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Abstract— Software systems commonly use resources such as 
network connections or external file handles. Once finish using 
the resources, the software systems must release these re-
sources by explicitly calling specific resource-releasing API 
methods. Failing to release resources properly could result in 
resource leaks or even outright system failures. Existing verifi-
cation techniques could analyze software systems to detect 
defects related to failing to release resources. However, these 
techniques require resource-releasing specifications for speci-
fying which API method acquires/releases certain resources, 
and such specifications are not well documented in practice, 
due to the large amount of manual effort required to document 
them. To address this issue, we propose an iterative mining 
approach, called RRFinder, to automatically mining resource-
releasing specifications for API libraries in the form of (re-
source-acquiring, resource-releasing) API method pairs. 
RRFinder first identifies resource-releasing API methods, for 
which RRFinder then identifies the corresponding resource-
acquiring API methods. To identify resource-releasing API 
methods, RRFinder performs an iterative process including 
three steps: model-based prediction, call-graph-based propaga-
tion, and class-hierarchy-based propagation. From heteroge-
neous information (e.g., source code, natural language), the 
model-based prediction employs a classification model to pre-
dict the likelihood that an API method is a resource-releasing 
method. The call-graph-based and class-hierarchy-based prop-
agation propagates the likelihood information across methods. 
We evaluated RRFinder on eight open source libraries, and the 
results show that RRFinder achieved an average recall of 94.0% 
with precision of 86.6% in mining resource-releasing specifica-
tions, and the mined specifications are useful in detecting re-
source leak defects. 
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I. INTRODUCTION 

Software systems commonly use resources such as net-
work connections or external file handles. Once finish using 
the resources, the software systems must release these re-
sources by explicitly calling specific resource-releasing API 
methods. Failing to release resources appropriately could 
cause resource leaks. As a result, the system at runtime slow-
ly depletes the limited supply of system resources, leading to 
performance degradation and even system crashes [1]. Al-
though programming languages such as Java provide gar-
bage collection to free programmers from the responsibility 
of memory management, the mechanism does not address 
the problem of resource management: programs for a system 

must return the acquired resources by explicitly calling a 
resource-releasing API method. Such tasks are error-prone in 
practice. For example, Sun's guide to Persistent Connections 
[4] gets it wrong in code that is claimed to be exemplary.  

To assist programmers in resource management, auto-
matic approaches for resource leak detection [1-3] report 
code locations where invocations of proper resource-
releasing API methods are absent. These approaches require 
formal resource-releasing specifications for specifying which 
API method acquires/releases certain resources. A common 
type of such specifications is in the form of (resource-
acquiring, resource-releasing) API method pairs, denoting 
the programming constraint that, if the program acquires 
resources by calling the resource-acquiring method, it 
should eventually call the corresponding resource-releasing 
method to release the resources and perform necessary clean-
up actions. For example, a typical resource-releasing specifi-
cation is (new FileInputStream(), FileInputStream.close()). 
Unfortunately, these formal specifications are often missing, 
due to the large amount of time and energy that must be in-
vested to manually creating them. 

To address these issues, we propose an iterative mining 
approach, called RRFinder, to automatically mining re-
source-releasing specifications for Java API libraries. 
RRFinder takes as input the source code (Java source or by-
tecode) and the API documents (Javadoc1) of the library, and 
produces a set of resource-releasing specifications in the 
form of (resource-acquiring, resource-releasing) API me-
thod pairs. Some existing approaches [12, 13] also mine such 
specifications by exploiting exceptional paths in API client 
programs. However, because client programs tend to include 
mistakes especially in resource management, these ap-
proaches usually suffer from high false positive rates, based 
on only statistical analysis of API usage information. In addi-
tion, API client programs may not be available or many 
enough, e.g., for newly developed libraries.   

To mine such specifications from the source code and 
code documents for an API library, our insight behind 
RRFinder is that high-level resources are often wrappers of 
low-level resources. For example, database connections 
(high-level resources) are established through socket connec-
tions (low-level resources). Intuitively, given a set of known 
low-level resource-releasing specifications (lowRA, lowRR), 
a high level specification (highRA, highRR) is found when 
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highRA invokes lowRA methods, and highRR invokes lowRR 
methods. In other words, RRFinder conducts propagations 
based on method-calling relationships, starting from known 
basic specifications concerning low-level resources. 

Our RRFinder approach addresses three main challenges 
to mine resource-releasing specifications from API libraries. 
First, our preliminary study (details of the study can be found 
at http://sa.seforge.org/RRFinder/) shows that relying on 
propagations alone is not sufficient to mine precise specifica-
tions. For example, although the method acceptFrom() 
shown in Figure 1 invokes the lowRR method Input-
Stream.close() and performs some resource-releasing actions 
(the statements in bold), acceptFrom() cannot be regarded as 
a highRR method, because its main functionality is to accept 
a connection from a specified host.  

 
Figure 1.  Code snippets adapted from java.net.SocksSocketImpl. 

Second, to determine whether one API method is a re-
source-acquiring/releasing method, heterogeneous informa-
tion should be considered together. For example, the re-
source-manipulation actions performed by an API method 
may be specified clearly in its code comments; therefore, 
including comment analysis could serve as a complement for 
the code analysis.   

Third, through our manual investigation, although re-
source-releasing methods exhibit certain common features, 
such as conventions for method naming, resource-acquiring 
methods do not exhibit common features (these features are 
described in Section IV-A); therefore, it is difficult to extract 
resource-acquiring methods directly. 

