Java, such as FindBugs [15], Fortify

[13], PMD [24], Jlint [1], and Lint4j [22], are widely used in re-

cent years [29]. These tools use bug-pattern-based matching tech-

niques to detect potential bugs and report warnings.

FindBugs [2] generates warnings for 286 bug patterns [18] and

assigns each warning with a priority (e.g., “High”, “Medium”, or

“Low”) according to its severity and accuracy. PMD [24] discov-

ers suspicious or abnormal coding practices, which may imply

serious bugs, by searching syntactic errors and stylistic conven-

tions’ violations from source code. Jlint [1] finds bugs, inconsis-

tencies, and synchronization problems by doing data flow analysis

and building lock graphs. Lint4j [22] detects issues about locking

and threading, problems about performance and scalability, and

violations against complex contracts such as Java serialization by

performing different analyses (e.g., type, data flow, and lock

graph analyses) against bytecode or source code.

2.3 Machine Learning Workbench
In our approach, we use machine-learning-based predictors to

provide ranking scores for warnings. There are two phases for

machine-learning-based approaches: (1) in the training phase,

predictors learn and record weights for impact factors with the

help of training sets, and (2) in the prediction phase, predictors

predict ranking scores for warnings according to the given values

of impact factors. An effective training set, which comprises a set

of input attributes and an output attribute for each warning, is vital

in exploring how each input attribute affects the output attribute

for a warning.

In this paper, we use a machine-learning workbench named

“Waikato Environment for Knowledge Analysis” (Weka) [31] to

help carry out our training process. Weka is a popular suite of

machine learning software written in Java. It supports standard

data mining tasks such as data preprocessing, clustering, classifi-

cation, regression, visualization, and feature selection. It also pro-

vides implementations for various machine learning algorithms

(e.g., Bayesian Network, Logistic Regression, Bootstrap Aggre-

gating, Random Tree, K-nearest Neighbors, and Decision Table).

http://codas.seforge.org/

3. APPROACH OVERVIEW
We extract a training set with warnings reported by static anal-

ysis tools, label it with the help of “generic-bug-related lines”, and

use it to train a predictor that can be further used to prioritize stat-

ic analysis warnings. Figure 1 shows the overview of our ap-

proach.

Source-Code

Repository

(1) Identifying Generic-

bug-fix Revisions

(2)Identifying Generic-

bug-related Lines

Training Set

(3) Generating Static

Analysis Warnings
Generic-bug-fix Revisions

(4) Extracting a Training Set

Issue-Tracking

System

Training a Predictor

Predictor

Prioritizing

Warnings

Original

Warnings

Reordered

Warnings

Building a Training Set

Warnings
Generic-bug-related Lines

Subject

Program

Figure 1. Approach Overview

Table 1. Projects under analysis

Project

Name

Number of

Revisions

Development

Period
Community

Source-code

Repository

Issue-

tracking

System

Lucene 2630 2001.9-2007.8 Apache SVN JIRA

Spring 3696 2007.4-2009.4 Apache SVN JIRA

ANT 746 1998.10-2003.5 Sable.MCGill SVN BUGZILLA

Log4j 120 2007.8-2009.2 Apache SVN BUGZILLA

JPF 1212 2002.7-2009.4 ObjectWeb SVN OW2-Gforge

3.1 Preparing Historical Data
Most open-source projects publish their source-code reposito-

ries and issue-tracking systems over the Internet. The source-code

repository of a project is responsible for recording all change his-

tories of its source code [32], and its issue-tracking system main-

tains all detailed information of its issues (e.g., bug issues). We

first obtain source-code repositories and issue-tracking databases

of five open-source projects under analysis before building our

training set. Table 1 describes these projects.

3.2 Building a Training Set
Our approach includes four main steps in building a training set:

(1) Identifying Generic-bug-fix Revisions. Generic-bug-fix

revisions are those revisions submitted to source-code repo-

sitories with the purpose of fixing generic bugs, only which

most static analysis tools can detect. These revisions provide

hints to locate generic-bug-related lines. Section 4.1 shows

more details.

(2) Identifying Generic-bug-related Lines. Generic-bug-

related lines are lines modified or removed by generic-bug-

fix revisions. These lines are helpful in labeling our training

set. Section 4.2 shows more details.

(3) Generating Static Analysis Warnings. We generate warn-

ings by running static analysis tools against different revi-

sions of different projects under analysis.

(4) Extracting a Training Set. We select three categories of

impact factors as input attributes of our training set (i.e.,

warning descriptors, statistics for warnings of different tools,

and features of the warning-related source code) and extract

them from warnings and the warning-related source code.

We label the output attribute of each warning in the training

set with the help of “generic-bug-related lines”. Section 4.4

shows more details.

3.3 Training a Predictor to Prioritize Warn-

ings
Weka provides implementations of various machine-learning

algorithms. We select the implementations of six well-know algo-

rithms in Weka to train predictors: Bayesian Network, Logistic

Regression, K-nearest Neighbors, Bootstrap Aggregating, Ran-

dom Tree, and Decision Table.

We use default setting values of each algorithm during the

training process and use “10-folds cross validation” during the

validation process. To explore the most suitable machine-learning

algorithm for our problem, we use the six selected algorithms to

train different predictors against the same training set extracted

from the five projects under analysis. The validation results show

that the “K-nearest Neighbors” based predictor achieves the best

Precision (98.7%), Recall (98.7%), and F-Measure (98.7%).

