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ABSTRACT 

In order to improve ineffective warning prioritization of static 

analysis tools, various approaches have been proposed to compute 

a ranking score for each warning. In these approaches, an effec-

tive training set is vital in exploring which factors impact the 

ranking score and how. While manual approaches to build a train-

ing set can achieve high effectiveness but suffer from low effi-

ciency (i.e., high cost), existing automatic approaches suffer from 

low effectiveness. In this paper, we propose an automatic ap-

proach for constructing an effective training set. In our approach, 

we select three categories of impact factors as input attributes of 

the training set, and propose a new heuristic for identifying ac-

tionable warnings to automatically label the training set. Our em-

pirical evaluations show that the precision of the top 22 warnings 

for Lucene, 20 for ANT, and 6 for Spring can achieve 100% with 

the help of our constructed training set.  

Categories and Subject Descriptors 

D.2.4 [Software/Program Verification]: Reliability, Statistical 

methods; F3.2 [Semantics of Programming Languages]: Pro-

gram analysis; G.3 [Probability and Statistics]: Correlation and 

regression analysis 

General Terms 

Algorithms, Experimentation, Measurement 

Keywords 

Static analysis tools, warning prioritization, training-set construc-

tion, generic-bug-related lines 

1. INTRODUCTION 
Lightweight static analysis tools such as FindBugs [15], PMD 

[24], Jlint [1], and Lint4j [22] aim at detecting generic bugs by 

analyzing source code or bytecode against pre-defined bug pat-

terns without executing the program. Compared with formal veri-

fication techniques such as model checking and theorem proving, 

these bug-pattern-based tools use lightweight analysis techniques, 

and they are effective in detecting generic bugs in large software 

[10]. However, there are two main challenges for these existing 

tools: (1) their reported warnings often have a high false-positive 

rate [18, 21, 17, 2], and (2) even if some warnings reveal true 

bugs, they are not always acted on by developers [25]. Research-

ers pointed out that more efforts should be spent on refining these 

tools’ warning reports [6].  

To address these challenges faced by existing tools, various 

prioritization approaches have been proposed to reorder warnings 

by assigning each warning with a ranking score [18, 25, 21, 32, 

17]. To calculate the ranking score for each specific warning, 

different approaches use different impact factors, e.g., warning 

category [18, 25], warning priority [25], warning accuracy [17], 

code features [25, 17], and code locality [3]. However, in order to 

generate an accurate ranking score for each warning, assigning 

reasonable weights for different impact factors of the ranking 

score is needed but challenging.  

A training set, also called a sample set, plays a key role in 

learning weights for different impact factors [18, 25, 32, 20, 16]. 

A training set consists of a vector of input attributes (multiple 

impact factors for a specific warning) and an output attribute (the 

warning being actionable or not). A training set is used to train a 

predictor, e.g., a neural network or a naïve Bayes classifier [31], 

which learns and records a weight for each impact factor.  

A training set can be constructed manually or automatically. A 

manual approach usually achieves high effectiveness but suffers 

from low efficiency (i.e., high cost) [25, 16], while an automatic 

approach achieves high efficiency but suffers from low effective-

ness [18, 32, 20]. Given that software-related data is growing 

rapidly [4], an automatic approach with higher effectiveness is 

highly desirable.    

For example, open-source projects usually have thousands of 

revisions stored in their source-code repositories. Among these 

revisions, “bug-fix revisions” are those revisions aiming at fixing 

bugs and they can be further divided into two groups: generic 

ones and project-specific ones. “Generic-bug-fix revisions” are 

responsible for fixing generic bugs while “project-specific-bug-fix 

revisions” are responsible for fixing project-specific bugs. Generic 

bugs are those bugs that appear across projects such as “dead 

lock”, “null pointer dereference”, and “resource leak”. Most static 

analysis tools can report only generic bugs unless developers 
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write project-specific bug patterns. The lines modified in generic-

bug-fix revisions are called “generic-bug-related lines” and the 

lines modified in project-specific-bug-fix revisions are called 

“project-specific-bug-related lines”. A warning reported by static 

analysis tools may have multiple manifestations or multiple possi-

ble fixes, but a good static analysis tool should be able to indicate 

at least one of them to a developer, and ideally should indicate 

lines that the developer can choose to fix. Therefore, these “gener-

ic-bug-related lines” can be used to evaluate static analysis warn-

ings and then construct a training set for warning prioritization. 

However, a previous approach by Kim and Ernst [18] used all 

bug-related lines directly to evaluate these warnings. Actually we 

found that more than 60% of bug-related lines computed by their 

approach were related to project-specific bugs (which static analy-

sis tools cannot detect or report). Those project-specific-bug-

related lines need to be eliminated when being used to evaluate 

static analysis warnings; otherwise, effectiveness would be greatly 

compromised, as shown in our evaluation (Section 5).  

In this paper, we propose an automatic approach to construct an 

effective training set for warning prioritization, which is based on 

“generic-bug-related lines”. To the best of our knowledge, we 

are the first to point out the importance of “generic-bug-related 

lines” in evaluating static analysis warnings. In addition, we also 

propose an automatic technique for identifying “generic-bug-

related lines”. 

In order to automatically construct a training set for warning 

prioritization using “generic-bug-related lines”, we need to ad-

dress the following challenges:  

(1) How to automatically identify “generic-bug-fix revisions” 

from thousands of revisions of open-source projects?  

(2) How to accurately identify “generic-bug-related lines” for a 

specific revision? 

(3) How to construct a training set based on “generic-bug-

related lines” (i.e., how to extract input attributes and label 

output attributes for the training set)? 