 

RRFinder addresses the preceding challenges and mines 

precise resource-releasing specifications effectively. Figure 2 
gives an overview of RRFinder. The API library under anal-
ysis first goes through two preparatory analyses (Section III). 
Then to mine specifications, RRFinder starts by identifying 
resource-releasing API methods (Section IV), because these 
methods normally exhibit certain common features. Next, for 
these identified resource-releasing API methods, RRFinder 
searches for their corresponding resource-acquiring API me-
thods (Section V), which acquire the resources released in 
the resource-releasing methods. 

To identify resource-releasing API methods, RRFinder 
iteratively produces effective results by interleaving the step 
of model-based prediction (Section IV-A) with the steps of 
call-graph-based and class-hierarchy-based propagations 
(Section IV-B). The model-based prediction employs a clas-
sification model to predict whether an API method is a re-
source-releasing method. The model exploits heterogeneous 
information, ranging from static structural information to 
dynamic behavioral information, and from API library 
source code (Java source or bytecode) to code comments 
(Javadoc). The call-graph-based propagation explores me-
thod-calling relationships to detect callers of known re-
source-releasing methods. Such information is then used to 
update certain features of the detected caller methods, driv-
ing the model-based prediction step to identify new resource-
releasing methods from the caller methods. Via the call-
graph-based propagation, identification of high-level re-
source-releasing methods could benefit from identification of 
low-level ones. The class-hierarchy-based propagation iden-
tifies abstract resource-releasing methods by drawing con-
clusions from their overriding methods. Such propagation is 
important in object-oriented languages such as Java, where 
dynamic bindings are popularly used. 

 

Figure 3.  Example of propagations. 

Figure 3 shows an example to demonstrate the propaga-
tion steps. RRFinder takes two steps to identify OR-
BImpl.destroy() as a resource-releasing method. First, 
RRFinder identifies InputStream.close() as a resource-
releasing method, via class-hierarchy-based propagation. 

public void acceptFrom(InetSocketAddress saddr) throws IOException
{ 

socksBind(saddr); 
int i = cmdIn.read();//cmdIn is a field variable of type InputStream
SocketException ex = null; 
switch (i) { 

  case REQUEST_OK: 
      // success, do some operations...       
      break; 
  case FAILURE: 
      ex = new SocketException("SOCKS server failure"); 
      break; 
  …… 

} 
if (ex != null) { 

cmdIn.close(); 
  cmdIn=null; 
  throw ex; 

} 
//perform some functional operations... 

} 

Figure 2.  Overview of RRFinder. 



Next, detecting ORBImpl.destroy()  to have invoked Input-
Stream.close() via call-graph-based propagation, RRFinder 
updates certain features of destroy() accordingly, and applies 
the classification model to finally predict destroy() to be a 
resource-releasing method. This example reflects the ratio-
nale for iteratively interleaving the model-based prediction 
with the propagations: the features of each API method rely 
on the relationships (including both calling and overriding 
relationships) between methods, and these features change 
dynamically with the propagations based on these relation-
ships; in other words, the feedback from the propagations 
drives the model-based prediction to produce better mining 
results. 

In summary, our iterative mining approach has several 
advantages owing to interleaving the three steps. First, the 
propagations greatly enhance the effectiveness of the model-
based prediction to identify resource-releasing methods. 
Second, the model-based prediction mitigates the impreci-
sion problem (discussed in the first challenge) of relying on 
propagations alone to identify resource-releasing methods. 
Intuitively, when a method is detected to invoke known re-
source-releasing methods via call-graph-based propagation, 
it will not be identified as a resource-releasing method im-
mediately. Only when the heterogeneous features of the me-
thod satisfy the classification rules represented by the classi-
fication model, would this method be identified as a re-
source-releasing method. 

This paper makes the following main contributions: 
 A novel approach, called RRFinder, to automatically 

mining resource-releasing specifications for API li-
braries effectively. The evaluation on eight open 
source libraries shows that RRFinder identifies re-
source-releasing specifications with an average pre-
cision of 86.6% and recall of 94.0%. 

 A set of measurable features for identifying re-
source-releasing methods. 

 An iterative algorithm to identify precise resource-
releasing methods, interleaving the step of model-
based prediction with the steps of call-graph-based 
and class-hierarchy-based propagations. 

 A technique to identify resource-acquiring methods 
for given resource-releasing methods. 

The rest of this paper is organized as follows. Section II 
discusses related work. Section III introduces the required 
preparatory analyses. Section IV and Section V describe the 
identification of resource-releasing/acquiring methods, re-
spectively. Section VI presents evaluation results. Section 
VII concludes. 

II. RELEATED WORK 

This section first discusses related work of our approach, 
and then discusses relevant industrial techniques, specifically, 
the Automatic Resource Management feature of Java7. 

A. Specification Mining 

Our work is most related to specification mining ap-
proaches. According to their mining-data sources, these ap-
proaches fall into three categories.  