Therefore, we select the “K-nearest Neighbors” as the best ma-

chine-learning algorithm for our problem and use it as the default

algorithm in our evaluation (Section 5).

After training the predictor with our training set, we use the

predictor to prioritize static analysis warnings: we first use the

predictor to predict the actionability value for each warning (the

probability value that the warning is actionable), and then priorit-

ize all warnings according to their actionability values.

4. TRAINING-SET CONSTRUCTION

In this paper, we build a training set for warning prioritization

by automatically determining whether static analysis warnings are

actionable (i.e., accurate and worth fixing for developers). A

warning reported by static analysis tools may have multiple ma-

nifestations or multiple possible fixes. However, a good static

analysis tool should be able to indicate at least one of them to a

developer, and ideally should indicate lines that the developer can

choose to fix. Because most warnings provided by static analysis

tools are related to generic bugs, we use generic-bug-related lines,

which are modified or deleted by developers in generic-bug-fix

revisions, to evaluate static analysis warnings. In order to identify

generic-bug-related lines, we identify generic-bug-fix revisions

first since the changes made in these generic-bug-fix revisions are

related to generic bugs.

4.1 Identifying Generic-bug-fix Revisions
Open-source projects usually include thousands of revisions in

their source-code repositories. We classify these revisions into

three coarse-grained categories: bug-fix revisions, non-fix revi-

sions, and multi-purpose revisions. “Bug-fix revisions” are those

revisions aiming at fixing bugs. According to the type of their

fixed bugs, fix revisions can be further divided into two groups:

generic-bug-fix revisions and project-specific-bug-fix revisions.

“Non-fix revisions” do not involve fix activities but involve other

activities such as “new feature addition” and “code refactoring”.

“Multi-purpose revisions” are those revisions that involve not

only fix activities but also non-fix activities.

Open-source projects are commonly co-developed by develop-

ers distributed all over the world. To facilitate their cooperation,

strong guidelines for writing the log message of each revision are

undertaken. Chen et al. [8] studied the quality of open source

change log, and found that almost all log messages are consistent

with their corresponding submitted changes. Therefore, it is rea-

sonable to identify generic-bug-fix revisions with the help of log

messages. In previous work, two techniques were proposed for

identifying bug-fix revisions based on analyzing log messages:

identification based on “bug issue key” references [7, 11, 30] and

identification based on searching “bug-fix-related keywords” [18,

23]. These two techniques achieved acceptable precision and re-

call in identifying bug-fix revisions. However, through our eval-

uation, we find that about 95% of bug-fix revisions identified by

the first technique for Lucene are project-specific-bug-fix ones,

and about 90% by the second technique are project-specific-bug-

fix revisions. Therefore, we cannot directly use these two tech-

niques to identify generic-bug-fix revisions.

In this paper, we propose an automatic technique for identifying

generic-bug-fix revisions. Figure 2 presents the pseudo code of

our algorithm for identifying generic-bug-fix revisions.

The algorithm performs one-time identification process for

each revision r. First, it computes the number n of Java files mod-

ified by revision r. By bounding the value of n (Line 3), most

multi-purpose revisions and non-fix revisions are filtered out, and

most bug-fix revisions are kept. The rationale of this step lies in

that, through our investigation, we find that usually generic bug-

fix revisions modify only a few files whereas multi-purpose revi-

sions and most non-fix revisions usually modify a lot of files. By

bounding the number of modified Java files, we first remove most

multi-purpose revisions and non-fix revisions (keeping most ge-

neric-bug-fix revisions).

Then Line 5 determines whether the log message l of revision r

contains a bug issue key. A common phenomenon exists for open-

source projects: when committing bug-fix revisions, developers

tend to include only “the bug issue key” and avoid re-describing

the bug issue in the log message since there is already a copy of

detailed description for the bug in the issue-tracking system (see

Figure 3). Therefore, if the log message contains a bug issue key,

the corresponding issue description issueDes is first retrieved

from the project’s issue-tracking system (Line 6) and then used to

conduct the following identification process because the issue

description is more detailed than the log message in this case.

Lines 7-10 are responsible for computing the maximal similari-

ty maxSimilarity between issueDes (the description of the bug

issue) and each bugDes (the description of each generic bug that

static analysis tools can detect). In this process, based on the

theory of Vector Space Model (VSM) [27], the similarity between

the issueDes and each bugDes is measured by computing the

cosine value of the angle between their corresponding vectors.

When maxSimilarity is large enough (Line 11), the revision r is

identified as a generic-bug-fix revision.

If the log message does not contain a bug issue key, the log

message is used directly to compute the maximal similarity max-

Similarity with each bugDes (Lines 14-17). When maxSimilarity

is large enough (Line 18), the revision r is also identified as a

generic-bug-fix revision.

Figure 2. The algorithm for identifying generic-bug-fix revi-

sions

Issue-

tracking

System

Source-

code
Repository

Issue Key：00600

Type：New feature

Issue Key：00666

Type：Bug

Fixed Bug 00666

Linking a bug issue

with a bug-fix revision

... Revision:8888 ...