To address the first challenge, we propose a technique based on 

natural language processing (NLP) to assist in identifying “gener-

ic-bug-fix revisions” effectively. To address the second challenge, 

we propose a new algorithm to effectively identify accurate “ge-

neric-bug-related lines”. To address the third challenge, we select 

three categories of impact factors as a warning’s input attributes: 

descriptors of the warning, statistics of warnings from different 

tools, and features of the buggy source code related to the warning; 

we propose a new heuristic to label actionable warnings: a warn-

ing is labeled as actionable if it disappears in later revisions and is 

revised during a generic-bug-fix revision.  

Based on our approach, we develop and release an online Code 

Defect Analysis Service (CODAS: http://codas.seforge.org), 

which integrates multiple static analysis tools (including Find-

Bugs, PMD, Jlint, and Lint4j) and prioritizes warnings with the 

help of our predictor trained with our effective training set.  

This paper makes the following main contributions:  

 The first to identify the importance of “generic-bug-related 

lines” and use them to automatically construct an effective 

training set for warning prioritization.  

 New techniques to identify “generic-bug-fix revisions” and 

“generic-bug-related lines”.  

 Empirical evaluations, using open-source projects, which 

show the effectiveness of our training-set construction.  

 A publicly available online defect analysis service, which 

integrates four static analysis tools and prioritizes warnings 

with a predictor trained with our effective training set. 

In the rest of this paper, Section 2 presents background on 

software repositories, static analysis tools, and machine learning 

workbench. Section 3 presents an overview of our automatic ap-

proach of building a training set. Section 4 describes the details of 

our training-set construction. Section 5 describes our evaluation 

results. Section 6 discusses related work and Section 7 concludes.  

2. BACKGROUND 

2.1 Software Repositories 
In recent years, many software projects publish their software 

repositories over the Internet. These open-source projects provide 

sufficient historical data for building a training set. Our approach 

computes generic-bug-fix information for subject projects, and 

uses the information to label the training set (by determining 

whether the warnings are actionable or not). We retrieve bug-fix 

information with the help of software repositories, such as source-

code repositories (e.g., CVS or SVN) and issue-tracking systems.  

A source-code repository keeps track of changes performed on 

source code: who changed what, when, why, and how. A change 

transforms an old revision r1 to a new revision r2 by inserting, 

deleting, or modifying lines. Source-code repositories handle 

revisions of textual files by storing the difference between revi-

sions. When comparing two different files, they use diff tools to 

find groups of differing lines [23].  

2.2 Static Analysis Tools  
Static analysis tools for Java, such as FindBugs [15], Fortify 

[13], PMD [24], Jlint [1], and Lint4j [22], are widely used in re-

cent years [29]. These tools use bug-pattern-based matching tech-

niques to detect potential bugs and report warnings.  

FindBugs [2] generates warnings for 286 bug patterns [18] and 

assigns each warning with a priority (e.g., “High”, “Medium”, or 

“Low”) according to its severity and accuracy. PMD [24] discov-

ers suspicious or abnormal coding practices, which may imply 

serious bugs, by searching syntactic errors and stylistic conven-

tions’ violations from source code. Jlint [1] finds bugs, inconsis-

tencies, and synchronization problems by doing data flow analysis 

and building lock graphs. Lint4j [22] detects issues about locking 

and threading, problems about performance and scalability, and 

violations against complex contracts such as Java serialization by 

performing different analyses (e.g., type, data flow, and lock 

graph analyses) against bytecode or source code.  

2.3 Machine Learning Workbench 
In our approach, we use machine-learning-based predictors to 

provide ranking scores for warnings. There are two phases for 

machine-learning-based approaches: (1) in the training phase, 

predictors learn and record weights for impact factors with the 

help of training sets, and (2) in the prediction phase, predictors 

predict ranking scores for warnings according to the given values 

of impact factors. An effective training set, which comprises a set 

of input attributes and an output attribute for each warning, is vital 

in exploring how each input attribute affects the output attribute 

for a warning.  

In this paper, we use a machine-learning workbench named 

“Waikato Environment for Knowledge Analysis” (Weka) [31] to 

help carry out our training process. Weka is a popular suite of 

machine learning software written in Java. It supports standard 

data mining tasks such as data preprocessing, clustering, classifi-

cation, regression, visualization, and feature selection. It also pro-

vides implementations for various machine learning algorithms 

(e.g., Bayesian Network, Logistic Regression, Bootstrap Aggre-

gating, Random Tree, K-nearest Neighbors, and Decision Table). 

http://codas.seforge.org/


3. APPROACH OVERVIEW 
We extract a training set with warnings reported by static anal-

ysis tools, label it with the help of “generic-bug-related lines”, and 

use it to train a predictor that can be further used to prioritize stat-

ic analysis warnings. Figure 1 shows the overview of our ap-

proach. 
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Figure 1. Approach Overview 

Table 1. Projects under analysis 

Project 

Name 

Number of 

Revisions 

Development 

Period 
Community 

Source-code 

Repository 

Issue-

tracking 

System 

Lucene 2630 2001.9-2007.8 Apache SVN JIRA 

Spring 3696 2007.4-2009.4 Apache SVN JIRA 

ANT 746 1998.10-2003.5 Sable.MCGill SVN BUGZILLA 

Log4j 120 2007.8-2009.2 Apache SVN BUGZILLA 

JPF 1212 2002.7-2009.4 ObjectWeb SVN OW2-Gforge 

3.1 Preparing Historical Data 
Most open-source projects publish their source-code reposito-

ries and issue-tracking systems over the Internet. The source-code 

repository of a project is responsible for recording all change his-

tories of its source code [32], and its issue-tracking system main-

tains all detailed information of its issues (e.g., bug issues). We 

first obtain source-code repositories and issue-tracking databases 

of five open-source projects under analysis before building our 

training set. Table 1 describes these projects. 