The first category of approaches [11-13] mines frequent 
API usage patterns as specifications from API client pro-
grams. In particular, Weimer et al. [12] and Thummalapenta 
et al. [13] used exceptional paths to mine specifications. Be-
cause programmers usually perform clean-up actions when 
exceptions occur, a large proportion of their mined specifica-
tions are related to resource-releasing specifications. Howev-
er, based on only statistical analysis of the usage information, 
these approaches usually suffer from high false positive rates. 
The second category of approaches directly synthesizes tem-
poral specifications by analyzing API library source code. 
For example, Whaley et al. [14] proposed an approach to 
identify illegal pairs of method invocations that would cause 
exceptions for Java programs. Our technique of method rela-
tion analysis (a preparatory analysis in Section III-B) is pri-
marily a refinement of their work. The third category of ap-
proaches [15, 16] extracts specifications from API library 
comments. In particular, Zhong et al. [16] proposed an ap-
proach to infer resource-manipulation specifications from 
Javadocs. A typical resource-manipulation specification pat-
tern involves the creation, lock, operation, unlock, and clo-
sure of the resources. Compared to their approach, our ap-
proach exploits heterogeneous information and specifically 
focuses on specifications concerning only the creation and 
closure of resources. In our evaluation, 36.7% of the specifi-
cations for eight open source libraries lack method comments 
for describing their resource-acquiring/releasing actions. 
Moreover, the classification model for resource-releasing 
methods in Figure 13 also indicates that relying on method 
comments alone is not sufficient to extract precise specifica-
tions. 

B. Resource Usage/Cost Analysis 

Another category of related approaches is resource usage 
analysis [17, 18]. These approaches collect resource usages 
of programs and check whether the usages are performed in a 
valid manner. Some approaches focus on resource leak prob-
lems and detect certain kinds of resource leaks [1-3]. These 
approaches require resource-releasing specifications, such as 
those produced by RRFinder. Other related approaches in-
clude program cost analysis [19-22]. These approaches esti-
mate for programs the upper bounds of resource usage that 
program executions will cost. Traditional approaches focus 
on a reduced number of resources, such as execution steps, 
time, and memory. When involving higher-level, application 
dependent resources, these approaches require users to define 
the concerned resources and specify the relevant API me-
thods [22]. RRFinder could aid the users in this process and 
help reduce much of the burden. 

C. Automatic Resource Management in Java7 

One important feature of Java7 is the mechanism of Au-
tomatic Resource Management (ARM) [9], obviating the 
need for manual resource termination. Figure 4 shows an 
example. In Java7, resources declared in the "try" statement 
will be released automatically once the execution of the try-
block terminates. The only requirement is that resources 
must implement the java.lang.AutoCloseable interface. This 
interface contains only one method with the signature "pub-
lic void close()", which is expected to perform resource-



releasing actions. To maintain upward compatibility, all re-
source classes that implement java.io.Closeable in Java De-
velopment Toolkit (JDK) versions older than Java7 are also 
supported by this feature. 

Figure 4.  Code snippet to demonstrate the ARM Java7 feature. 

From the perspective of mining resource-releasing speci-
fications, on the one hand, our approach could work for all 
programs developed with JDK versions older than Java7; on 
the other hand, the advent of Java7 brings a new application 
scenario for our approach. For all off-the-shelf API libraries 
that are already developed (with JDK versions older than 
Java7), RRFinder analyzes these libraries and produces a list 
of possible resource-releasing API methods. These methods 
are the candidates that should be refactored to override the 
close() method in the java.lang.AutoCloseable interface to 
make the resources usable with the ARM feature. In this way, 
RRFinder has the potential to reduce the cost of the migra-
tion from older JDK versions to Java7 for existing API libra-
ries. 

III. PREPARATORY ANALYSES 

Before describing the key ideas of our approach, we first 
present the preparatory analyses for each given API library. 

A. Purity and Side-effect Analysis 

The procedure of purity and side-effect analysis analyzes 
the side-effects of each method, and finds out the pure me-
thods [6] that do not mutate states of libraries. For example, 
method isClosed() in class java.net.Socket is a pure method, 
which simply checks the current state of the socket, whereas 
method close() is an impure method, which changes the state 
of the socket into "closed".  

This procedure provides information for our approach to 
filter out unwanted method declarations and method invoca-
tions. First, declarations of pure methods are not candidates 
of resource-releasing methods. Second, invocations of pure 
methods are in fact noise when RRFinder analyzes the beha-
vior of a method to determine whether it mainly performs 
resource-releasing actions. Therefore, in the process of in-
dentifying resource-releasing methods, RRFinder ignores all 
the pure methods.  

B. Method Relation Analysis 

The procedure of method relation analysis analyzes the 
relationships between each method pair (A,B) for a given 
class, trying to determine whether there exists a 
"Cause_Exp" relationship: the execution of method A would 
cause exceptions being thrown from the execution of method 

B when these two methods are invoked in a row. This infor-
mation is used to calculate an important feature "forbid-
denMtdPercent" for model-based prediction as described in 
Section IV-A.  

This procedure starts by computing under what condi-
tions each method would throw exceptions, denoted as et-
Condition. Next, for a method B whose etCondition is com-
puted, this procedure iteratively analyzes the side-effects of 
the other methods in the same class, and produces a 
"Cause_Exp" relationship between (A,B), if the execution of 
method A would cause the satisfaction of etCondition of me-
thod B. The side-effects of each method are computed in 
advance by our flow-sensitive, context-sensitive, inter-
procedural analysis. 
    public void close() throws IOException { 
              if (in == null) 

return; 
              in.close(); 
              in = null; 
    } 
    /** Checks to make sure that the stream has not been closed */ 
    private void ensureOpen() throws IOException { 

if (in == null) 
    throw new IOException("Stream closed"); 

} 
    public int read() throws IOException { 

synchronized (lock) { 
ensureOpen(); 

  ...... 
} 

     } 

Figure 5.  Code snippets of the class java.io.BufferedReader. 