Issue Key：00700

Type：Improvement

Figure 3. Associating a bug-fix revision with a bug issue by

unique “issue key”

Figure 4. The pie chart of generic-bug-fix revisions divided by

the number of their modified Java files

In our algorithm, three threshold values represented as A, B, and

C should be determined empirically. Before determining the val-

ues, we first identify generic-bug-fix revisions, manually and

Algorithm identifyGenericBugFixRevisions

Begin

1. foreach revision r do

2. compute n (the number of Java files modified in r)

3. if (n <= A) then

4. maxSimilarity = 0;

5. if (the log message l of r contains a bug issue key) then

6. extract issueDes (description of the bug issue)

7. foreach bugDes (description of each generic bug) do

8. compute similarity s between issueDes and bugDes

9. if (s > maxSimilarity) then

10. maxSimilarity = s;

11. if (maxSimilarity > B) then

12. identify r as a generic-bug-fix revision

13. else

14. foreach bugDes do

15. compute similarity s between l and bugDes

16. if (s > maxSimilarity) then

17. maxSimilarity = s;

18. if (maxSimilarity > C) then

19. identify r as a generic-bug-fix revision

End

randomly, from all revisions of the five subject projects (including

Lucene, ANT, Spring, Log4j, and JPF). As a result, 358 revisions

are identified as generic-bug-fix ones.

Determination of A. In order to identify the value of A (the

threshold of the number of the modified Java files for most gener-

ic-bug-fix revisions), we conduct a statistical analysis on the

number of their modified Java files for the 358 generic-bug-fix

revisions. Figure 4 shows the pie chart of these 358 generic-bug-

fix revisions divided by the number of their modified Java files.

We can find that 49%, 22%, 12%, and 6% of them modify only 1,

2, 3, and 4 Java files, respectively. In total, most generic-bug-fix

revisions (about 88%) modify no more than 4 Java files. In addi-

tion, we also find that most multi-purpose revisions (about 97%)

modify more than 4 files. According to this statistical analysis

result, we set A as 4.

Determination of B. In order to determine the value of B (the

threshold of the maximal similarity between the description of a

bug issue and the description of each generic bug that static analy-

sis tools can detect), we execute the algorithm against only those

revisions whose log messages contain bug issue keys (a subset of

the 358 generic-bug-fix revisions) because the identification

process for only those revisions is affected by B. We fix A as 4

and C as 0 (C can be set as an arbitrary value since it does not

affect the identification process for those revisions). We set B as

different values from 0 to 0.9 (increased with 0.1) and, for each

value, evaluate the algorithm’s precision, recall, and F-measure

value, respectively. Figure 5 shows the result. From the result, we

determine that the F1 value of the algorithm is the best when B is

set as 0.5.

Figure 5. The precision, recall, and F1 of the algorhim

against revisions whose log messages contain bug issue keys

Figure 6. The precision, recall, and F1 of the algorhim against

revisions whose log messages contain no bug issue key

Determination of C. In order to determine the value of C (the

threshold of the maximal similarity between a log message and

the description of each generic bug that static analysis tools can

detect), we execute the algorithm against only those revisions

whose log messages contain no bug issue key because the identi-

fication process for only those revisions are affected by C. We fix

A as 4 and B as 0.5. We set C as different values from 0 to 0.9

(increased with 0.1) and, for each value, evaluate the algorithm’s

precision, recall and F1 value, respectively. Figure 6 shows the

result. From the result, we determine that the F1 value of the algo-

rithm is the best when C is set as 0.6.

Our automatic identification algorithm can reduce large manual

efforts for developers in identifying generic-bug-fix revisions but

its precision (about 60%) is not high enough so far. After the au-

tomatic identification process, we conduct manual verification on

its result to remove false positives (e.g., spending about 0.7 man

hours on 635 automatically identified generic-bug-fix revisions).

4.2 Identifying Generic-bug-related Lines
After generic-bug-fix revisions are identified, the next step is to

identify which lines of a specific revision have been deleted or

modified during generic-bug-fix changes. A code line l is a gener-

ic-bug-related line if and only if l is modified or removed during

any generic-bug-fix change.

Figure 7. The identification algorithm of generic-bug-related

lines for a revision X

Figure 7 presents our algorithm for identifying generic-bug-

related lines. It takes as input X, the number of the revision whose

generic-bug-related lines need to be computed. The algorithm

returns brlsX, the generic-bug-related lines of the revision X, as

output.

The algorithm uses each generic-bug-fix revision whose revi-

sion number is larger than X to compute generic-bug-related lines

for revision X. When revision N is a generic-bug-fix revision and

its revision number is larger than X (Lines 1-2), the diff informa-

tion diff(N-1^N) between revision N and revision N-1 is obtained first

(Line 3). Then the generic-bug-related lines brls(N-1^N) of revision

N-1 modified to result in revision N are identified by parsing diff(N-

1^N) (Line 4). For each generic-bug-related line of brls(N-1^N), its

introducing revision number is retrieved from the project’s

source-code repository (Line 6) and then compared with X (Line

7). If the introducing revision number is smaller than or equal

with X, it means that this line was introduced no later than revi-

sion X, and thus an identical generic-bug-related line must exist in

revision X. Then the identical line in revision X is located and

marked as a generic-bug-related line of revision X (Lines 8-9).