3.2 Building a Training Set 
Our approach includes four main steps in building a training set: 

(1) Identifying Generic-bug-fix Revisions. Generic-bug-fix 

revisions are those revisions submitted to source-code repo-

sitories with the purpose of fixing generic bugs, only which 

most static analysis tools can detect. These revisions provide 

hints to locate generic-bug-related lines. Section 4.1 shows 

more details. 

(2) Identifying Generic-bug-related Lines. Generic-bug-

related lines are lines modified or removed by generic-bug-

fix revisions. These lines are helpful in labeling our training 

set. Section 4.2 shows more details. 

(3) Generating Static Analysis Warnings. We generate warn-

ings by running static analysis tools against different revi-

sions of different projects under analysis.  

(4) Extracting a Training Set. We select three categories of 

impact factors as input attributes of our training set (i.e., 

warning descriptors, statistics for warnings of different tools, 

and features of the warning-related source code) and extract 

them from warnings and the warning-related source code. 

We label the output attribute of each warning in the training 

set with the help of “generic-bug-related lines”. Section 4.4 

shows more details. 

3.3 Training a Predictor to Prioritize Warn-

ings 
Weka provides implementations of various machine-learning 

algorithms. We select the implementations of six well-know algo-

rithms in Weka to train predictors: Bayesian Network, Logistic 

Regression, K-nearest Neighbors, Bootstrap Aggregating, Ran-

dom Tree, and Decision Table.  

We use default setting values of each algorithm during the 

training process and use “10-folds cross validation” during the 

validation process. To explore the most suitable machine-learning 

algorithm for our problem, we use the six selected algorithms to 

train different predictors against the same training set extracted 

from the five projects under analysis. The validation results show 

that the “K-nearest Neighbors” based predictor achieves the best 

Precision (98.7%), Recall (98.7%), and F-Measure (98.7%). 

Therefore, we select the “K-nearest Neighbors” as the best ma-

chine-learning algorithm for our problem and use it as the default 

algorithm in our evaluation (Section 5).  

After training the predictor with our training set, we use the 

predictor to prioritize static analysis warnings: we first use the 

predictor to predict the actionability value for each warning (the 

probability value that the warning is actionable), and then priorit-

ize all warnings according to their actionability values.  

4. TRAINING-SET CONSTRUCTION 

In this paper, we build a training set for warning prioritization 

by automatically determining whether static analysis warnings are 

actionable (i.e., accurate and worth fixing for developers). A 

warning reported by static analysis tools may have multiple ma-

nifestations or multiple possible fixes. However, a good static 

analysis tool should be able to indicate at least one of them to a 

developer, and ideally should indicate lines that the developer can 

choose to fix. Because most warnings provided by static analysis 

tools are related to generic bugs, we use generic-bug-related lines, 

which are modified or deleted by developers in generic-bug-fix 

revisions, to evaluate static analysis warnings. In order to identify 

generic-bug-related lines, we identify generic-bug-fix revisions 

first since the changes made in these generic-bug-fix revisions are 

related to generic bugs.  



4.1 Identifying Generic-bug-fix Revisions 
Open-source projects usually include thousands of revisions in 

their source-code repositories. We classify these revisions into 

three coarse-grained categories: bug-fix revisions, non-fix revi-

sions, and multi-purpose revisions. “Bug-fix revisions” are those 

revisions aiming at fixing bugs. According to the type of their 

fixed bugs, fix revisions can be further divided into two groups: 

generic-bug-fix revisions and project-specific-bug-fix revisions. 

“Non-fix revisions” do not involve fix activities but involve other 

activities such as “new feature addition” and “code refactoring”. 

“Multi-purpose revisions” are those revisions that involve not 

only fix activities but also non-fix activities. 

Open-source projects are commonly co-developed by develop-

ers distributed all over the world. To facilitate their cooperation, 

strong guidelines for writing the log message of each revision are 

undertaken. Chen et al. [8] studied the quality of open source 

change log, and found that almost all log messages are consistent 

with their corresponding submitted changes. Therefore, it is rea-

sonable to identify generic-bug-fix revisions with the help of log 

messages. In previous work, two techniques were proposed for 

identifying bug-fix revisions based on analyzing log messages: 

identification based on “bug issue key” references [7, 11, 30] and 

identification based on searching “bug-fix-related keywords” [18, 

23]. These two techniques achieved acceptable precision and re-

call in identifying bug-fix revisions. However, through our eval-

uation, we find that about 95% of bug-fix revisions identified by 

the first technique for Lucene are project-specific-bug-fix ones, 

and about 90% by the second technique are project-specific-bug-

fix revisions. Therefore, we cannot directly use these two tech-

niques to identify generic-bug-fix revisions.  

In this paper, we propose an automatic technique for identifying 

generic-bug-fix revisions. Figure 2 presents the pseudo code of 

our algorithm for identifying generic-bug-fix revisions.  

The algorithm performs one-time identification process for 

each revision r. First, it computes the number n of Java files mod-

ified by revision r. By bounding the value of n (Line 3), most 

multi-purpose revisions and non-fix revisions are filtered out, and 

most bug-fix revisions are kept. The rationale of this step lies in 

that, through our investigation, we find that usually generic bug-

fix revisions modify only a few files whereas multi-purpose revi-

sions and most non-fix revisions usually modify a lot of files. By 

bounding the number of modified Java files, we first remove most 

multi-purpose revisions and non-fix revisions (keeping most ge-

neric-bug-fix revisions).  