Figure 5 presents an example to illustrate the process. 
The assignment made in method close() satisfies the etCondi-
tion of method ensureOpen(). Therefore, a "Cause_Exp" 
relationship is found between the method pair (close(), ensu-
reOpen()). In addition, via inter-procedural analysis of the 
side-effects for each method, this procedure propagates the 
relationship to read(), which calls ensureOpen(). In total, we 
found that after the close() method is invoked, invocations of 
seven other public methods in the class would throw excep-
tions.  

IV. RESOURCE-RELEASING METHOD IDENTIFICATION 

RRFinder identifies resource-releasing (denoted as RR in 
short) methods via an iterative algorithm interleaving the 
step of model-based prediction with the steps of call-graph-
based propagation and class-hierarchy-based propagation. 
We first describe the core component, the model-based pre-
diction step (Section IV-A), and then present the whole algo-
rithm (Section IV-B). 

A. Resource-Releasing Method Classification Model 

We aim to build a machine-learning-based classification 
model that automatically predicts whether an API method is 
an RR method. For each API method, a number of features 
are considered to build the model (Table I), described in de-
tail below. We chose these features by drawing from our 
own experiences of manually identifying RR methods from 
all the 19,080 public methods in JDK. Because the ultimate 
goal of RRFinder is to assist programmers to write higher-

try (InputStream fis = new FileInputStream(src);
OutputStream fos = new FileOutputStream(desc)){ 
          byte[] buf = new byte[8192]; 
          int i; 
          while ((i = fis.read(buf)) != ‐1) { 
              fos.write(buf, 0, i);  
          } 

} 
catch (Exception e) { 
        e.printStackTrace(); 

} 



quality client code, we consider only methods that can be 
accessed publicly.  

1) Natural Language Information 
We consider the natural language information in method 

names and comments based on the observation that RR me-
thods tend to follow common conventions for method nam-
ing and comment writing. For example, these methods are 
often named with the words like "close" or "dispose", and 
their comments often include phrases such as "release re-
sources" and "garbage collection". This information provides 
an important hint to find RR methods. In our evaluation, we 
collect the list of RR related words (whose full list can be 
found at http://sa.seforge.org/RRFinder/) referring to the 
WordNet [7] dictionary, and the list also includes their syn-
onyms appearing in the names and comments of the RR me-
thods in JDK.  

TABLE I.  FEATURES OF RR METHOD CLASSIFICATION MODEL 

Features Description 
Natural Language Information 
hasReleaseWordsIn-
NameOrComment 

Whether the method name or the method 
comments contain words related to RR. 

hasReleaseWordsIn-
Comment 

Whether the method comments contain words 
related to RR. 

hasNoneReleaseWords-
InName 

Whether the method name contains words 
other than RR words. 

Source Code Information 
Static Structural Information 
implCloseable If the method is declared in a class that im-

plements interface java.io.Closeable, and the 
method is the “public void close()” method, 
this feature is true. 

overrideReleaseM Whether this method overrides a known RR 
method. 

Method Behavioral Information 
releaseStmtPercent Of all the statements in the method, how high 

percentage (%) perform RR actions. 
Method Relationship Information 
forbiddenMtdPercent How high percentage (%) of other public 

impure methods in the class cannot be in-
voked safely (i.e., without throwing excep-
tions) after this method is invoked on the 
same object. 

calledByFinalize Whether this method is called by finalize(). 
callersInClass The number of methods in the same class that 

call this method. 
calleesInClass The number of methods in the same class that 

are called by this method. 

2) Static Structural Information 
RRFinder uses the static information in class hierarchies 

to compute two features. The "implCloseable" feature de-
notes the conformation with Java7 standards [9]. As de-
scribed in Section II-B, the mechanism of Automatic Re-
source Management works for only classes that implement 
the interface java.lang.AutoCloseable, whose corresponding 
interface in older JDK versions is java.io.Closeable, indicat-
ing that this interface is inherently designed for RR functio-
nality. The rationale with the feature "overrideReleaseM" is 
that, if a method overrides an RR method, there is a good 
chance that it still performs RR actions.  

3) Method Behavioral Information 
For each method, RRFinder estimates whether its main 

purpose is to release resources by counting how high percen-

tage of the method's statements perform RR actions, denoted 
as the feature "releaseStmtPercent". When counting the 
statements, it is important that RRFinder ignores trivial 
statements and focuses on critical operations. We calculate 
this feature following Formula (1). To calculate the total 
number of methods’ statements, RRFinder considers only 
NonPrimitiveAssignment statements and Method-Invocation 
statements in a method, because these two types of state-
ments could take the main responsibility for the side-effects 
caused by the method. Other statements such as JUMP 
statements are less related to functional operations and are 
ignored. Two types of statements are considered to perform 
RR actions: NULLAssignment, representing statements that 
assign a NULL value to a variable, and RR-Invocation, 
representing statements that invoke known RR API methods. 
In addition, when counting the total number of Method-
Invocation statements, two types of invocations are regarded 
as noises and excluded. The first type is invocations of pure 
methods, which are filtered using the results of the Purity 
and Side-effect Analysis (Section III-A). The other type is 
auxiliary operations, such as logging operations or data-
structure traversal operations, which are filtered based on a 
predefined list.  
ݐ݊݁ܿݎ݁ܲݐ݉ݐܵ݁ݏ݈ܽ݁݁ݎ ൌ ሺܰݐ݊ݑ݋ܥݐ݉ݐܵ݊݃݅ݏݏܣ݈݈ݑ ൅
ݐ݊ݑ݋ܥݐ݉ݐܵ݊݃݅ݏݏܣݒ݉ܲ݊݋݈ܰܽݐ݋ݐሻ /ሺݐ݊ݑ݋ܥݐ݉ݐܵ݇ݒܫ݁ݏ݈ܴܽ݁݁ ൅
ሻ ݐ݊ݑ݋ܥݐ݉ݐܵ݇ݒܫ݀݋݄ݐ݁ܯ݈ܽݐ݋ݐ

Figure 6.  Code snippets adapted from java.util.logging.StreamHandler. 