Example. Figure 8 illustrates an example on identifying ge-

neric-bug-related lines for revision 4. All generic-bug-fix re-

visions whose numbers are larger than 4 are listed in Figure 8:

Function identifyGenericBugRelatedLinesForASpecificRevision

Input X : the number of the revision whose generic-bug-related
lines are to be computed

Output brlsX : the generic-bug-related lines of the revision X

Begin

1. foreach generic bug-fix revision N do

2. if (N > X) then

3. get the diff info diff(N-1^N) between revision N and N-1;

4. parse diff(N-1^N) to identify brls(N-1^N) (generic-bug-related lines

 of revision N-1 modified to result in revision N);

5. foreach generic-bug-related line brl in brls(N-1^N) do

6. retrieve the introducing reversion number Y of brl;

7. if (Y <= X) then

8. identify the corresponding line brlX of brl in revision X;

9. add brlX to brlsX ;

End

revision 6 and revision 7. Revision 7 modified the lines of

the top two gray blocks of revision 6. Therefore, these lines

are identified as generic-bug-related lines of revision 6. The

introducing revision number of the lines in the uppermost

gray block of revision 6 is 3, which is smaller than 4, indicat-

ing that these lines must also exist in revision 4. Therefore,

their corresponding lines in revision 4 are located and

marked as generic-bug-related lines of revision 4. However,

the introducing revision number of the line in the middle

gray block of revision 6 is 5, larger than 4, indicating that

these lines do not exist in revision 4 and the analysis for

these lines terminates. After that, the next generic-bug-fix re-

vision (revision 6) is analyzed with the same process. After

analyzing all the generic-bug-fix revisions, we finish identi-

fying the generic-bug-related lines of revision 4 as three lines.

Revision 5 Revision 7

 (Generic-bug-fix revision)

Revision 6

(Generic-bug-fix revision)

Revision 4

(Under Analysis)

if (x != y &&
 z != y)

3 Tom

3 Tom

if (x != null)7 Ken

if (y == null)4 Kimif (y == null)4 Kim

if (x == y &&
z == y)

7 Ken

7 KenMarking

Marking

Fix

Fix

Fix

if (x != y &&
 z != null)

3 Tom

3 Tom

if (x != y &&
 z != y)

3 Tom

3 Tom

if (x == null)5 Kit

if (y != null)6 Ben

Figure 8. Identifying generic-bug-related lines for revision 4

4.3 Generating Static Analysis Warnings
Since different tools are complementary with each other to

some degree [9] [32], we extract a training set with warnings from

multiple tools. We generate warnings of four tools (FindBugs,

PMD, Jlint, and Lint4J) by running CODAS, which integrates the

four tools tightly, against the selected revisions of the projects

under analysis.

4.4 Extracting a Training Set
A training set, which is used for training a predictor, is a set of

effective warning examples (actionable warnings and non-

actionable warnings). An effective training set should be accurate,

representative, fair, and abundant [16, 28].

Our training set is extracted based on warnings, analyzed

source code, and generic-bug-related lines. Table 2 lists 22 input

attributes (impact factors) of our training set. These factors can be

divided into three categories:

(1) Warning descriptors. A given warning’s descriptors (e.g.,

the pattern name and tool name) are taken directly from the warn-

ing report.

(2) Statistics for warnings from different tools. These factors

include the number of warnings that are reported for the same

warning location, the same file, and the same project by each tool:

FindBugs, PMD, Jlint, and Lint4j. The rationale behind these

factors is that if there are more tools reporting more warnings for

the same piece of code, the code is more fault-prone and the warn-

ings generated from the code are more accurate and actionable.

(3) Source code features. We consider eight factors that may

provide insight into the warning-related code’s features. The first

one is the depth of the warning-related code in the file, indicating

that how far down (%) this warning is in the file, in terms of the

percentage of the lines of the file. Some other factors are code

length, comment length, and comment-code ratio (where the

length denotes the number of lines). The rationale behind these

factors is that more comments may reflect higher maintainability

and quality of the code. The fifth factor considers how far down

(%) this warning is in the method of the warning-related code

(named warning-related method), in terms of the percentage of the

lines of the warning-related method. The length of the warning-

related method is considered as the sixth factor. The last two fac-

tors are the number of “callers” and “callees” of the warning-

related method. The rationale behind these two factors is that a

method with more callers is more likely to be the kernel part of

the project, which is often tested more sufficiently and is less

fault-prone; a method with more callees tends to be of higher

complexity and more fault-prone.

Table 2. Input attributes of our training set

Input attributes Description

Warning Descriptors

Pattern Name Bug pattern name of the warning

Tool Name Name of the tool reporting the warning

Statistics for Warnings of Each Tool(4*3 attributes)

Location Warnings
Number of warnings reported for the same location by

each tool

File Warnings
Number of warnings reported for the same file by each

tool

Project Warnings
Number of warnings reported for the same project by

each tool

Source Code Features

File Depth How far down (%) in the file this warning is

Code Length Number of lines of code of the warning-related file

Comment Length Number of lines of comments of the warning-related file

Comment-Code

Ratio

The ratio of comment length and code length of the

warning-related file

Method Depth How far down (%) in the method this warning is

Method Length Number of lines of the warning-related method

Method Callers Number of callers of the warning-related method

Method Callees Number of callees of the warning-related method

We extract the impact factors for warnings by collecting statis-

tics for the warnings reported by each tool and conducting simple

static analysis for the warning-related source code.

