
 Iterative Mining of Resource-Releasing Specifications

Qian Wu1, Guangtai Liang1, Qianxiang Wang1, Tao Xie2, Hong Mei1
1Institute of Software, School of Electronics Engineering and Computer Science

Key Laboratory of High Confidence Software Technologies (Peking University), Ministry of Education
Peking University, Beijing, 100871, China

{wuqian08, lianggt08, wqx, meih}@sei.pku.edu.cn
2Department of Computer Science, North Carolina State University, Raleigh, NC 27695, USA

xie@csc.ncsu.edu

Abstract— Software systems commonly use resources such as
network connections or external file handles. Once finish using
the resources, the software systems must release these re-
sources by explicitly calling specific resource-releasing API
methods. Failing to release resources properly could result in
resource leaks or even outright system failures. Existing verifi-
cation techniques could analyze software systems to detect
defects related to failing to release resources. However, these
techniques require resource-releasing specifications for speci-
fying which API method acquires/releases certain resources,
and such specifications are not well documented in practice,
due to the large amount of manual effort required to document
them. To address this issue, we propose an iterative mining
approach, called RRFinder, to automatically mining resource-
releasing specifications for API libraries in the form of (re-
source-acquiring, resource-releasing) API method pairs.
RRFinder first identifies resource-releasing API methods, for
which RRFinder then identifies the corresponding resource-
acquiring API methods. To identify resource-releasing API
methods, RRFinder performs an iterative process including
three steps: model-based prediction, call-graph-based propaga-
tion, and class-hierarchy-based propagation. From heteroge-
neous information (e.g., source code, natural language), the
model-based prediction employs a classification model to pre-
dict the likelihood that an API method is a resource-releasing
method. The call-graph-based and class-hierarchy-based prop-
agation propagates the likelihood information across methods.
We evaluated RRFinder on eight open source libraries, and the
results show that RRFinder achieved an average recall of 94.0%
with precision of 86.6% in mining resource-releasing specifica-
tions, and the mined specifications are useful in detecting re-
source leak defects.

Keywords- resource-releasing specification; resource leak
detection; specification mining

I. INTRODUCTION

Software systems commonly use resources such as net-
work connections or external file handles. Once finish using
the resources, the software systems must release these re-
sources by explicitly calling specific resource-releasing API
methods. Failing to release resources appropriately could
cause resource leaks. As a result, the system at runtime slow-
ly depletes the limited supply of system resources, leading to
performance degradation and even system crashes [1]. Al-
though programming languages such as Java provide gar-
bage collection to free programmers from the responsibility
of memory management, the mechanism does not address
the problem of resource management: programs for a system

must return the acquired resources by explicitly calling a
resource-releasing API method. Such tasks are error-prone in
practice. For example, Sun's guide to Persistent Connections
[4] gets it wrong in code that is claimed to be exemplary.

To assist programmers in resource management, auto-
matic approaches for resource leak detection [1-3] report
code locations where invocations of proper resource-
releasing API methods are absent. These approaches require
formal resource-releasing specifications for specifying which
API method acquires/releases certain resources. A common
type of such specifications is in the form of (resource-
acquiring, resource-releasing) API method pairs, denoting
the programming constraint that, if the program acquires
resources by calling the resource-acquiring method, it
should eventually call the corresponding resource-releasing
method to release the resources and perform necessary clean-
up actions. For example, a typical resource-releasing specifi-
cation is (new FileInputStream(), FileInputStream.close()).
Unfortunately, these formal specifications are often missing,
due to the large amount of time and energy that must be in-
vested to manually creating them.

To address these issues, we propose an iterative mining
approach, called RRFinder, to automatically mining re-
source-releasing specifications for Java API libraries.
RRFinder takes as input the source code (Java source or by-
tecode) and the API documents (Javadoc1) of the library, and
produces a set of resource-releasing specifications in the
form of (resource-acquiring, resource-releasing) API me-
thod pairs. Some existing approaches [12, 13] also mine such
specifications by exploiting exceptional paths in API client
programs. However, because client programs tend to include
mistakes especially in resource management, these ap-
proaches usually suffer from high false positive rates, based
on only statistical analysis of API usage information. In addi-
tion, API client programs may not be available or many
enough, e.g., for newly developed libraries.

To mine such specifications from the source code and
code documents for an API library, our insight behind
RRFinder is that high-level resources are often wrappers of
low-level resources. For example, database connections
(high-level resources) are established through socket connec-
tions (low-level resources). Intuitively, given a set of known
low-level resource-releasing specifications (lowRA, lowRR),
a high level specification (highRA, highRR) is found when

This work is supported by the National Basic Research Program of
China (973) under Grant No. 2009CB320703; the National Natural Science
Foundation of China under Grant No. 60821003; and ARO Grant No.
W911NF-08-1-0443.

1Javadoc documents are automatically generated from the code com-
ments in Java source code. They are often provided along with the li-
brary distribution.

highRA invokes lowRA methods, and highRR invokes lowRR
methods. In other words, RRFinder conducts propagations
based on method-calling relationships, starting from known
basic specifications concerning low-level resources.

Our RRFinder approach addresses three main challenges
to mine resource-releasing specifications from API libraries.
First, our preliminary study (details of the study can be found
at http://sa.seforge.org/RRFinder/) shows that relying on
propagations alone is not sufficient to mine precise specifica-
tions. For example, although the method acceptFrom()
shown in Figure 1 invokes the lowRR method Input-
Stream.close() and performs some resource-releasing actions
(the statements in bold), acceptFrom() cannot be regarded as
a highRR method, because its main functionality is to accept
a connection from a specified host.

Figure 1. Code snippets adapted from java.net.SocksSocketImpl.

Second, to determine whether one API method is a re-
source-acquiring/releasing method, heterogeneous informa-
tion should be considered together. For example, the re-
source-manipulation actions performed by an API method
may be specified clearly in its code comments; therefore,
including comment analysis could serve as a complement for
the code analysis.

Third, through our manual investigation, although re-
source-releasing methods exhibit certain common features,
such as conventions for method naming, resource-acquiring
methods do not exhibit common features (these features are
described in Section IV-A); therefore, it is difficult to extract
resource-acquiring methods directly.