Then Line 5 determines whether the log message l of revision r 

contains a bug issue key. A common phenomenon exists for open-

source projects: when committing bug-fix revisions, developers 

tend to include only “the bug issue key” and avoid re-describing 

the bug issue in the log message since there is already a copy of 

detailed description for the bug in the issue-tracking system (see 

Figure 3). Therefore, if the log message contains a bug issue key, 

the corresponding issue description issueDes is first retrieved 

from the project’s issue-tracking system (Line 6) and then used to 

conduct the following identification process because the issue 

description is more detailed than the log message in this case.  

Lines 7-10 are responsible for computing the maximal similari-

ty maxSimilarity between issueDes (the description of the bug 

issue) and each bugDes (the description of each generic bug that 

static analysis tools can detect). In this process, based on the 

theory of Vector Space Model (VSM) [27], the similarity between 

the issueDes and each bugDes is measured by computing the 

cosine value of the angle between their corresponding vectors. 

When maxSimilarity is large enough (Line 11), the revision r is 

identified as a generic-bug-fix revision.  

If the log message does not contain a bug issue key, the log 

message is used directly to compute the maximal similarity max-

Similarity with each bugDes (Lines 14-17). When maxSimilarity 

is large enough (Line 18), the revision r is also identified as a 

generic-bug-fix revision. 

 

Figure 2.  The algorithm for identifying generic-bug-fix revi-

sions 
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Figure 3. Associating a bug-fix revision with a bug issue by 

unique “issue key”  

 

Figure 4.  The pie chart of generic-bug-fix revisions divided by 

the number of their modified Java files 

In our algorithm, three threshold values represented as A, B, and 

C should be determined empirically. Before determining the val-

ues, we first identify generic-bug-fix revisions, manually and 

Algorithm identifyGenericBugFixRevisions 

Begin 

1. foreach  revision r  do 

2.    compute n (the number of Java files modified in r ) 

3.    if (n <= A) then 

4.        maxSimilarity = 0; 

5.        if (the log message l of r contains a bug issue key) then 

6.            extract issueDes (description of the bug issue)  

7.            foreach bugDes (description of each generic bug) do 

8.                compute similarity s between issueDes and bugDes 

9.                if (s > maxSimilarity) then 

10.                  maxSimilarity = s; 

11.          if (maxSimilarity > B) then 

12.              identify r  as a generic-bug-fix revision 

13.      else   

14.          foreach bugDes do 

15.            compute similarity s between l and bugDes 

16.             if (s > maxSimilarity) then 

17.                  maxSimilarity = s; 

18.          if (maxSimilarity > C) then 

19.              identify r  as a generic-bug-fix revision 

End 



randomly, from all revisions of the five subject projects (including 

Lucene, ANT, Spring, Log4j, and JPF). As a result, 358 revisions 

are identified as generic-bug-fix ones.  

Determination of A. In order to identify the value of A (the 

threshold of the number of the modified Java files for most gener-

ic-bug-fix revisions), we conduct a statistical analysis on the 

number of their modified Java files for the 358 generic-bug-fix 

revisions. Figure 4 shows the pie chart of these 358 generic-bug-

fix revisions divided by the number of their modified Java files. 

We can find that 49%, 22%, 12%, and 6% of them modify only 1, 

2, 3, and 4 Java files, respectively. In total, most generic-bug-fix 

revisions (about 88%) modify no more than 4 Java files. In addi-

tion, we also find that most multi-purpose revisions (about 97%) 

modify more than 4 files. According to this statistical analysis 

result, we set A as 4.  

Determination of B. In order to determine the value of B (the 

threshold of the maximal similarity between the description of a 

bug issue and the description of each generic bug that static analy-

sis tools can detect), we execute the algorithm against only those 

revisions whose log messages contain bug issue keys (a subset of 

the 358 generic-bug-fix revisions) because the identification 

process for only those revisions is affected by B. We fix A as 4 

and C as 0 (C can be set as an arbitrary value since it does not 

affect the identification process for those revisions). We set B as 

different values from 0 to 0.9 (increased with 0.1) and, for each 

value, evaluate the algorithm’s precision, recall, and F-measure 

value, respectively. Figure 5 shows the result. From the result, we 

determine that the F1 value of the algorithm is the best when B is 

set as 0.5.  

 

Figure 5. The precision, recall, and F1 of the algorhim 

against revisions whose log messages contain bug issue keys 

 

Figure 6. The precision, recall, and F1 of the algorhim against 

revisions whose log messages contain no bug issue key 

Determination of C. In order to determine the value of C (the 

threshold of the maximal similarity between a log message and 

the description of each generic bug that static analysis tools can 

detect), we execute the algorithm against only those revisions 

whose log messages contain no bug issue key because the identi-

fication process for only those revisions are affected by C. We fix 

A as 4 and B as 0.5. We set C as different values from 0 to 0.9 

(increased with 0.1) and, for each value, evaluate the algorithm’s 

precision, recall and F1 value, respectively. Figure 6 shows the 

result. From the result, we determine that the F1 value of the algo-

rithm is the best when C is set as 0.6.  

Our automatic identification algorithm can reduce large manual 

efforts for developers in identifying generic-bug-fix revisions but 

its precision (about 60%) is not high enough so far. After the au-

tomatic identification process, we conduct manual verification on 

its result to remove false positives (e.g., spending about 0.7 man 

hours on 635 automatically identified generic-bug-fix revisions). 

4.2 Identifying Generic-bug-related Lines 
After generic-bug-fix revisions are identified, the next step is to 

identify which lines of a specific revision have been deleted or 

modified during generic-bug-fix changes. A code line l is a gener-

ic-bug-related line if and only if l is modified or removed during 

any generic-bug-fix change.  

 

Figure 7.  The identification algorithm of generic-bug-related 

lines for a revision X 

Figure 7 presents our algorithm for identifying generic-bug-

related lines. It takes as input X, the number of the revision whose 

generic-bug-related lines need to be computed. The algorithm 

returns brlsX, the generic-bug-related lines of the revision X, as 

output.  