The output attribute of a warning in the training set is “isAc-

tionable”, which indicates whether the warning is accurate and

actionable. If the location of a warning contains some generic-

bug-related line(s), we can assume that this warning is very likely

accurate and actionable for developers. However, it is often the

case that some code fragment is related to several different warn-

ings. When the fragment is revised to fix some certain warning

(i.e., lines of the fragment are marked as generic-bug-related

lines), a problem arises: other warnings could be wrongly identi-

fied as actionable ones. To address the problem, we use a new

heuristic: if a warning disappears in a later revision and also re-

ports at least one generic-bug-related line, the warning is treated

as actionable and its output attribute is labeled as “isActionable”;

otherwise, it is non-actionable. The rationale of this heuristic lies

in that if a warning disappears in a later revision without reporting

any generic-bug-related line, we cannot regard it actionable be-

cause it may disappear due to some code changes introduced by

code refactoring or new features addition; if a warning reports

some generic-bug-related line but still exists at later revisions, we

cannot label it as actionable because the generic-bug-related line

may be revised by developers aiming at fixing its other associated

warnings.

After constructing the training set, the first three authors of this

paper conduct manual verification on it with the principle of “ma-

jority voting”: when there is no consensus during verification, the

opinion of majority people is adopted. Manual verification shows

that about 95% of actionable warnings in the training set are con-

firmed to be actionable.

Before training a predictor, we apply seven factor-selection al-

gorithms against our generated training set. The final statistical

analysis shows that there are four factors (input attributes) ranked

last with their effectiveness way behind the other factors by all of

the seven algorithms: “method callers”, “tool name”, “location

warnings of Jlint”, and “location warnings of Lint4j”. Such

analysis result indicates that these four impact factors have small

correlation coefficients with the output attribute. Therefore, we

ignore these four impact factors when training a predictor.

5. EVALUATION
In this section, we present the evaluation for the effectiveness

of our proposed approach of constructing a training set with dif-

ferent strategies. Because a training set is used to train a predictor,

which is finally used to prioritize warnings, we can explore the

best strategies of constructing a training set by evaluating the

prioritized warnings. Given a certain training set, we train a ma-

chine-learning-based predictor, collect original warnings from

multiple tools (FindBugs, PMD, Jlint, and Lint4J), apply the pre-

dictor to predict actionability information (ranking score) for each

warning, and then reorder these warnings based on their actiona-

bility.

To evaluate the quality of reordered warnings, we use the preci-

sion of top warnings as the criterion. Since developers are unlike-

ly to scrutinize all reported warnings due to their limited time, the

top warnings’ quality is of considerable significance. We use

“precision” to evaluate top warnings:

Top n Warnings’ Precision: P(n) = Nactionable/n

Nactionable represents the number of actionable warnings among

the top n warnings. An actionable warning should be accurate and

also acted on during some generic-bug-fix procedure.

In our evaluation, we address the following research questions

(RQ):

RQ1: How effective is our training set for warning prioritiza-

tion compared with previous work?

RQ2: Should we construct a training set from multiple tools’

warnings instead of a single tool’s warnings for a given project

under analysis?

RQ3: Should we construct a training set from multiple

projects’ history instead of a single project’s history for a given

project under analysis?

5.1 RQ1: Effectiveness Evaluation
We evaluated the performance of our prioritization compared

with Kim and Ernst’s [18]. In their evaluation, they prioritized

warnings of three tools (FindBugs, PMD, and Jlint) for the revi-

sion submitted in August 30, 2004 of Lucene. We also applied our

approach to prioritize warnings of the three tools for the same

revision.

In our approach, we first constructed a training set from warn-

ings reported by three tools (FindBugs, PMD, and Jlint) for five

projects (Lucene, Spring, JPF, Log4j, and ANT) from revisions 1

to m/2-1 (m is the maximum revision number for each project:

2630 revisions for Lucene, 3696 for Spring, 746 for ANT, 120 for

Log4j, and 1212 for JPF). With the training set, we trained a “K-

nearest Neighbors” based predictor and then used the predictor to

prioritize warnings for that revision submitted in August 30, 2004

(which was among revisions m/2 to m).

Figure 9 shows the precision of our prioritization, Kim’s priori-

tization, and the built-in prioritization of each tool for Lucene. In

Figure 9 and the remaining figures in this paper, the X axis

represents the top n warnings in the warning list, and the Y axis

represents the precision of the top n warnings correspondingly.

Figure 9. Precision of top n (up to 100) warnings prioritized

by our prioritization and Kim’s prioritization

From Figure 9, we can observe that, for Kim’s prioritization,

the best precision for a subset of the warnings is only 25% (top 16)

for Lucene; for our prioritization, the precision of top 9 warnings

is always 100%. Moreover, our prioritization can keep the preci-

sion of top 100 warnings always higher than tools’ default priori-

tization. In summary, the result shows that our prioritization has a

remarkable improvement over previous work, and our training set

is effective for warning prioritization.