RRFinder addresses the preceding challenges and mines

precise resource-releasing specifications effectively. Figure 2
gives an overview of RRFinder. The API library under anal-
ysis first goes through two preparatory analyses (Section III).
Then to mine specifications, RRFinder starts by identifying
resource-releasing API methods (Section IV), because these
methods normally exhibit certain common features. Next, for
these identified resource-releasing API methods, RRFinder
searches for their corresponding resource-acquiring API me-
thods (Section V), which acquire the resources released in
the resource-releasing methods.

To identify resource-releasing API methods, RRFinder
iteratively produces effective results by interleaving the step
of model-based prediction (Section IV-A) with the steps of
call-graph-based and class-hierarchy-based propagations
(Section IV-B). The model-based prediction employs a clas-
sification model to predict whether an API method is a re-
source-releasing method. The model exploits heterogeneous
information, ranging from static structural information to
dynamic behavioral information, and from API library
source code (Java source or bytecode) to code comments
(Javadoc). The call-graph-based propagation explores me-
thod-calling relationships to detect callers of known re-
source-releasing methods. Such information is then used to
update certain features of the detected caller methods, driv-
ing the model-based prediction step to identify new resource-
releasing methods from the caller methods. Via the call-
graph-based propagation, identification of high-level re-
source-releasing methods could benefit from identification of
low-level ones. The class-hierarchy-based propagation iden-
tifies abstract resource-releasing methods by drawing con-
clusions from their overriding methods. Such propagation is
important in object-oriented languages such as Java, where
dynamic bindings are popularly used.

Figure 3. Example of propagations.

Figure 3 shows an example to demonstrate the propaga-
tion steps. RRFinder takes two steps to identify OR-
BImpl.destroy() as a resource-releasing method. First,
RRFinder identifies InputStream.close() as a resource-
releasing method, via class-hierarchy-based propagation.

public void acceptFrom(InetSocketAddress saddr) throws IOException
{

socksBind(saddr);
int i = cmdIn.read();//cmdIn is a field variable of type InputStream
SocketException ex = null;
switch (i) {

 case REQUEST_OK:
 // success, do some operations...
 break;
 case FAILURE:
 ex = new SocketException("SOCKS server failure");
 break;
 ……

}
if (ex != null) {

cmdIn.close();
 cmdIn=null;
 throw ex;

}
//perform some functional operations...

}

Figure 2. Overview of RRFinder.

Next, detecting ORBImpl.destroy() to have invoked Input-
Stream.close() via call-graph-based propagation, RRFinder
updates certain features of destroy() accordingly, and applies
the classification model to finally predict destroy() to be a
resource-releasing method. This example reflects the ratio-
nale for iteratively interleaving the model-based prediction
with the propagations: the features of each API method rely
on the relationships (including both calling and overriding
relationships) between methods, and these features change
dynamically with the propagations based on these relation-
ships; in other words, the feedback from the propagations
drives the model-based prediction to produce better mining
results.

In summary, our iterative mining approach has several
advantages owing to interleaving the three steps. First, the
propagations greatly enhance the effectiveness of the model-
based prediction to identify resource-releasing methods.
Second, the model-based prediction mitigates the impreci-
sion problem (discussed in the first challenge) of relying on
propagations alone to identify resource-releasing methods.
Intuitively, when a method is detected to invoke known re-
source-releasing methods via call-graph-based propagation,
it will not be identified as a resource-releasing method im-
mediately. Only when the heterogeneous features of the me-
thod satisfy the classification rules represented by the classi-
fication model, would this method be identified as a re-
source-releasing method.

This paper makes the following main contributions:
 A novel approach, called RRFinder, to automatically

mining resource-releasing specifications for API li-
braries effectively. The evaluation on eight open
source libraries shows that RRFinder identifies re-
source-releasing specifications with an average pre-
cision of 86.6% and recall of 94.0%.

 A set of measurable features for identifying re-
source-releasing methods.

 An iterative algorithm to identify precise resource-
releasing methods, interleaving the step of model-
based prediction with the steps of call-graph-based
and class-hierarchy-based propagations.

 A technique to identify resource-acquiring methods
for given resource-releasing methods.

The rest of this paper is organized as follows. Section II
discusses related work. Section III introduces the required
preparatory analyses. Section IV and Section V describe the
identification of resource-releasing/acquiring methods, re-
spectively. Section VI presents evaluation results. Section
VII concludes.

II. RELEATED WORK

This section first discusses related work of our approach,
and then discusses relevant industrial techniques, specifically,
the Automatic Resource Management feature of Java7.

A. Specification Mining

Our work is most related to specification mining ap-
proaches. According to their mining-data sources, these ap-
proaches fall into three categories.

The first category of approaches [11-13] mines frequent
API usage patterns as specifications from API client pro-
grams. In particular, Weimer et al. [12] and Thummalapenta
et al. [13] used exceptional paths to mine specifications. Be-
cause programmers usually perform clean-up actions when
exceptions occur, a large proportion of their mined specifica-
tions are related to resource-releasing specifications. Howev-
er, based on only statistical analysis of the usage information,
these approaches usually suffer from high false positive rates.
The second category of approaches directly synthesizes tem-
poral specifications by analyzing API library source code.
For example, Whaley et al. [14] proposed an approach to
identify illegal pairs of method invocations that would cause
exceptions for Java programs. Our technique of method rela-
tion analysis (a preparatory analysis in Section III-B) is pri-
marily a refinement of their work. The third category of ap-
proaches [15, 16] extracts specifications from API library
comments. In particular, Zhong et al. [16] proposed an ap-
proach to infer resource-manipulation specifications from
Javadocs. A typical resource-manipulation specification pat-
tern involves the creation, lock, operation, unlock, and clo-
sure of the resources. Compared to their approach, our ap-
proach exploits heterogeneous information and specifically
focuses on specifications concerning only the creation and
closure of resources. In our evaluation, 36.7% of the specifi-
cations for eight open source libraries lack method comments
for describing their resource-acquiring/releasing actions.
Moreover, the classification model for resource-releasing
methods in Figure 13 also indicates that relying on method
comments alone is not sufficient to extract precise specifica-
tions.