The algorithm uses each generic-bug-fix revision whose revi-

sion number is larger than X to compute generic-bug-related lines 

for revision X. When revision N is a generic-bug-fix revision and 

its revision number is larger than X (Lines 1-2), the diff informa-

tion diff(N-1^N)  between revision N and revision N-1 is obtained first 

(Line 3). Then the generic-bug-related lines brls(N-1^N) of revision 

N-1 modified to result in revision N are identified by parsing diff(N-

1^N) (Line 4). For each generic-bug-related line of brls(N-1^N), its 

introducing revision number is retrieved from the project’s 

source-code repository (Line 6) and then compared with X (Line 

7). If the introducing revision number is smaller than or equal 

with X, it means that this line was introduced no later than revi-

sion X, and thus an identical generic-bug-related line must exist in 

revision X. Then the identical line in revision X is located and 

marked as a generic-bug-related line of revision X (Lines 8-9).  

Example. Figure 8 illustrates an example on identifying ge-

neric-bug-related lines for revision 4. All generic-bug-fix re-

visions whose numbers are larger than 4 are listed in Figure 8: 

Function identifyGenericBugRelatedLinesForASpecificRevision 

Input X : the number of the revision whose generic-bug-related 
lines are to be computed 

Output  brlsX : the generic-bug-related lines of the revision X 

Begin 

1. foreach  generic bug-fix revision N  do 

2.    if (N  > X) then 

3.        get the diff info diff(N-1^N) between revision N and N-1; 

4.        parse diff(N-1^N) to identify brls(N-1^N) (generic-bug-related lines 

               of revision N-1 modified to result in revision N); 

5.        foreach  generic-bug-related line brl  in brls(N-1^N) do 

6.            retrieve the introducing reversion number Y of brl; 

7.            if (Y <= X) then 

8.                identify the corresponding line brlX of brl in revision X; 

9.                add brlX to brlsX ; 

End 



revision 6 and revision 7. Revision 7 modified the lines of 

the top two gray blocks of revision 6. Therefore, these lines 

are identified as generic-bug-related lines of revision 6. The 

introducing revision number of the lines in the uppermost 

gray block of revision 6 is 3, which is smaller than 4, indicat-

ing that these lines must also exist in revision 4. Therefore, 

their corresponding lines in revision 4 are located and 

marked as generic-bug-related lines of revision 4. However, 

the introducing revision number of the line in the middle 

gray block of revision 6 is 5, larger than 4, indicating that 

these lines do not exist in revision 4 and the analysis for 

these lines terminates. After that, the next generic-bug-fix re-

vision (revision 6) is analyzed with the same process. After 

analyzing all the generic-bug-fix revisions, we finish identi-

fying the generic-bug-related lines of revision 4 as three lines.  

Revision 5 Revision 7

 (Generic-bug-fix revision)

Revision 6 

(Generic-bug-fix revision)

Revision 4 

(Under Analysis)

if (x != y &&
 z != y )

3 Tom

3 Tom

if (x != null)7 Ken

if (y == null)4 Kimif (y == null)4 Kim

if (x == y && 
z == y)

7 Ken

7 KenMarking

Marking

Fix

Fix

Fix

if (x != y && 
 z != null)

3 Tom

3 Tom

if (x != y &&
 z != y)

3 Tom

3 Tom

if (x == null)5 Kit

if (y != null)6 Ben

 

Figure 8. Identifying generic-bug-related lines for revision 4 

4.3 Generating Static Analysis Warnings 
Since different tools are complementary with each other to 

some degree [9] [32], we extract a training set with warnings from 

multiple tools. We generate warnings of four tools (FindBugs, 

PMD, Jlint, and Lint4J) by running CODAS, which integrates the 

four tools tightly, against the selected revisions of the projects 

under analysis.  

4.4 Extracting a Training Set 
A training set, which is used for training a predictor, is a set of 

effective warning examples (actionable warnings and non-

actionable warnings). An effective training set should be accurate, 

representative, fair, and abundant [16, 28]. 

Our training set is extracted based on warnings, analyzed 

source code, and generic-bug-related lines. Table 2 lists 22 input 

attributes (impact factors) of our training set. These factors can be 

divided into three categories:  

(1) Warning descriptors. A given warning’s descriptors (e.g., 

the pattern name and tool name) are taken directly from the warn-

ing report. 

(2) Statistics for warnings from different tools. These factors 

include the number of warnings that are reported for the same 

warning location, the same file, and the same project by each tool: 

FindBugs, PMD, Jlint, and Lint4j. The rationale behind these 

factors is that if there are more tools reporting more warnings for 

the same piece of code, the code is more fault-prone and the warn-

ings generated from the code are more accurate and actionable. 

(3) Source code features. We consider eight factors that may 

provide insight into the warning-related code’s features. The first 

one is the depth of the warning-related code in the file, indicating 

that how far down (%) this warning is in the file, in terms of the 

percentage of the lines of the file. Some other factors are code 

length, comment length, and comment-code ratio (where the 

length denotes the number of lines). The rationale behind these 

factors is that more comments may reflect higher maintainability 

and quality of the code. The fifth factor considers how far down 

(%) this warning is in the method of the warning-related code 

(named warning-related method), in terms of the percentage of the 

lines of the warning-related method. The length of the warning-

related method is considered as the sixth factor. The last two fac-

tors are the number of “callers” and “callees” of the warning-

related method. The rationale behind these two factors is that a 

method with more callers is more likely to be the kernel part of 

the project, which is often tested more sufficiently and is less 

fault-prone; a method with more callees tends to be of higher 

complexity and more fault-prone.  