5.2 RQ2: Training-set construction using sin-

gle tool vs. multiple tools

Figure 10. Prioritizing warnings based on training set con-

structed from warnings of the single tool FindBugs

Figure 11. Prioritizing warnings based on training sets con-

structed using warnings of multiple tools vs. single tool

In this section, we made a comparison between a training set

constructed using one single tool and that using multiple tools.

For both strategies, we attained warnings for revisions (from revi-

sions 1 to m/2-1) of all the five projects under analysis (the next

section shows that using multiple projects can achieve better ef-

fectiveness than using one specific project in most cases).

Based on the constructed training set, we trained predictors to

reorder warnings for revision m/2 of the projects under analysis.

Since the results of all projects are similar, we show only the re-

sult of Lucene here due to space limit. Figure 10 shows the effec-

tiveness of our prioritization when using one single tool (Findbugs

here). In Figure 10, RW_FindBugs denotes the reordered warn-

ings by our prioritization based on the training set built using

FindBugs, and OW_FindBugs denotes the original warnings of

FindBugs. The figure shows that our approach improved top

warnings’ precision compared with FindBugs’ default prioritiza-

tion.

Figure 11 shows results of our warning prioritization based on a

training set constructed using warnings of four tools (FindBugs,

PMD, Jlint, and Lint4j), where RW_All, RW_FindBugs,

RW_PMD, RW_Jlint, and RW_Lint4j denote the reordered warn-

ings by our approach based on the training sets extracted from all

tools, FindBugs, PMD, Jlint, and Lint4j, respectively. The result

shows that constructing a training set using warnings of more
tools can help warning prioritization achieve better effectiveness.

5.3 RQ3: Training-set construction using sin-

gle project vs. multiple projects
Given a program a under analysis, which belongs to a project A

under analysis, we have three strategies to construct a training set

for it:

(1) using only historical data of project A;

(2) using not only historical data of project A, but also historical

data from other projects B, C, …;

(3) using only historical data of other projects. This strategy can

be used in two situations: (i) the project A is in an initial

stage and thus lacks historical data; (ii) the program a is sent

to a third-party analysis service, such as CODAS, where it is

usually difficult to attain a’s historical data.

We denote the three strategies as A-a, ABC-a, and ABC-d

(with d denoting different projects), respectively. We show the

comparison results for these three strategies in the subsequent

subsections. Note that we constructed the training sets for our

prioritization using all the four tools and conducted the compari-

son of warning prioritization for revision m/2 of each program a

under analysis.

1.1.1 A-a vs. ABC-a
For each project under analysis, we constructed different train-

ing sets using two strategies: “A-a” (using its own history) and

“ABC-a” (using five projects’ historical data: Lucene, Spring, JPF,

Log4j, and ANT). Based on different training sets, we trained

different predictors to prioritize warnings.

The results of all projects are similar, but due to space limit we

show only part of them. Figures 12-14 show the results for Lucene,

ANT, and Spring, respectively. In Figures 12-14, Ours(ABC-a)

and Ours(A-a) denote our prioritization based on the strategies

“ABC-a” and “A-a”, respectively. From Figures 12-14, we have

the following observations:

(1) Both the “ABC-a” and “A-a” based prioritization out-

perform each tool’s built-in prioritization effectively. For ex-

ample, for Lucene, the precision of top 100 warnings of our ap-

proach is always more than 26%. In contrast, the precision of each

tool is always less than 2%. Only one warning among top 100

warnings of FindBugs is actionable, whereas 26 are actionable

among top 100 warnings of our approach and 20 of them are pri-

oritized on the top of the warning list by our “ABC-a” based pri-

oritization. For ANT, only 3 of top 100 warnings of FindBugs are

actionable, while 22 and 20 warnings are actionable among top

100 warnings of ours “ABC-a” and “A-a” based prioritization,

respectively.

(2) The “ABC-a” based prioritization is superior to the “A-

a” based prioritization for the three projects. Through analysis,

we find that the results shown in Figures 12-14 are reasonable.

Our projects under analysis are all open-source and their develop-

ers generally share the same guidelines or customs to fix bugs.

Only one project’s history is limited and cannot supply enough

“knowledge” for a predictor to learn. A larger training set from

more projects can help a predictor learn more. Therefore, it is

reasonable that the “ABC-a” based prioritization performs better

than the “A-a” based prioritization due to the sufficiency of train-

ing data.

Figure 12. “A-a” vs. “ABC-a” based prioritization for Lucene

Figure 13. “A-a” vs. “ABC-a” based prioritization for ANT

Figure 14. “A-a” vs. “ABC-a” based prioritization for Spring

1.1.2 ABC-a vs. ABC-d

We used the same training set (constructed using history from

Lucene, Spring, JPF, Log4j, and ANT) to prioritize warnings for

Lucene and Tapestry. Therefore, for Lucene, the prioritization is

based on the “ABC-a” strategy, whereas for Tapestry, the prioriti-

zation is based on the “ABC-d” strategy. Figures 15-16 show the

results. From Figures 15-16, we observe that (1) both the “ABC-

a” based prioritization and the “ABC-d” based prioritization out-

perform each tool’s built-in prioritization effectively; (2) the

“ABC-a” based prioritization performs better than the “ABC-d”

based prioritization.

In summary, the “ABC-a” strategy can help construct a more

effective training set than the “ABC-d” strategy.