B. Resource Usage/Cost Analysis

Another category of related approaches is resource usage
analysis [17, 18]. These approaches collect resource usages
of programs and check whether the usages are performed in a
valid manner. Some approaches focus on resource leak prob-
lems and detect certain kinds of resource leaks [1-3]. These
approaches require resource-releasing specifications, such as
those produced by RRFinder. Other related approaches in-
clude program cost analysis [19-22]. These approaches esti-
mate for programs the upper bounds of resource usage that
program executions will cost. Traditional approaches focus
on a reduced number of resources, such as execution steps,
time, and memory. When involving higher-level, application
dependent resources, these approaches require users to define
the concerned resources and specify the relevant API me-
thods [22]. RRFinder could aid the users in this process and
help reduce much of the burden.

C. Automatic Resource Management in Java7

One important feature of Java7 is the mechanism of Au-
tomatic Resource Management (ARM) [9], obviating the
need for manual resource termination. Figure 4 shows an
example. In Java7, resources declared in the "try" statement
will be released automatically once the execution of the try-
block terminates. The only requirement is that resources
must implement the java.lang.AutoCloseable interface. This
interface contains only one method with the signature "pub-
lic void close()", which is expected to perform resource-

releasing actions. To maintain upward compatibility, all re-
source classes that implement java.io.Closeable in Java De-
velopment Toolkit (JDK) versions older than Java7 are also
supported by this feature.

Figure 4. Code snippet to demonstrate the ARM Java7 feature.

From the perspective of mining resource-releasing speci-
fications, on the one hand, our approach could work for all
programs developed with JDK versions older than Java7; on
the other hand, the advent of Java7 brings a new application
scenario for our approach. For all off-the-shelf API libraries
that are already developed (with JDK versions older than
Java7), RRFinder analyzes these libraries and produces a list
of possible resource-releasing API methods. These methods
are the candidates that should be refactored to override the
close() method in the java.lang.AutoCloseable interface to
make the resources usable with the ARM feature. In this way,
RRFinder has the potential to reduce the cost of the migra-
tion from older JDK versions to Java7 for existing API libra-
ries.

III. PREPARATORY ANALYSES

Before describing the key ideas of our approach, we first
present the preparatory analyses for each given API library.

A. Purity and Side-effect Analysis

The procedure of purity and side-effect analysis analyzes
the side-effects of each method, and finds out the pure me-
thods [6] that do not mutate states of libraries. For example,
method isClosed() in class java.net.Socket is a pure method,
which simply checks the current state of the socket, whereas
method close() is an impure method, which changes the state
of the socket into "closed".

This procedure provides information for our approach to
filter out unwanted method declarations and method invoca-
tions. First, declarations of pure methods are not candidates
of resource-releasing methods. Second, invocations of pure
methods are in fact noise when RRFinder analyzes the beha-
vior of a method to determine whether it mainly performs
resource-releasing actions. Therefore, in the process of in-
dentifying resource-releasing methods, RRFinder ignores all
the pure methods.

B. Method Relation Analysis

The procedure of method relation analysis analyzes the
relationships between each method pair (A,B) for a given
class, trying to determine whether there exists a
"Cause_Exp" relationship: the execution of method A would
cause exceptions being thrown from the execution of method

B when these two methods are invoked in a row. This infor-
mation is used to calculate an important feature "forbid-
denMtdPercent" for model-based prediction as described in
Section IV-A.

This procedure starts by computing under what condi-
tions each method would throw exceptions, denoted as et-
Condition. Next, for a method B whose etCondition is com-
puted, this procedure iteratively analyzes the side-effects of
the other methods in the same class, and produces a
"Cause_Exp" relationship between (A,B), if the execution of
method A would cause the satisfaction of etCondition of me-
thod B. The side-effects of each method are computed in
advance by our flow-sensitive, context-sensitive, inter-
procedural analysis.
 public void close() throws IOException {
 if (in == null)

return;
 in.close();
 in = null;
 }
 /** Checks to make sure that the stream has not been closed */
 private void ensureOpen() throws IOException {

if (in == null)
 throw new IOException("Stream closed");

}
 public int read() throws IOException {

synchronized (lock) {
ensureOpen();

}

 }

Figure 5. Code snippets of the class java.io.BufferedReader.

Figure 5 presents an example to illustrate the process.
The assignment made in method close() satisfies the etCondi-
tion of method ensureOpen(). Therefore, a "Cause_Exp"
relationship is found between the method pair (close(), ensu-
reOpen()). In addition, via inter-procedural analysis of the
side-effects for each method, this procedure propagates the
relationship to read(), which calls ensureOpen(). In total, we
found that after the close() method is invoked, invocations of
seven other public methods in the class would throw excep-
tions.

IV. RESOURCE-RELEASING METHOD IDENTIFICATION

RRFinder identifies resource-releasing (denoted as RR in
short) methods via an iterative algorithm interleaving the
step of model-based prediction with the steps of call-graph-
based propagation and class-hierarchy-based propagation.
We first describe the core component, the model-based pre-
diction step (Section IV-A), and then present the whole algo-
rithm (Section IV-B).

A. Resource-Releasing Method Classification Model

We aim to build a machine-learning-based classification
model that automatically predicts whether an API method is
an RR method. For each API method, a number of features
are considered to build the model (Table I), described in de-
tail below. We chose these features by drawing from our
own experiences of manually identifying RR methods from
all the 19,080 public methods in JDK. Because the ultimate
goal of RRFinder is to assist programmers to write higher-

try (InputStream fis = new FileInputStream(src);
OutputStream fos = new FileOutputStream(desc)){
 byte[] buf = new byte[8192];
 int i;
 while ((i = fis.read(buf)) != ‐1) {
 fos.write(buf, 0, i);
 }

}
catch (Exception e) {
 e.printStackTrace();

}

quality client code, we consider only methods that can be
accessed publicly.

1) Natural Language Information
We consider the natural language information in method

names and comments based on the observation that RR me-
thods tend to follow common conventions for method nam-
ing and comment writing. For example, these methods are
often named with the words like "close" or "dispose", and
their comments often include phrases such as "release re-
sources" and "garbage collection". This information provides
an important hint to find RR methods. In our evaluation, we
collect the list of RR related words (whose full list can be
found at http://sa.seforge.org/RRFinder/) referring to the
WordNet [7] dictionary, and the list also includes their syn-
onyms appearing in the names and comments of the RR me-
thods in JDK.