Table 2. Input attributes of our training set 

Input attributes Description 

Warning Descriptors 

Pattern Name Bug pattern name of  the warning 

Tool Name Name of the tool reporting the warning 

Statistics for Warnings of Each  Tool(4*3 attributes) 

Location Warnings 
Number of warnings reported for the same location  by 

each tool 

File Warnings 
Number of warnings reported for the same file by each 

tool 

Project Warnings 
Number of warnings reported for the same project by 

each tool 

Source Code Features 

File Depth How far down (%) in the file this warning is 

Code Length Number of lines of code of the warning-related file 

Comment Length Number of lines of comments of the warning-related file 

Comment-Code 

Ratio 

The ratio of comment length and code length of the 

warning-related file 

Method Depth How far down (%) in the method this warning is 

Method Length Number of lines of the warning-related method 

Method Callers Number of callers of the warning-related method 

Method Callees Number of callees of the warning-related method 

We extract the impact factors for warnings by collecting statis-

tics for the warnings reported by each tool and conducting simple 

static analysis for the warning-related source code.  

The output attribute of a warning in the training set is “isAc-

tionable”, which indicates whether the warning is accurate and 

actionable. If the location of a warning contains some generic-

bug-related line(s), we can assume that this warning is very likely 

accurate and actionable for developers. However, it is often the 

case that some code fragment is related to several different warn-

ings. When the fragment is revised to fix some certain warning 

(i.e., lines of the fragment are marked as generic-bug-related 

lines), a problem arises: other warnings could be wrongly identi-

fied as actionable ones. To address the problem, we use a new 

heuristic: if a warning disappears in a later revision and also re-

ports at least one generic-bug-related line, the warning is treated 

as actionable and its output attribute is labeled as “isActionable”; 

otherwise, it is non-actionable. The rationale of this heuristic lies 

in that if a warning disappears in a later revision without reporting 

any generic-bug-related line, we cannot regard it actionable be-

cause it may disappear due to some code changes introduced by 

code refactoring or new features addition; if a warning reports 

some generic-bug-related line but still exists at later revisions, we 

cannot label it as actionable because the generic-bug-related line 



may be revised by developers aiming at fixing its other associated 

warnings.  

After constructing the training set, the first three authors of this 

paper conduct manual verification on it with the principle of “ma-

jority voting”: when there is no consensus during verification, the 

opinion of majority people is adopted. Manual verification shows 

that about 95% of actionable warnings in the training set are con-

firmed to be actionable.  

Before training a predictor, we apply seven factor-selection al-

gorithms against our generated training set. The final statistical 

analysis shows that there are four factors (input attributes) ranked 

last with their effectiveness way behind the other factors by all of 

the seven algorithms: “method callers”, “tool name”, “location 

warnings of Jlint”, and “location warnings of Lint4j”. Such 

analysis result indicates that these four impact factors have small 

correlation coefficients with the output attribute. Therefore, we 

ignore these four impact factors when training a predictor.  

5. EVALUATION 
In this section, we present the evaluation for the effectiveness 

of our proposed approach of constructing a training set with dif-

ferent strategies. Because a training set is used to train a predictor, 

which is finally used to prioritize warnings, we can explore the 

best strategies of constructing a training set by evaluating the 

prioritized warnings. Given a certain training set, we train a ma-

chine-learning-based predictor, collect original warnings from 

multiple tools (FindBugs, PMD, Jlint, and Lint4J), apply the pre-

dictor to predict actionability information (ranking score) for each 

warning, and then reorder these warnings based on their actiona-

bility. 

To evaluate the quality of reordered warnings, we use the preci-

sion of top warnings as the criterion. Since developers are unlike-

ly to scrutinize all reported warnings due to their limited time, the 

top warnings’ quality is of considerable significance. We use 

“precision” to evaluate top warnings: 

Top n Warnings’ Precision: P(n) = Nactionable/n 

Nactionable represents the number of actionable warnings among 

the top n warnings. An actionable warning should be accurate and 

also acted on during some generic-bug-fix procedure. 

In our evaluation, we address the following research questions 

(RQ):  

RQ1: How effective is our training set for warning prioritiza-

tion compared with previous work?  

RQ2: Should we construct a training set from multiple tools’ 

warnings instead of a single tool’s warnings for a given project 

under analysis?  

RQ3: Should we construct a training set from multiple 

projects’ history instead of a single project’s history for a given 

project under analysis?                                                                                                                                                                                                                                                                                                            

5.1 RQ1: Effectiveness Evaluation 
We evaluated the performance of our prioritization compared 

with Kim and Ernst’s [18]. In their evaluation, they prioritized 

warnings of three tools (FindBugs, PMD, and Jlint) for the revi-

sion submitted in August 30, 2004 of Lucene. We also applied our 

approach to prioritize warnings of the three tools for the same 

revision.  

In our approach, we first constructed a training set from warn-

ings reported by three tools (FindBugs, PMD, and Jlint) for five 

projects (Lucene, Spring, JPF, Log4j, and ANT) from revisions 1 

to m/2-1 (m is the maximum revision number for each project: 

2630 revisions for Lucene, 3696 for Spring, 746 for ANT, 120 for 

Log4j, and 1212 for JPF). With the training set, we trained a “K-

nearest Neighbors” based predictor and then used the predictor to 

prioritize warnings for that revision submitted in August 30, 2004 

(which was among revisions m/2 to m).  

Figure 9 shows the precision of our prioritization, Kim’s priori-

tization, and the built-in prioritization of each tool for Lucene. In 

Figure 9 and the remaining figures in this paper, the X axis 

represents the top n warnings in the warning list, and the Y axis 

represents the precision of the top n warnings correspondingly. 