Figure 15. “ABC-a” based prioritization for Lucene

Figure 16. “ABC-d” based prioritization for Tapestry

5.4 Threats to validity
The main threat to external validity includes the representative-

ness of the subject projects that we selected in the evaluation.

Therefore, the results of our evaluation may be specific only to

these projects. To reduce this threat, we chose projects from dif-

ferent open source communities and their types are different from

each another. The threat could also be reduced by more evalua-

tions on more subjects in future work. The main threat to internal

validity is human factors when manually verifying the generic-

bug-fix revisions automatically identified by our approach and the

actionable warnings in our constructed training set. To reduce the

threat, the first three authors of this paper conducted the verifica-

tions with the principle of “majority voting” and great carefulness.

6. RELATED WORK
To the best of our knowledge, we are the first to propose an au-

tomatic approach to construct an effective training set for warning

prioritization and point out the importance of “generic-bug-related

lines” for the problem. There are several threads of related work;

however, they use different techniques to prioritize warnings.

Kremenek and Engler [21] developed a ranking algorithm (z-

ranking) to prioritize warnings for a single warning type (i.e., a

single “checker”). They observed that clusters of warnings were

usually either all false positives or all true bugs. A generalization

of this work produced an adaptive ranking scheme called Feed-

back Rank [20]. This work used code locality to identify clusters

of false positives and true bugs among warnings. Their algorithm

updated warning priorities as nearby warnings were classified. In

their approach, based on their observation, they selected “code

locality” (an impact factor) to directly prioritize warnings. How-

ever, their observation is not generic for all warnings.

Boogerd and Moonen [3] used execution likelihood analysis to

prioritize warnings. For each warning location, they computed the

execution likelihood (an impact factor). If the location was very

likely to be executed, the warning was assigned a high priority.

This technique might help developers to focus on warnings at

locations that had high execution likelihood. However, warnings

at locations with low execution likelihood could be also important.

In fact, severe bugs in lines with low execution likelihood are

more difficult to detect. Heckman [17] proposed an adaptive mod-

el that used feedback from developers to rank warnings. The de-

velopers’ feedback resulted in updating weights for warnings. Her

approach was effective in favorably ranking and identifying false-

positive warnings. Her approach tried to dynamically collect

“bug-fix information” (a training set) from developers’ feedback

to improve warning prioritization. However, developers are usual-

ly too busy to provide feedback when using static analysis tools.

Williams and Hollingsworth [32] used software change histo-

ries to improve existing static analysis tools. When a function

returns a value, using the value without checking it may be a po-

tential bug. The problem is that there are too many false positives

if a static analysis tool warns all locations that use unchecked

return values. To reduce the false positives, they used the software

history to find which kinds of function return values must be

checked. However, they focused on only a small set of bug pat-

terns, while our approach is general to all warnings. Ruthruff et al.

[25] used logistic regression models to predict the categories of

warnings from information in the warnings and the related code.

Their work was aimed to classify warnings rather than ranking all

warnings. The training data for their model was manually labeled

by Google’s developers.

Kim and Ernst [18, 19] estimated the importance of warning

categories by mining bug-fix information. They used all bug-

related lines to identify whether a warning is a true positive or not.

In our evaluation, we found that more than 60% of bug-related

lines computed by their approach were about project-specific bugs

(which static analysis tools cannot detect or report). Those

project-specific-bug-related lines should be eliminated when eva-

luating static analysis warnings; otherwise high inaccuracy could

be introduced. In our work, we pointed out the importance of

“generic-bug-related lines” for evaluating static analysis warnings,

proposed an automatic approach to compute them, and used them

to construct an effective training set for warning prioritization.

7. CONCLUSION
In this paper, we highlighted the importance of an effective

training set for warning prioritization and proposed an automatic

approach to construct an effective training set by mining generic-

bug-fix history. In our training set, we summarized a set of impact

factors for warning prioritization as its input attributes and labeled

it with the help of “generic-bug-related lines”. We pointed out the

importance of “generic-bug-related lines” and proposed a new

technique based on natural language processing (NLP) to assist in

identifying “generic-bug-fix revisions” effectively. We also pro-

posed a new algorithm to effectively identify accurate “generic-

bug-related lines” and conducted evaluations for our approach.

Although our training set is effective, there exist some limita-

tions. First, it is possible that some important bugs never got no-

ticed or fixed, even when a tool would report them. Second, the

warning locations and fix locations for a bug may have no overlap

with each other. Sometimes adding new code may fix an existing

warning. For example, if a warning is about unused import state-

ments in Java, it could be fixed by adding code that uses the im-

ports. Third, our current identification technique for generic-bug-

fix revisions has not achieved sufficiently high accuracy. Some

human intervention is still needed during this phase. Forth, we do

not conduct code-movement detection when computing bug-

related lines. If some lines are moved from the original location to

a new location, the source-code repository records only that the

moved lines are deleted at the original location and some “new”

lines are added at the new location. Without code-movement de-

tection, there could be some lines falsely determined as bug-

related lines. In our future work, we plan to explore better heuris-

tics for identifying actionable warnings, and more automatic and

accurate techniques to identify generic-bug-fix information.