TABLE I. FEATURES OF RR METHOD CLASSIFICATION MODEL

Features Description
Natural Language Information
hasReleaseWordsIn-
NameOrComment

Whether the method name or the method
comments contain words related to RR.

hasReleaseWordsIn-
Comment

Whether the method comments contain words
related to RR.

hasNoneReleaseWords-
InName

Whether the method name contains words
other than RR words.

Source Code Information
Static Structural Information
implCloseable If the method is declared in a class that im-

plements interface java.io.Closeable, and the
method is the “public void close()” method,
this feature is true.

overrideReleaseM Whether this method overrides a known RR
method.

Method Behavioral Information
releaseStmtPercent Of all the statements in the method, how high

percentage (%) perform RR actions.
Method Relationship Information
forbiddenMtdPercent How high percentage (%) of other public

impure methods in the class cannot be in-
voked safely (i.e., without throwing excep-
tions) after this method is invoked on the
same object.

calledByFinalize Whether this method is called by finalize().
callersInClass The number of methods in the same class that

call this method.
calleesInClass The number of methods in the same class that

are called by this method.

2) Static Structural Information
RRFinder uses the static information in class hierarchies

to compute two features. The "implCloseable" feature de-
notes the conformation with Java7 standards [9]. As de-
scribed in Section II-B, the mechanism of Automatic Re-
source Management works for only classes that implement
the interface java.lang.AutoCloseable, whose corresponding
interface in older JDK versions is java.io.Closeable, indicat-
ing that this interface is inherently designed for RR functio-
nality. The rationale with the feature "overrideReleaseM" is
that, if a method overrides an RR method, there is a good
chance that it still performs RR actions.

3) Method Behavioral Information
For each method, RRFinder estimates whether its main

purpose is to release resources by counting how high percen-

tage of the method's statements perform RR actions, denoted
as the feature "releaseStmtPercent". When counting the
statements, it is important that RRFinder ignores trivial
statements and focuses on critical operations. We calculate
this feature following Formula (1). To calculate the total
number of methods’ statements, RRFinder considers only
NonPrimitiveAssignment statements and Method-Invocation
statements in a method, because these two types of state-
ments could take the main responsibility for the side-effects
caused by the method. Other statements such as JUMP
statements are less related to functional operations and are
ignored. Two types of statements are considered to perform
RR actions: NULLAssignment, representing statements that
assign a NULL value to a variable, and RR-Invocation,
representing statements that invoke known RR API methods.
In addition, when counting the total number of Method-
Invocation statements, two types of invocations are regarded
as noises and excluded. The first type is invocations of pure
methods, which are filtered using the results of the Purity
and Side-effect Analysis (Section III-A). The other type is
auxiliary operations, such as logging operations or data-
structure traversal operations, which are filtered based on a
predefined list.
ݐ݊݁ܿݎ݁ܲݐ݉ݐܵ݁ݏ݈ܽ݁݁ݎ ൌ ሺܰݐ݊ݑ݋ܥݐ݉ݐܵ݊݃݅ݏݏܣ݈݈ݑ ൅
ݐ݊ݑ݋ܥݐ݉ݐܵ݊݃݅ݏݏܣݒ݉ܲ݊݋݈ܰܽݐ݋ݐሻ /ሺݐ݊ݑ݋ܥݐ݉ݐܵ݇ݒܫ݁ݏ݈ܴܽ݁݁ ൅
ሻ ݐ݊ݑ݋ܥݐ݉ݐܵ݇ݒܫ݀݋݄ݐ݁ܯ݈ܽݐ݋ݐ

Figure 6. Code snippets adapted from java.util.logging.StreamHandler.

To enhance RRFinder and make it adaptive, the calcula-
tion of this feature would involve inter-procedural tracking at
certain circumstances. Inter-procedural tracking works espe-
cially when a method A performs RR actions indirectly by
calling a method B, which nevertheless would not be recog-
nized as an RR method due to factors such as being a private
method. In such cases, without tracking into method B,
RRFinder would fail to identify the RR actions performed by
method A. For example, as shown in Figure 6, the RR me-
thod close() calls only one method flushAndClose(), which in
fact performs RR operations, but would never be identified as
an RR method since it is a private method. To deal with this
situation, RRFinder tracks into flushAndClose() and updates
"releaseStmtPercent" for close() from 0 to 3/4. To avoid ex-
plosion, RRFinder tracks into a called method only when its
method name contains releasing-related words, and updates
"releaseStmtPercent" of the caller method only when its val-
ue can be increased.

By computing this feature, RRFinder could estimate the
main functionality of a method. This strategy enables the
exclusion of non-RR methods that involve RR-Invocations.
For the method in Figure 1, the "releaseStmtPercent" is only
5.7% (many statements are omitted in Figure 1), too low to
enable the method to be identified as an RR method.

private synchronized void flushAndClose() {
 writer.flush();
 writer.close();
 writer = null;
 output = null;
}
public synchronized void close() {

flushAndClose();
}

This feature acts as the critical bond connecting the step
of model-based prediction with the step of the call-graph-
based propagation (described later in Section IV-B). Thanks
to this feature, identification of higher-level RR methods
could benefit from the identification of lower-level ones.

4) Method Relationship Information
RRFinder also exploits the relationships between me-

thods in a class to identify RR methods. RRFinder includes
the feature "forbiddenMtdPercent" based on the following
observation: after the invocation of an RR method, invoca-
tions of all other public methods that mutate the object’s
state (i.e., impure methods) are usually forbidden on the
same object; otherwise, exceptions would be thrown. For
example, after the RR method "close()" is called on an object
of "java.io.BufferedReader", all the seven other public im-
pure methods cannot be invoked on the same object safely
(i.e., without throwing exceptions). To compute the feature,
given a method A from class C, RRFinder identifies public
impure methods (of class C) that cannot be safely invoked
after the execution of method A, based on the results of the
Method Relation Analysis (Section III-B) and Purity Analy-
sis (Section III-A). Suppose that RRFinder recognizes that m
other public impure methods of class B could not be invoked
afterwards, and class B includes totally n other public impure
methods, then this feature is calculated as m/n.