To enhance RRFinder and make it adaptive, the calcula-
tion of this feature would involve inter-procedural tracking at 
certain circumstances. Inter-procedural tracking works espe-
cially when a method A performs RR actions indirectly by 
calling a method B, which nevertheless would not be recog-
nized as an RR method due to factors such as being a private 
method. In such cases, without tracking into method B, 
RRFinder would fail to identify the RR actions performed by 
method A. For example, as shown in Figure 6, the RR me-
thod close() calls only one method flushAndClose(), which in 
fact performs RR operations, but would never be identified as 
an RR method since it is a private method. To deal with this 
situation, RRFinder tracks into flushAndClose() and updates 
"releaseStmtPercent" for close() from 0 to 3/4. To avoid ex-
plosion, RRFinder tracks into a called method only when its 
method name contains releasing-related words, and updates 
"releaseStmtPercent" of the caller method only when its val-
ue can be increased. 

By computing this feature, RRFinder could estimate the 
main functionality of a method. This strategy enables the 
exclusion of non-RR methods that involve RR-Invocations. 
For the method in Figure 1, the "releaseStmtPercent" is only 
5.7% (many statements are omitted in Figure 1), too low to 
enable the method to be identified as an RR method. 

private synchronized void flushAndClose() { 
       writer.flush(); 
       writer.close(); 
       writer = null; 
       output = null; 
} 
public synchronized void close() { 

flushAndClose(); 
}



This feature acts as the critical bond connecting the step 
of model-based prediction with the step of the call-graph-
based propagation (described later in Section IV-B). Thanks 
to this feature, identification of higher-level RR methods 
could benefit from the identification of lower-level ones.  

4) Method Relationship Information 
RRFinder also exploits the relationships between me-

thods in a class to identify RR methods. RRFinder includes 
the feature "forbiddenMtdPercent" based on the following 
observation: after the invocation of an RR method, invoca-
tions of all other public methods that mutate the object’s 
state (i.e., impure methods) are usually forbidden on the 
same object; otherwise, exceptions would be thrown. For 
example, after the RR method "close()" is called on an object 
of "java.io.BufferedReader", all the seven other public im-
pure methods cannot be invoked on the same object safely 
(i.e., without throwing exceptions). To compute the feature, 
given a method A from class C, RRFinder identifies public 
impure methods (of class C) that cannot be safely invoked 
after the execution of method A, based on the results of the 
Method Relation Analysis (Section III-B) and Purity Analy-
sis (Section III-A). Suppose that RRFinder recognizes that m 
other public impure methods of class B could not be invoked 
afterwards, and class B includes totally n other public impure 
methods, then this feature is calculated as m/n. 

The rationale with the feature "calledByFinalize" is that, 
in Java, the finalize() method is automatically invoked in the 
process of garbage collection, and this method should per-
form only RR actions [8]. For a method, RRFinder also ex-
ploits the number of caller methods and callee methods of 
this method in the same class, based on the observation that, 
in most cases, RR methods have very few interactions with 
the other methods in the same class. 

 

In our evaluation, we manually prepared the training set 
using all the 19,080 public methods in JDK, and adopted the 
decision-tree classification algorithm [10] to build the model 
(details of the evaluation process are discussed in Section 
VI). After the model is built, for each API method under 
consideration, RRFinder first computes all its preceding fea-
tures, and then applies the model to predict whether this me-
thod is an RR method. 

B. Propagation 

In this section, we present the iterative algorithm of RR 
method identification, as shown in Figure 7. The algorithm 
takes as input a list of API methods under consideration, and 
identifies the RR methods among them.  

This algorithm maintains two key data structures: relea-
seMs is a set of all identified RR methods, and newFoundRe-
leaseMs is a first-in-first-out queue of newly detected RR 
methods, from which propagations would be started. In addi-
tion, releaseMs also serves as a guard condition to avoid 
redundant propagations (Lines 14 and 20). 

The algorithm is mainly composed of three phases. In-
itially, the algorithm iteratively computes the features for 
each API method and uses the pre-built classification model 
to predict whether it is an RR method (Lines 3-7). Next, for 
each newly detected RR method, a call-graph-based propaga-

tion (Lines 10-16) and a class-hierarchy-based propagation 
(Lines 17-22) are started.  

Figure 7.  Algorithm of RR method identification. 

Via call-graph-based propagation, identification of high-
er-level RR methods could benefit from identification of 
lower-level ones. When a new RR method is detected, the 
value of feature "releaseStmtPercent" for all its caller me-
thods is increased. Therefore, RRFinder performs such prop-
agations by re-computing "releaseStmtPercent" (Line 11) for 
each caller method, and performs the prediction step again to 
see whether the caller method could be identified as an RR 
method (Line 12). This process is more effective if a list of 
known RR API methods (which the API library under analy-
sis calls) is provided. For example, the method AbstractPoo-
ledConnAdapter.close() in library httpClient1 calls the me-
thod HttpConnection.close() in library httpCore2 (both are 
actually RR methods); due to the latter method being an RR 
method, the value of "releaseStmtPercent" is increased for 
the former method, and the former method’s chance of being 
identified as an RR method is also increased. Normally, to 
find RR methods for any third-party API libraries, we pro-
vide the algorithm with the list of all the known RR methods 
in JDK. 