8. ACKNOWLEDGMENT
The authors from Peking University are sponsored by the Na-

tional Basic Research Program of China (973) grant

2009CB320703 and the Science Fund for Creative Research

Groups of China grant 60821003, and the National Science Foun-

dation of China grant 60773160. Tao Xie’s work is supported in

part by NSF grants CCF-0725190, CCF-0845272, CNS-0958235,

ARO grant W911NF-08-1-0443, and ARO grant W911NF-08-1-

0105 managed by NCSU SOSI.

9. REFERENCES
[1] C. Artho. Jlint - Find Bugs in Java Programs.

http://Jlint.sourceforge.net/.

[2] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and

W. Pugh. Using static analysis to find bugs. IEEE Software,

vol. 25, no. 5, pages 22-29, 2008.

[3] C. Boogerd and L. Moonen. Prioritizing software inspection

results using static profiling. In Proc. SCAM, pages 149-160,

2006.

[4] D. Binkley. Source code analysis: a road map. In Proc.

FOSE, pages 104-119, 2007.

[5] J. Bevan, E. J. Whitehead, Jr., S. Kim, and M. Godfrey. Iden-

tifying changed source code lines from revision repositories.

In Proc. ESEC/FSE, pages 177-186, 2005.

[6] B. Chess and J. West. Secure programming with static analy-

sis. Aaison Wesley, 2007.

[7] D. Cubranic and G. C. Murphy. Hipikat: recommending

pertinent software development artifacts. In Proc. ICSE, pag-

es 408-418, 2003.

[8] K. Chen, S. R. Schach, L. Yu, J. Offutt, and G. Z. Heller.

Open-source change logs. Empirical Software Engineering,

vol. 9, no. 3, pages 197-210, 2004.

[9] D. Engler, B. Chelf, A. Chou, and S. Hallem. Bugs as deviate

behavior: A general approach to inferring errors in system

code. In Proc. SOSP, pages 57-72, 2001.

[10] D. Engler and M. Musuvathi. Static analysis versus software

model checking for bug finding. In Proc. VMCAI, pages 191-

210, 2004.

[11] M. Fischer, M. Pinzger, and H. Gall. Populating a release

history database from revision control and bug tracking sys-

tems. In Proc. ICSM, pages 23-32, 2003.

[12] FindBugs, available at http://findbugs.sourceforge.net/.

[13] Fortify, available at http://www.fortify.net/intro.html.

[14] K. Hornik, M. Stinchcombe and H. White. Multilayer feed-

forward networks are universal approximators. Neural Net-

works, vol. 2, pages 359-366, 1989.

[15] D. Hovemeyer and W. Pugh. Finding bugs is easy. In Proc.

OOPSLA, pages 132–136, 2004.

[16] S. Heckman and L. Williams. On establishing a benchmark

for evaluating static analysis alert prioritization and classifi-

cation techniques. In Pro. ESEM, pages 41-50, 2008.

[17] S. S. Heckman. Adaptively ranking alerts generated from

automated static analysis. ACM Crossroads, 14(1), pages 1-

11, 2007.

[18] S. Kim and M. D. Ernst. Which warnings should I fix first?

In Proc. ESEC/FSE, pages 45-54, 2007.

[19] S. Kim and M. D. Ernst. Prioritizing warning categories by

analyzing software history. In Proc. MSR, pages 27-30, 2007.

[20] T. Kremenek, K. Ashcraft, J. Yang and D. Engler. Correla-

tion exploitation in error ranking. In Proc. FSE, pages 83-93,

2004.

[21] T. Kremenek and D. R. Engler. Z-ranking: using statistical

analysis to counter the impact of static analysis approxima-

tions. In Proc. SAS, pages 295-315, 2003.

[22] Lint4j, available at http://www.jutils.com/.

[23] A. Mockus and L. G. Votta. Identifying reasons for software

changes using historic databases. In Proc. ICSM, pages 120-

130, 2000.

[24] PMD, available at http://pmd.sourceforge.net/.

[25] J. R. Ruthruff, J. Penix, J. D. Morgenthaler, S. Elbaum, and

G. Rothermel. Predicting accurate and actionable static anal-

ysis warnings: an experimental approach. In Proc. ICSE,

pages 341-350, 2008.

[26] N. Rutar, C. B. Almazan, and J. S. Foster. A comparison of

bug finding tools for Java. In Proc. ISSRE, pages 245-256,

2004.

[27] G. Salton, A. Wong, and C. S. Yang. A vector space model

for automatic indexing. Communications of the ACM, vol.18,

no.11, pages 613-620, 1975.

[28] S. E. Sim, S. Easterbrook, and R. C. Holt. Using benchmark-

ing to advance research: a challenge to software engineering,

In Proc. ICSE, pages 74-83, 2003.

[29] J. Spacco, D. Hovemeyer, and W. Pugh. Tracking defect

warnings across revisions. In Proc. MSR, pages 133-136,

2006.

[30] J. Sliwerski, T. Zimmermann and A. Zeller. When do

changes induce fixes? In Proc. MSR 2005, pages 1-5, 2005.

[31] Weka, available at http://www.cs.waikato.ac.nz/~ml/weka/

[32] C. C. Williams and J. K. Hollingsworth. Automatic mining

of source code repositories to improve static analysis tech-

niques. IEEE Trans. Software Engineering, vol. 31, no. 6,

pages 466-480, 2005.

http://doi.acm.org/10.1145/361219.361220
http://doi.acm.org/10.1145/361219.361220