The rationale with the feature "calledByFinalize" is that,
in Java, the finalize() method is automatically invoked in the
process of garbage collection, and this method should per-
form only RR actions [8]. For a method, RRFinder also ex-
ploits the number of caller methods and callee methods of
this method in the same class, based on the observation that,
in most cases, RR methods have very few interactions with
the other methods in the same class.

In our evaluation, we manually prepared the training set
using all the 19,080 public methods in JDK, and adopted the
decision-tree classification algorithm [10] to build the model
(details of the evaluation process are discussed in Section
VI). After the model is built, for each API method under
consideration, RRFinder first computes all its preceding fea-
tures, and then applies the model to predict whether this me-
thod is an RR method.

B. Propagation

In this section, we present the iterative algorithm of RR
method identification, as shown in Figure 7. The algorithm
takes as input a list of API methods under consideration, and
identifies the RR methods among them.

This algorithm maintains two key data structures: relea-
seMs is a set of all identified RR methods, and newFoundRe-
leaseMs is a first-in-first-out queue of newly detected RR
methods, from which propagations would be started. In addi-
tion, releaseMs also serves as a guard condition to avoid
redundant propagations (Lines 14 and 20).

The algorithm is mainly composed of three phases. In-
itially, the algorithm iteratively computes the features for
each API method and uses the pre-built classification model
to predict whether it is an RR method (Lines 3-7). Next, for
each newly detected RR method, a call-graph-based propaga-

tion (Lines 10-16) and a class-hierarchy-based propagation
(Lines 17-22) are started.

Figure 7. Algorithm of RR method identification.

Via call-graph-based propagation, identification of high-
er-level RR methods could benefit from identification of
lower-level ones. When a new RR method is detected, the
value of feature "releaseStmtPercent" for all its caller me-
thods is increased. Therefore, RRFinder performs such prop-
agations by re-computing "releaseStmtPercent" (Line 11) for
each caller method, and performs the prediction step again to
see whether the caller method could be identified as an RR
method (Line 12). This process is more effective if a list of
known RR API methods (which the API library under analy-
sis calls) is provided. For example, the method AbstractPoo-
ledConnAdapter.close() in library httpClient1 calls the me-
thod HttpConnection.close() in library httpCore2 (both are
actually RR methods); due to the latter method being an RR
method, the value of "releaseStmtPercent" is increased for
the former method, and the former method’s chance of being
identified as an RR method is also increased. Normally, to
find RR methods for any third-party API libraries, we pro-
vide the algorithm with the list of all the known RR methods
in JDK.

Via class-hierarchy-based propagation, RRFinder identi-
fies abstract RR methods, which are important in object-
oriented languages such as Java, where dynamic bindings are
popularly used. To make such propagation, for each method,
our algorithm counts the number of methods that override
this method, denoted as "ChildCount", and also the number
of RR methods among these methods, denoted as "relea-
seChildCount". Our algorithm considers a method to be an
RR method if its releaseChildCount/ChildCount is higher

Algorithm identifyResourceReleasingMethods
Input unKwnMs a list of unknown API methods
Output releaseMs a list of resource-releasing API methods
Begin
1. releaseMs←Ø;
2. newFoundReleaseMs←Ø;
3. foreach m in unKwnMs do
4. label←classifyMethod(m);
5. if label is "resource-releasing" then
6. add m to the end of newFoundReleaseMs;
7. add m to releaseMs;
8. while newFoundReleaseMs is not empty do
9. remove the head method releaseM of newFoundReleaseMs;
10. foreach caller methods callerM of releaseM do
11. recompute feature "releaseStmtPercent";
12. label←classifyMethod(callerM);
13. if label is "resource-releasing" then
14. if callerM not in releaseMs then
15. add callerM to the end of newFoundReleaseMs;
16. add callerM to releaseMs;
17. foreach overriden methods parentM of releaseM do
18. update the releaseChildCount of parentM;
19. if its releaseChildCount/ChildCount > inheritThresh then
20. if parentM not in releaseMs then
21. add parentM to the end of newFoundReleaseMs;
22. add parentM to releaseMs;
End

1 httpClient: http://hc.apache.org/httpcomponents-client-ga/.
2 httpCore: http://hc.apache.org/httpcomponents-core-ga/index.html.

than a predefined threshold inheritThresh1. Therefore, each
time a new RR method is found, the number of "relea-
seChildCount" for each overridden method is increased, and
then our algorithm checks whether this update produces a
new RR method (Lines 17-22). The rationale with such prop-
agation is that the common functionality of the overriding
methods usually reflects the functionality of their commonly
overridden methods.

V. RESOURCE-ACQUIRING METHOD IDENTIFICATION

Both resource-releasing and resource-acquiring methods
are needed to form specifications in the form of (resource-
acquiring, resource-releasing) API method pairs. For each
identified RR method, RRFinder next searches in its belong-
ing class for the corresponding resource-acquiring (denoted
as RA in short) method, which acquires the resources that are
released in the RR method.

To find the corresponding RA method, RRFinder starts by
considering the two types of RR statements in the RR method.
For each NULLAssignment statement, RRFinder searches in
the same class for the method that makes non-NULL assign-
ment to the corresponding variable. For each RR-Invocation
statement, RRFinder searches in the same class for the me-
thod that invokes the corresponding known RA method. (The
definitions of these two types of RR statements are in Section
IV-A-3.) Figure 8 presents an example, for which the known
RR specification is (new DatagramSocket(), Datagram-
Socket.close()). RRFinder first identifies SyslogWriter.close()
as an RR method, which contains one RR-Invocation state-
ment. RRFinder then identifies the constructor to be the RA
method by searching for the method that invokes the known
RA method new DatagramSocket().

public SyslogWriter(final String syslogHost){

 ds = new DatagramSocket();

}
public void close() {

 ds.close();
}

Figure 8. Code snippets of the class org.apache.log4j.helpers.
SyslogWriter.

public ThreadSafeClientConnManager(HttpParams params,
 SchemeRegistry schreg) {

 this.pool=(ConnPoolByRoute)createConnectionPool(params);

}
protected AbstractConnPool createConnectionPool(final HttpPa‐

rams params) {
 return new ConnPoolByRoute(connOperator, params);
}
public void shutdown() {
 pool.shutdown();
}

Figure 9. Code snippets of org.apache.http.impl.conn.tsccm.
ThreadSafeClientConnManager.