Via class-hierarchy-based propagation, RRFinder identi-
fies abstract RR methods, which are important in object-
oriented languages such as Java, where dynamic bindings are 
popularly used. To make such propagation, for each method, 
our algorithm counts the number of methods that override 
this method, denoted as "ChildCount", and also the number 
of RR methods among these methods, denoted as "relea-
seChildCount". Our algorithm considers a method to be an 
RR method if its releaseChildCount/ChildCount is higher 

Algorithm identifyResourceReleasingMethods 
Input unKwnMs a list of unknown API methods 
Output releaseMs a list of resource-releasing API methods 
Begin 
1.     releaseMs←Ø;  
2.     newFoundReleaseMs←Ø; 
3.     foreach m in unKwnMs do 
4.        label←classifyMethod(m); 
5.        if label is "resource-releasing" then 
6.           add m to the end of newFoundReleaseMs; 
7.           add m to releaseMs; 
8.     while newFoundReleaseMs is not empty do 
9.         remove the head method releaseM of newFoundReleaseMs;     
10.       foreach caller methods callerM of releaseM do 
11.          recompute feature "releaseStmtPercent"; 
12.          label←classifyMethod(callerM); 
13.             if label is "resource-releasing" then 
14.                 if callerM not in releaseMs then 
15.                     add callerM to the end of newFoundReleaseMs; 
16.                     add callerM to releaseMs; 
17.       foreach overriden methods parentM of releaseM do 
18.             update the releaseChildCount of parentM; 
19.             if its releaseChildCount/ChildCount > inheritThresh then 
20.                 if parentM not in releaseMs then 
21.                     add  parentM to the end of newFoundReleaseMs; 
22.                     add  parentM to releaseMs; 
End 

1 httpClient: http://hc.apache.org/httpcomponents-client-ga/. 
2 httpCore: http://hc.apache.org/httpcomponents-core-ga/index.html.



than a predefined threshold inheritThresh1. Therefore, each 
time a new RR method is found, the number of "relea-
seChildCount" for each overridden method is increased, and 
then our algorithm checks whether this update produces a 
new RR method (Lines 17-22). The rationale with such prop-
agation is that the common functionality of the overriding 
methods usually reflects the functionality of their commonly 
overridden methods.  

V. RESOURCE-ACQUIRING METHOD IDENTIFICATION 

Both resource-releasing and resource-acquiring methods 
are needed to form specifications in the form of (resource-
acquiring, resource-releasing) API method pairs. For each 
identified RR method, RRFinder next searches in its belong-
ing class for the corresponding resource-acquiring (denoted 
as RA in short) method, which acquires the resources that are 
released in the RR method.  

To find the corresponding RA method, RRFinder starts by 
considering the two types of RR statements in the RR method. 
For each NULLAssignment statement, RRFinder searches in 
the same class for the method that makes non-NULL assign-
ment to the corresponding variable. For each RR-Invocation 
statement, RRFinder searches in the same class for the me-
thod that invokes the corresponding known RA method. (The 
definitions of these two types of RR statements are in Section 
IV-A-3.) Figure 8 presents an example, for which the known 
RR specification is (new DatagramSocket(), Datagram-
Socket.close()). RRFinder first identifies SyslogWriter.close() 
as an RR method, which contains one RR-Invocation state-
ment. RRFinder then identifies the constructor to be the RA 
method by searching for the method that invokes the known 
RA method new DatagramSocket().  

public SyslogWriter(final String syslogHost){ 
  ....... 
  ds = new DatagramSocket(); 
  ....... 

} 
public void close() { 

            ds.close(); 
} 

Figure 8.  Code snippets of the class org.apache.log4j.helpers. 
SyslogWriter. 

public ThreadSafeClientConnManager(HttpParams params, 
                                       SchemeRegistry schreg) { 
              ...... 

                 this.pool=(ConnPoolByRoute)createConnectionPool(params); 
              ...... 
} 
protected  AbstractConnPool  createConnectionPool(final  HttpPa‐

rams params) { 
        return new ConnPoolByRoute(connOperator, params); 
} 
public void shutdown() { 
        pool.shutdown(); 
} 

Figure 9.  Code snippets of org.apache.http.impl.conn.tsccm. 
ThreadSafeClientConnManager. 

Because the RA method must also be a method that could 
be accessed publicly, a call-graph-based backward tracking 
(from callees to callers) is sometimes needed. Figure 9 shows 

an example where the known RR specification is (new Con-
nPoolByRoute(), ConnPoolByRoute.shutdown()). RRFinder 
first detects the method createConnectionPool(),  which in-
vokes the known RA method, and then identifies the public 
constructor to be the target RA method, which invokes crea-
teConnectionPool(). 

 

Via backward tracking, the identified RA method may not 
necessarily reside in the same class with the RR method (the 
average percentage is 29.2% for the eight libraries in our 
evaluation.). For example, the identified RR method for class 
org.hibernate.impl.StatelessSessionImpl is close(), and the 
only method in the class that acquires the corresponding re-
sources is the constructor but with a package accessibility 
(i.e., only accessible to methods or classes within the same 
package). The actual target RA method is SessionFacto-
ryImpl.openStatelessSession(), which is a public method 
invoking the constructor of StatelessSessionImpl. 