 
Figure 9. Precision of top n (up to 100) warnings prioritized 

by our prioritization and Kim’s prioritization 

From Figure 9, we can observe that, for Kim’s prioritization, 

the best precision for a subset of the warnings is only 25% (top 16) 

for Lucene; for our prioritization, the precision of top 9 warnings 

is always 100%. Moreover, our prioritization can keep the preci-

sion of top 100 warnings always higher than tools’ default priori-

tization. In summary, the result shows that our prioritization has a 

remarkable improvement over previous work, and our training set 

is effective for warning prioritization.  

5.2 RQ2: Training-set construction using sin-

gle tool vs. multiple tools 

 
Figure 10.  Prioritizing warnings based on training set con-

structed from warnings of the single tool FindBugs 

 

Figure 11. Prioritizing warnings based on training sets con-

structed using warnings of multiple tools vs. single tool 

In this section, we made a comparison between a training set 

constructed using one single tool and that using multiple tools. 



For both strategies, we attained warnings for revisions (from revi-

sions 1 to m/2-1) of all the five projects under analysis (the next 

section shows that using multiple projects can achieve better ef-

fectiveness than using one specific project in most cases).  

Based on the constructed training set, we trained predictors to 

reorder warnings for revision m/2 of the projects under analysis. 

Since the results of all projects are similar, we show only the re-

sult of Lucene here due to space limit. Figure 10 shows the effec-

tiveness of our prioritization when using one single tool (Findbugs 

here). In Figure 10, RW_FindBugs denotes the reordered warn-

ings by our prioritization based on the training set built using 

FindBugs, and OW_FindBugs denotes the original warnings of 

FindBugs. The figure shows that our approach improved top 

warnings’ precision compared with FindBugs’ default prioritiza-

tion. 

Figure 11 shows results of our warning prioritization based on a 

training set constructed using warnings of four tools (FindBugs, 

PMD, Jlint, and Lint4j), where RW_All, RW_FindBugs, 

RW_PMD, RW_Jlint, and RW_Lint4j denote the reordered warn-

ings by our approach based on the training sets extracted from all 

tools, FindBugs, PMD, Jlint, and Lint4j, respectively. The result 

shows that constructing a training set using warnings of more 
tools can help warning prioritization achieve better effectiveness. 

5.3 RQ3: Training-set construction using sin-

gle project vs. multiple projects 
Given a program a under analysis, which belongs to a project A 

under analysis, we have three strategies to construct a training set 

for it:  

(1) using only historical data of project A; 

(2) using not only historical data of project A, but also historical 

data from other projects B, C, …; 

(3) using only historical data of other projects. This strategy can 

be used in two situations: (i) the project A is in an initial 

stage and thus lacks historical data; (ii) the program a is sent 

to a third-party analysis service, such as CODAS, where it is 

usually difficult to attain a’s historical data.  

We denote the three strategies as A-a, ABC-a, and ABC-d 

(with d denoting different projects), respectively. We show the 

comparison results for these three strategies in the subsequent 

subsections. Note that we constructed the training sets for our 

prioritization using all the four tools and conducted the compari-

son of warning prioritization for revision m/2 of each program a 

under analysis.  

1.1.1 A-a vs. ABC-a 
For each project under analysis, we constructed different train-

ing sets using two strategies: “A-a” (using its own history) and 

“ABC-a” (using five projects’ historical data: Lucene, Spring, JPF, 

Log4j, and ANT). Based on different training sets, we trained 

different predictors to prioritize warnings.  

The results of all projects are similar, but due to space limit we 

show only part of them. Figures 12-14 show the results for Lucene, 

ANT, and Spring, respectively. In Figures 12-14, Ours(ABC-a) 

and Ours(A-a) denote our prioritization based on the strategies 

“ABC-a” and “A-a”, respectively. From Figures 12-14, we have 

the following observations:  

(1) Both the “ABC-a” and “A-a” based prioritization out-

perform each tool’s built-in prioritization effectively. For ex-

ample, for Lucene, the precision of top 100 warnings of our ap-

proach is always more than 26%. In contrast, the precision of each 

tool is always less than 2%. Only one warning among top 100 

warnings of FindBugs is actionable, whereas 26 are actionable 

among top 100 warnings of our approach and 20 of them are pri-

oritized on the top of the warning list by our “ABC-a” based pri-

oritization. For ANT, only 3 of top 100 warnings of FindBugs are 

actionable, while 22 and 20 warnings are actionable among top 

100 warnings of ours “ABC-a” and “A-a” based prioritization, 

respectively.  

(2) The “ABC-a” based prioritization is superior to the “A-

a” based prioritization for the three projects. Through analysis, 

we find that the results shown in Figures 12-14 are reasonable. 

Our projects under analysis are all open-source and their develop-

ers generally share the same guidelines or customs to fix bugs. 

Only one project’s history is limited and cannot supply enough 

“knowledge” for a predictor to learn. A larger training set from 

more projects can help a predictor learn more. Therefore, it is 

reasonable that the “ABC-a” based prioritization performs better 

than the “A-a” based prioritization due to the sufficiency of train-

ing data. 

 
Figure 12.  “A-a” vs. “ABC-a” based prioritization for Lucene 

 
Figure 13.  “A-a” vs. “ABC-a” based prioritization for ANT 

 

Figure 14.  “A-a” vs. “ABC-a” based prioritization for Spring 

1.1.2 ABC-a vs. ABC-d 

We used the same training set (constructed using history from 

Lucene, Spring, JPF, Log4j, and ANT) to prioritize warnings for 

Lucene and Tapestry. Therefore, for Lucene, the prioritization is 



based on the “ABC-a” strategy, whereas for Tapestry, the prioriti-

zation is based on the “ABC-d” strategy. Figures 15-16 show the 

results. From Figures 15-16, we observe that (1) both the “ABC-

a” based prioritization and the “ABC-d” based prioritization out-

perform each tool’s built-in prioritization effectively; (2) the 

“ABC-a” based prioritization performs better than the “ABC-d” 

based prioritization.  