Because the RA method must also be a method that could
be accessed publicly, a call-graph-based backward tracking
(from callees to callers) is sometimes needed. Figure 9 shows

an example where the known RR specification is (new Con-
nPoolByRoute(), ConnPoolByRoute.shutdown()). RRFinder
first detects the method createConnectionPool(), which in-
vokes the known RA method, and then identifies the public
constructor to be the target RA method, which invokes crea-
teConnectionPool().

Via backward tracking, the identified RA method may not
necessarily reside in the same class with the RR method (the
average percentage is 29.2% for the eight libraries in our
evaluation.). For example, the identified RR method for class
org.hibernate.impl.StatelessSessionImpl is close(), and the
only method in the class that acquires the corresponding re-
sources is the constructor but with a package accessibility
(i.e., only accessible to methods or classes within the same
package). The actual target RA method is SessionFacto-
ryImpl.openStatelessSession(), which is a public method
invoking the constructor of StatelessSessionImpl.

In addition, there are cases when several RA methods are
identified for one RR method. In such situation, various re-
sources are acquired in different methods in the class, and the
RR method performs clean-up for all the resources that may
be acquired by the methods in the class.

Finally, if there are no NULLAssignment or recognized
RR-Invocation statements in the RR method, RRFinder as-
sumes the public constructor of the class to be the RA method.
(In our evaluation, constructors account for 77.3% of all the
correctly identified RA methods.) A call-graph-based track-
ing may also be needed in case there are no public construc-
tors available. In particular, if the corresponding RR method
resides in an interface, a class-hierarchy-based propagation is
also required to find the public RA method. Details of these
techniques are omitted here due to the space limit.

VI. EVALUATION

We implemented a prototype tool for RRFinder and con-
ducted an evaluation using it. To build the RR method classi-
fication model, we manually built the training set using
19,080 non-empty public methods in JDK in two weeks. We
then applied RRFinder to mine specifications for eight open
source libraries, detailed in Table II. In particular, column
"#C" lists the number of classes, and column "#PM" lists the
number of public methods exposed by the library. We se-
lected these libraries because they are known to involve sub-
stantial manipulations of resources, such as external files,
database, and network connections. To evaluate the effec-
tiveness of RRFinder, we prepared a golden standard for
each selected library. We invited four researchers from the
Institute of Software at Peking University to manually identi-
fy RR specifications for the libraries. Initially, each library
was examined by two researchers, and then, any disagree-
ments between the two were inspected by a third researcher.
We allocated the tasks based on the workload and also their
familiarity with the subject libraries. Our evaluation was
conducted on a 2.6GHz dual core machine. All the manually
identified specifications for the eight libraries are available at
http://sa.seforge.org/RRFinder/.

Our evaluation addresses the following research ques-
tions, which are organized in a top-down manner. RQ1:
Could RRFinder mine specifications effectively? RQ2: 1 The threshold inheritThresh was set to 0.3 in our evaluation.

Could RRFinder identify RR methods effectively? RQ3:
How useful are the selected features (in Section IV-A) in
predicting RR methods? RQ4: How much could RRFinder
benefit from the propagations? RQ5: Are the mined specifi-
cations useful in defect detection? We do not discuss in de-
tail the evaluation results of RRFinder in RA method identi-
fication, due to the space limit and its relatively good per-
formance (as shown in Table III).

TABLE II. SUBJECT PROJECTS AND THEIR CHARACTERISTICS.

Library Version #C #PM Description
Cayenne 3.0.1 1361 7152 object relational database
Hibernate 3.6.0 2678 17651 Java persistent framework
HttpClient 4.1.1 272 1177 HTTP client-side components
HttpCore 4.1 311 1655 HTTP transport components
Log4J 1.2.16 308 1633 logging framework
PDFBox 1.5.0 504 3823 Java PDF library
Xalan 2.7.1 1130 7865 XSLT processor
Xerces 2.11.0 768 5729 XML parser

A. RQ1:Effectiveness of Specification Extraction

We applied RRFinder to extract specifications for the
eight open source libraries, and the results are shown in Ta-
ble III. For the overall results (columns "Time" to "F"), col-
umn "Time" lists the time spent on each library in minutes;
column "#T" lists the number of manually identified RR spe-
cifications; columns "P", "R", "F" give respectively the pre-
cision, recall, and F-Score of RRFinder. For the results of RR
method identification (columns "#CAuto" to "RR"), column
"#CAuto" lists the number of correctly identified methods by
RRFinder; column "#Auto" lists the number of automatically
identified methods by RRFinder; column "#Man" lists the
number of manually classified methods; columns "PR" and
"RR" list the precision and recall of RR method identification.
For the results of RA method identification (the last two col-
umns), columns "PA" and "RA" list respectively its precision
and recall. In particular, to separate the impact of the RR
method identification, the calculation of the precision/recall
of RA method identification is confined to those RA methods
whose corresponding RR methods are correctly identified by
RRFinder.

From the results in Table III, we have the following ob-
servations. First, RRFinder achieves relatively high preci-
sions, recalls, and F-scores on these libraries, with an aver-
age precision of 86.6% and recall of 94.0%. In particular, the
low precisions for libraries PDFBox and Xalan are mainly
caused by their corresponding low precisions of RR method
identification, which we explain later in Section VI-B.
Second, the time used to mine specifications is acceptable.

Moreover, the time spent on each library is largely propor-
tional to the size (considering the number of classes and me-
thods) of the library, indicating that RRFinder is scalable.
Third, compared with RR method identification, the RA me-
thod identification demonstrates a much better performance
with an average precision of 95.9% and recall of 97.9%, in-
dicating that the effectiveness of RR method identification is
the critical factor in determining the overall performance of
RRFinder. Finally, by comparing column "#T" with column
"#Man", we found that there are 89 more RR specifications
than RR methods, indicating that many RR methods (an per-
centage of 31.3%) have more than one corresponding RA
method.