In addition, there are cases when several RA methods are 
identified for one RR method. In such situation, various re-
sources are acquired in different methods in the class, and the 
RR method performs clean-up for all the resources that may 
be acquired by the methods in the class.  

Finally, if there are no NULLAssignment or recognized 
RR-Invocation statements in the RR method, RRFinder as-
sumes the public constructor of the class to be the RA method. 
(In our evaluation, constructors account for 77.3% of all the 
correctly identified RA methods.) A call-graph-based track-
ing may also be needed in case there are no public construc-
tors available. In particular, if the corresponding RR method 
resides in an interface, a class-hierarchy-based propagation is 
also required to find the public RA method. Details of these 
techniques are omitted here due to the space limit. 

VI. EVALUATION 

We implemented a prototype tool for RRFinder and con-
ducted an evaluation using it. To build the RR method classi-
fication model, we manually built the training set using 
19,080 non-empty public methods in JDK in two weeks. We 
then applied RRFinder to mine specifications for eight open 
source libraries, detailed in Table II. In particular, column 
"#C" lists the number of classes, and column "#PM" lists the 
number of public methods exposed by the library. We se-
lected these libraries because they are known to involve sub-
stantial manipulations of resources, such as external files, 
database, and network connections. To evaluate the effec-
tiveness of RRFinder, we prepared a golden standard for 
each selected library. We invited four researchers from the 
Institute of Software at Peking University to manually identi-
fy RR specifications for the libraries. Initially, each library 
was examined by two researchers, and then, any disagree-
ments between the two were inspected by a third researcher. 
We allocated the tasks based on the workload and also their 
familiarity with the subject libraries. Our evaluation was 
conducted on a 2.6GHz dual core machine. All the manually 
identified specifications for the eight libraries are available at 
http://sa.seforge.org/RRFinder/. 

Our evaluation addresses the following research ques-
tions, which are organized in a top-down manner. RQ1: 
Could RRFinder mine specifications effectively? RQ2: 1 The threshold inheritThresh was set to 0.3 in our evaluation. 



Could RRFinder identify RR methods effectively? RQ3: 
How useful are the selected features (in Section IV-A) in 
predicting RR methods? RQ4: How much could RRFinder 
benefit from the propagations? RQ5: Are the mined specifi-
cations useful in defect detection? We do not discuss in de-
tail the evaluation results of RRFinder in RA method identi-
fication, due to the space limit and its relatively good per-
formance (as shown in Table III). 

TABLE II.  SUBJECT PROJECTS AND THEIR CHARACTERISTICS. 

Library Version #C #PM Description 
Cayenne 3.0.1 1361 7152 object relational database 
Hibernate 3.6.0 2678 17651 Java persistent framework 
HttpClient 4.1.1 272 1177 HTTP client-side components 
HttpCore 4.1 311 1655 HTTP transport components 
Log4J 1.2.16 308 1633 logging framework 
PDFBox 1.5.0 504 3823 Java PDF library 
Xalan 2.7.1 1130 7865 XSLT processor 
Xerces 2.11.0 768 5729 XML parser 

A. RQ1:Effectiveness of Specification Extraction 

We applied RRFinder to extract specifications for the 
eight open source libraries, and the results are shown in Ta-
ble III. For the overall results (columns "Time" to "F"), col-
umn "Time" lists the time spent on each library in minutes; 
column "#T" lists the number of manually identified RR spe-
cifications; columns "P", "R", "F" give respectively the pre-
cision, recall, and F-Score of RRFinder. For the results of RR 
method identification (columns "#CAuto" to "RR"), column 
"#CAuto" lists the number of correctly identified methods by 
RRFinder; column "#Auto" lists the number of automatically 
identified methods by RRFinder; column "#Man" lists the 
number of manually classified methods; columns "PR" and 
"RR" list the precision and recall of RR method identification. 
For the results of RA method identification (the last two col-
umns), columns "PA" and "RA" list respectively its precision 
and recall. In particular, to separate the impact of the RR 
method identification, the calculation of the precision/recall 
of RA method identification is confined to those RA methods 
whose corresponding RR methods are correctly identified by 
RRFinder. 

From the results in Table III, we have the following ob-
servations. First, RRFinder achieves relatively high preci-
sions, recalls, and F-scores on these libraries, with an aver-
age precision of 86.6% and recall of 94.0%. In particular, the 
low precisions for libraries PDFBox and Xalan are mainly 
caused by their corresponding low precisions of RR method 
identification, which we explain later in Section VI-B. 
Second, the time used to mine specifications is acceptable. 

Moreover, the time spent on each library is largely propor-
tional to the size (considering the number of classes and me-
thods) of the library, indicating that RRFinder is scalable. 
Third, compared with RR method identification, the RA me-
thod identification demonstrates a much better performance 
with an average precision of 95.9% and recall of 97.9%, in-
dicating that the effectiveness of RR method identification is 
the critical factor in determining the overall performance of 
RRFinder. Finally, by comparing column "#T" with column 
"#Man", we found that there are 89 more RR specifications 
than RR methods, indicating that many RR methods (an per-
centage of 31.3%) have more than one corresponding RA 
method. 