In summary, the “ABC-a” strategy can help construct a more 

effective training set than the “ABC-d” strategy.  

 
Figure 15.  “ABC-a” based prioritization for Lucene 

 
Figure 16.  “ABC-d” based prioritization for Tapestry 

5.4 Threats to validity 
The main threat to external validity includes the representative-

ness of the subject projects that we selected in the evaluation. 

Therefore, the results of our evaluation may be specific only to 

these projects. To reduce this threat, we chose projects from dif-

ferent open source communities and their types are different from 

each another. The threat could also be reduced by more evalua-

tions on more subjects in future work. The main threat to internal 

validity is human factors when manually verifying the generic-

bug-fix revisions automatically identified by our approach and the 

actionable warnings in our constructed training set. To reduce the 

threat, the first three authors of this paper conducted the verifica-

tions with the principle of “majority voting” and great carefulness.  

6. RELATED WORK 
To the best of our knowledge, we are the first to propose an au-

tomatic approach to construct an effective training set for warning 

prioritization and point out the importance of “generic-bug-related 

lines” for the problem. There are several threads of related work; 

however, they use different techniques to prioritize warnings.  

Kremenek and Engler [21] developed a ranking algorithm (z-

ranking) to prioritize warnings for a single warning type (i.e., a 

single “checker”). They observed that clusters of warnings were 

usually either all false positives or all true bugs. A generalization 

of this work produced an adaptive ranking scheme called Feed-

back Rank [20]. This work used code locality to identify clusters 

of false positives and true bugs among warnings. Their algorithm 

updated warning priorities as nearby warnings were classified. In 

their approach, based on their observation, they selected “code 

locality” (an impact factor) to directly prioritize warnings. How-

ever, their observation is not generic for all warnings.  

Boogerd and Moonen [3] used execution likelihood analysis to 

prioritize warnings. For each warning location, they computed the 

execution likelihood (an impact factor). If the location was very 

likely to be executed, the warning was assigned a high priority. 

This technique might help developers to focus on warnings at 

locations that had high execution likelihood. However, warnings 

at locations with low execution likelihood could be also important. 

In fact, severe bugs in lines with low execution likelihood are 

more difficult to detect. Heckman [17] proposed an adaptive mod-

el that used feedback from developers to rank warnings. The de-

velopers’ feedback resulted in updating weights for warnings. Her 

approach was effective in favorably ranking and identifying false-

positive warnings. Her approach tried to dynamically collect 

“bug-fix information” (a training set) from developers’ feedback 

to improve warning prioritization. However, developers are usual-

ly too busy to provide feedback when using static analysis tools.  

Williams and Hollingsworth [32] used software change histo-

ries to improve existing static analysis tools. When a function 

returns a value, using the value without checking it may be a po-

tential bug. The problem is that there are too many false positives 

if a static analysis tool warns all locations that use unchecked 

return values. To reduce the false positives, they used the software 

history to find which kinds of function return values must be 

checked. However, they focused on only a small set of bug pat-

terns, while our approach is general to all warnings. Ruthruff et al. 

[25] used logistic regression models to predict the categories of 

warnings from information in the warnings and the related code. 

Their work was aimed to classify warnings rather than ranking all 

warnings.  The training data for their model was manually labeled 

by Google’s developers.  

Kim and Ernst [18, 19] estimated the importance of warning 

categories by mining bug-fix information. They used all bug-

related lines to identify whether a warning is a true positive or not. 

In our evaluation, we found that more than 60% of bug-related 

lines computed by their approach were about project-specific bugs 

(which static analysis tools cannot detect or report). Those 

project-specific-bug-related lines should be eliminated when eva-

luating static analysis warnings; otherwise high inaccuracy could 

be introduced. In our work, we pointed out the importance of 

“generic-bug-related lines” for evaluating static analysis warnings, 

proposed an automatic approach to compute them, and used them 

to construct an effective training set for warning prioritization.   

7. CONCLUSION 
In this paper, we highlighted the importance of an effective 

training set for warning prioritization and proposed an automatic 

approach to construct an effective training set by mining generic-

bug-fix history. In our training set, we summarized a set of impact 

factors for warning prioritization as its input attributes and labeled 

it with the help of “generic-bug-related lines”. We pointed out the 

importance of “generic-bug-related lines” and proposed a new 

technique based on natural language processing (NLP) to assist in 

identifying “generic-bug-fix revisions” effectively. We also pro-

posed a new algorithm to effectively identify accurate “generic-

bug-related lines” and conducted evaluations for our approach.  

Although our training set is effective, there exist some limita-

tions. First, it is possible that some important bugs never got no-

ticed or fixed, even when a tool would report them. Second, the 



warning locations and fix locations for a bug may have no overlap 

with each other. Sometimes adding new code may fix an existing 

warning. For example, if a warning is about unused import state-

ments in Java, it could be fixed by adding code that uses the im-

ports. Third, our current identification technique for generic-bug-

fix revisions has not achieved sufficiently high accuracy. Some 

human intervention is still needed during this phase. Forth, we do 

not conduct code-movement detection when computing bug-

related lines. If some lines are moved from the original location to 

a new location, the source-code repository records only that the 

moved lines are deleted at the original location and some “new” 

lines are added at the new location. Without code-movement de-

tection, there could be some lines falsely determined as bug-

related lines. In our future work, we plan to explore better heuris-

tics for identifying actionable warnings, and more automatic and 

accurate techniques to identify generic-bug-fix information.  
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