B. RQ2:Effectiveness of RR Method Identification

We next explain the results of RR method identification
shown in columns "#CAuto" to "RR" in Table III. In general,
RRFinder identified 93.1% of the RR methods with the aver-
age precision 88.2%. The results indicate that, to identify RR
methods for a library, RRFinder does not require the classifi-
cation model to be trained using methods in the same library.
Therefore, users of our approach could rely on a universally
built model to identify RR methods.

In particular, the reason for the low precision of library
PDFBox is that all the 13 wrongly identified RR methods are
manually classified by us as resource-releasing-utility me-
thods. Figure 10 shows an example method. This method
looks much like an RR method, except that the releasing ac-
tions are conducted on the passed-in parameters. In contrast,
in this paper, we focus on identifying resource-releasing me-
thods that should be invoked when the tasks of their belong-
ing classes are completed, and these methods perform releas-
ing actions for their belonging classes. These resource-
releasing-utility methods can be easily filtered by checking
whether the RR-Invocation statements are conducted on the
parameters. Similarly, among the wrongly identified methods,
two of library Xalan and one of library Hibernate are all re-
source-releasing-utility methods. The other wrongly identi-
fied method of library Xalan is shown in Figure 11. This
method is undoubtedly an RR method; however, as shown in
the method comments, this method is automatically called
and should not be invoked by client programs.

Figure 12 presents two RR methods that were not identi-
fied by RRFinder. The two methods demonstrate one chal-
lenge of RR method identification: some RR methods do not
perform resource-releasing actions directly; instead, they fire
certain events and send out signals, and the actual resource-
releasing actions are accomplished via the cooperation of

Library Overall Results RR Idtf. RA Idtf.
Time (m) #T P(%) R(%) F(%) #CAuto #Auto #Man PR(%) RR(%) PA(%) RA(%)

Cayenne 97.9 25 95.5 95.5 95.5 16 16 17 100.0 94.1 100.0 100.0
Hibernate 139.6 47 85.0 89.5 87.2 36 38 38 94.7 94.7 89.5 94.4
HttpClient 6.2 13 100.0 80.0 88.9 8 8 10 100.0 80.0 100.0 100.0
HttpCore 5.3 47 100.0 84.4 91.5 27 27 32 100.0 84.4 100.0 100.0
Log4J 5.9 22 100.0 95.2 97.5 19 19 19 100.0 100.0 100.0 95.2
PDFBox 13.8 22 40.7 100.0 57.9 11 24 11 45.8 100.0 84.6 100.0
Xalan 70.6 17 57.1 100.0 72.7 4 7 4 57.1 100.0 100.0 100.0
Xerces 28.1 40 86.7 100.0 92.9 13 13 13 100.0 100.0 100.0 100.0
Total 367.4 233 86.6 94.0 90.1 134 152 144 88.2 93.1 95.9 97.9

TABLE III. RESULTS OF RESOURCE-RELEASING SPECIFICATION IDENTIFICATION.

several different classes. We plan to address this challenge in
future work.
// Close the document.

 public void close(FDFDocument doc) throws IOException
 {
 if(doc != null)
 {
 doc.close();
 }
}

Figure 10. Code snippet of class org.apache.pdfbox.ImportFDF.

/* Automatically called when the HTML page containing the applet is
no longer on the screen. Stops execution of the applet thread. */

 public void stop()
 {
 if (null != m_trustedWorker){
 m_trustedWorker.stop();

 m_trustedWorker = null;
 }
 m_styleURLOfCached = null;
 m_documentURLOfCached = null;
 }

Figure 11. Code snippet of class org.apache.xalan.client.
XSLTProcessorApplet.

Figure 12. Code snippets with the left one from class org.apache.http.
nio.util.SharedInputBuffer, and the right one from class org.apache.

cayenne.event.EventManager.

C. RQ3: RR Method Classification Model

We manually built the training set using all the 19,080
non-empty public methods in JDK. We adopted the decision-
tree classification algorithm [10] to build the model. In this
algorithm, rules are organized as tree structures, where
leaves represent classification results, and branches leading
from the root to the leaves represent the conjunctions of the
conditions of features leading to the classification results. We
chose this algorithm because the classification model can be
explicitly visualized, enabling us to evaluate the value of
each feature and also the soundness of the training set. We
present the built decision-tree model1 in Figure 13. For sim-
plicity, only branches leading to positive classifications (of
an RR method) are shown. Five manners of the conjunctions
of the feature conditions could lead to the prediction of an
RR method (the corresponding leaves are in bold). For ex-
ample, a method is classified as an RR method when (1) it
does not override an RR method, (2) its method name con-
tains only releasing-related words, and (3) its "relea-
seStmtPercent" is higher than 0.377967.

The model in Figure 13 justifies our intentions of choos-
ing these features and it shows the predictive power of each

feature quantitatively. Intuitively, the shorter the path leading
from the root to the leave, and the closer the feature condi-
tion gets to the leave, the stronger the predictive power of the
feature is. Therefore, feature "releaseStmtPercent" demon-
strates the strongest predictive power. In particular, when
calculating the features "callersInClass" and "calleesIn-
Class" in Table I, we calculated both the number, denoted as
"callers/calleesInClassCount", and the percentage, denoted
as "callers/calleesInClassPercent" for a better prediction
performance. However, the feature "calleesInClassCount"
was dropped due to its relatively low predictive power, indi-
cating that the RR methods may sometimes invoke other
methods in the same class, but normally would not be in-
voked by the other methods in the same class. Through our
manual inspection, we found that the RR methods are called
only either by the finalize() method in the same class, or
when unexpected behavior occurs during the operation in the
other methods, which are forced to terminate and need im-
mediate clean-up. In addition, the feature "hasReleaseWord-
sInComment" is also dropped. Although the comments for
RR methods usually involve phrases such as "release re-
source" or "allow garbage collection", the comments are
missing at certain occasions, partially due to the developers’
assumption that they have already expressed their intention
using the method names.

Figure 13. The decision-tree classification model.

Figure 14. Distributions of the correctly identified RR methods.

API Library

Cayenne HibernateHttpClientHttpCore Log4J PDFBox Xalan Xerces Total

#
 o

f
C

or
re

ct
ly

 I
d

en
ti

fi
ed

 R
R

 M
et

h
od

s

0

20

40

60

80

100

120

140

Model‐based Prediction

Call‐graph‐based Propagation

Class‐hierarchy‐based Propagation

public void shutdown() {
 if (shutdown) {
 return;
 }
 shutdown = true;
 lock.lock();

try {
 condition.signalAll();
 } finally {
 lock.unlock();
 }
}

// Stops event threads. After the
EventManager is stopped, it can not
be restarted and should be dis‐
carded.
public void shutdown() {
 stopped = true;
 for (DispatchThread thread :
dispatchThreads) {
 thread.interrupt();
 }
 }

1 This model was trained with precision of 93.8%, recall of 85.4%, and F-
Score of 92.8%.

overrideReleaseM = yes
| hasReleaseWordsInNameOrComment = yes
| | hasNoneReleaseWordsInName = no
| | | callersInClassCount <= 2.5
| | | | callersInClassPercent <= 0.202041
| | | | | calleesInClassPercent <= 0.188345: yes
overrideReleaseM = no
| hasNoneReleaseWordsInName = no
| | releaseStmtPercent <= 0.377976
| | | implCloseable = yes: yes
| | | implCloseable = no
| | | | calledByFinalize = yes: yes
| | | | calledByFinalize = no
| | | | | forbiddenMtdPercent > 0.33333
| | | | | | hasReleaseWordsInNameOrComment = yes
| | | | | | | callersInClassPercent <= 0.052983
| | | | | | | | callersInClassCount <= 2.5
| | | | | | | | | calleesInClassPercent <= 0.101282: yes
| | releaseStmtPercent > 0.377976: yes

D. RQ4: Benefits of Propagations

To discover the benefits of the propagations, we investi-
gated the distribution of the correctly identified RR methods
considering the way that they are identified, shown in Figure
14. Of all the correctly identified RR methods, 17.3% are
identified via call-graph-based propagation and 18.0% via
class-hierarchy-based propagation. The results show that the
propagations enable RRFinder to identify more RR methods.

E. RQ5:Usefulness of the Mined Specifications

Finally, to evaluate the usefulness of the mined specifica-
tions, we used these specifications to detect defects in open
source projects. Figure 15 shows a confirmed defect con-
cerning the specification (SessionFactory.openSession(),
Session.close()). The left-hand-side code snippet shows the
found defect: when the method invocation synsDAO.get()
throws exceptions, the session created in newSession() will
be left unclosed. The right-hand-side code snippet shows
how the defect is fixed. More examples of the detected de-
fects are not shown due to the space limit.

VII. CONCLUSION

We have proposed an approach, RRFinder, to automati-
cally mining RR specifications for API libraries. RRFinder
first identifies RR API methods, and then searches for the
corresponding RA API methods. To identify RR API me-
thods, RRFinder iteratively produces rich and precise results
by interleaving the step of model-based prediction with the
steps of call-graph-based and class-hierarchy-based propaga-
tions. Evaluation results on eight open source libraries show
that our approach performed effectively and the mined speci-
fications are useful in detecting resource leak defects.

REFERENCES
[1] E. Torlak, S. Chandra. Effective interprocedural resource leak

detection. In Proceedings of ICSE, 535-544, 2010.

[2] S. Z. Guyer, K. S. McKinley, and D. Frampton. Free-me: a static
analysis for automatic individual object reclamation. In Proceedings
of PLDI, 364–375, 2006.

[3] D. L. Heine and M. S. Lam. A practical flow-sensitive and context-
sensitive C and C++ memory leak detector. In Proceedings of PLDI,
168–181 , 2003.

[4] Sun's guide to Persistent Connections: http://tinyurl.com/6b5jc7.

[5] Proposal of Automatic Resource Management: http://mail.openjdk.
java.net/pipermail/coin-dev/2009-February/000011.html.

[6] A. Salcianu and M. Rinard. Purity and side effect analysis for Java
programs. In Proceedings of VMCAI, 199–215, 2005.

[7] WordNet, available at http://wordnet.princeton.edu/.

[8] B. Eckel. Thinking in Java. 3rd Edition. Prentice-Hall, 2002.

[9] Java7, available at http://jdk7.java.net/.

[10] I. H. Witten, E. Frank, and M. A. Hall. Data Mining: Practical
Machine Learning Tools and Techniques. 3rd Edition. Morgan
Kaufmann. 2011.

[11] D. R. Engler, D. Y. Chen, and A. Chou. Bugs as deviant behavior: A
general approach to inferring errors in systems code. In Proceedings
of SOSP, 57-72, 2001.

[12] W. Weimer and G. Necula. Mining temporal specifications for error
detection. In Proceedings of TACAS, 461–476, 2005.

[13] S. Thummalapenta and T. Xie. Mining exception-handling rules as
sequence association rules. In Proceedings of ICSE, 496-506, 2009.

[14] J. Whaley, M. Martin, and M. Lam. Automatic extraction of object-
oriented component interfaces. In Proceedings of ISSTA, 218–228,
2002.

[15] L. Tan, D. Yuan, G. Krishna, and Y. Zhou. /* iComment: Bugs or
Bad Comments?*/. In Proceedings of SOSP, 145–158, 2007.

[16] H. Zhong, L. Zhang, T. Xie, H. Mei. Inferring resource specifications
from natural language API documentation. In Proceedings of ASE,
307-318, 2009.

[17] A. Igarashi, N. Kobayashi. Resource usage analysis. In Proceedings
of POPL, 331-342, 2002.

[18] M. Bartoletti, P. Degano, G. Ferrari, and R. Zunino. Local policies for
resource usage analysis. TOPLAS, 31(6), 1-43, 2009.

[19] I. Bate, G. Bernat, and P. Puschner. Java virtual-machine support for
portable worst-case executiontime analysis. In Proceedings of ISORC,
83-90, 2002.

[20] R. Wilhelm. Timing analysis and timing predictability. In
Proceedings of FMCO, 317-323, 2004.

[21] E. Albert, P. Arenas, S. Genaim, G. Puebla, D. Zanardini. Resource
usage analysis and its application to resource certification. In
Proceedings of FOSAD, 258-288, 2009.

[22] J. Navas, M. Mendez-Lojo, and M. V. Hermenegildo. User-definable
resource usage bounds analysis for Java bytecode. ENTCS, 253(5),
65-82, 2009.

Figure 15. A confirmed defect in Mesh4j.