B. RQ2:Effectiveness of RR Method Identification 

We next explain the results of RR method identification 
shown in columns "#CAuto" to "RR" in Table III. In general, 
RRFinder identified 93.1% of the RR methods with the aver-
age precision 88.2%. The results indicate that, to identify RR 
methods for a library, RRFinder does not require the classifi-
cation model to be trained using methods in the same library. 
Therefore, users of our approach could rely on a universally 
built model to identify RR methods.  

In particular, the reason for the low precision of library 
PDFBox is that all the 13 wrongly identified RR methods are 
manually classified by us as resource-releasing-utility me-
thods. Figure 10 shows an example method. This method 
looks much like an RR method, except that the releasing ac-
tions are conducted on the passed-in parameters. In contrast, 
in this paper, we focus on identifying resource-releasing me-
thods that should be invoked when the tasks of their belong-
ing classes are completed, and these methods perform releas-
ing actions for their belonging classes. These resource-
releasing-utility methods can be easily filtered by checking 
whether the RR-Invocation statements are conducted on the 
parameters. Similarly, among the wrongly identified methods, 
two of library Xalan and one of library Hibernate are all re-
source-releasing-utility methods. The other wrongly identi-
fied method of library Xalan is shown in Figure 11. This 
method is undoubtedly an RR method; however, as shown in 
the method comments, this method is automatically called 
and should not be invoked by client programs.  

Figure 12 presents two RR methods that were not identi-
fied by RRFinder. The two methods demonstrate one chal-
lenge of RR method identification: some RR methods do not 
perform resource-releasing actions directly; instead, they fire 
certain events and send out signals, and the actual resource-
releasing actions are accomplished via the cooperation of 

Library Overall Results RR Idtf. RA Idtf. 
Time (m) #T P(%) R(%) F(%) #CAuto #Auto #Man PR(%) RR(%) PA(%) RA(%) 

Cayenne 97.9 25 95.5 95.5 95.5 16 16 17 100.0 94.1 100.0 100.0
Hibernate 139.6 47 85.0 89.5 87.2 36 38 38 94.7 94.7 89.5 94.4
HttpClient 6.2 13 100.0 80.0 88.9 8 8 10 100.0 80.0 100.0 100.0
HttpCore 5.3 47 100.0 84.4 91.5 27 27 32 100.0 84.4 100.0 100.0
Log4J 5.9 22 100.0 95.2 97.5 19 19 19 100.0 100.0 100.0 95.2
PDFBox 13.8 22 40.7 100.0 57.9 11 24 11 45.8 100.0 84.6 100.0
Xalan 70.6 17 57.1 100.0 72.7 4 7 4 57.1 100.0 100.0 100.0
Xerces 28.1 40 86.7 100.0 92.9 13 13 13 100.0 100.0 100.0 100.0
Total 367.4 233 86.6 94.0 90.1 134 152 144 88.2 93.1 95.9 97.9

TABLE III.  RESULTS OF RESOURCE-RELEASING SPECIFICATION IDENTIFICATION. 



several different classes. We plan to address this challenge in 
future work. 
// Close the document. 

    public void close( FDFDocument doc ) throws IOException 
    { 
        if( doc != null ) 
        { 
            doc.close(); 
        } 
} 

Figure 10.    Code snippet of class org.apache.pdfbox.ImportFDF. 

/* Automatically called when the HTML page containing the applet is 
no longer on the screen. Stops execution of the applet thread. */ 

  public void stop() 
  { 
        if (null != m_trustedWorker){ 
             m_trustedWorker.stop(); 

      m_trustedWorker = null; 
        } 
        m_styleURLOfCached = null; 
        m_documentURLOfCached = null; 
  } 

Figure 11.  Code snippet of class org.apache.xalan.client. 
XSLTProcessorApplet. 

Figure 12.  Code snippets with the left one from class org.apache.http. 
nio.util.SharedInputBuffer, and the right one from class org.apache. 

cayenne.event.EventManager. 

C. RQ3: RR Method Classification Model 

We manually built the training set using all the 19,080 
non-empty public methods in JDK. We adopted the decision-
tree classification algorithm [10] to build the model. In this 
algorithm, rules are organized as tree structures, where 
leaves represent classification results, and branches leading 
from the root to the leaves represent the conjunctions of the 
conditions of features leading to the classification results. We 
chose this algorithm because the classification model can be 
explicitly visualized, enabling us to evaluate the value of 
each feature and also the soundness of the training set. We 
present the built decision-tree model1 in Figure 13. For sim-
plicity, only branches leading to positive classifications (of 
an RR method) are shown. Five manners of the conjunctions 
of the feature conditions could lead to the prediction of an 
RR method (the corresponding leaves are in bold). For ex-
ample, a method is classified as an RR method when (1) it 
does not override an RR method, (2) its method name con-
tains only releasing-related words, and (3) its "relea-
seStmtPercent" is higher than 0.377967. 

The model in Figure 13 justifies our intentions of choos-
ing these features and it shows the predictive power of each 

feature quantitatively. Intuitively, the shorter the path leading 
from the root to the leave, and the closer the feature condi-
tion gets to the leave, the stronger the predictive power of the 
feature is. Therefore, feature "releaseStmtPercent" demon-
strates the strongest predictive power. In particular, when 
calculating the features "callersInClass" and "calleesIn-
Class" in Table I, we calculated both the number, denoted as 
"callers/calleesInClassCount", and the percentage, denoted 
as "callers/calleesInClassPercent" for a better prediction 
performance. However, the feature "calleesInClassCount" 
was dropped due to its relatively low predictive power, indi-
cating that the RR methods may sometimes invoke other 
methods in the same class, but normally would not be in-
voked by the other methods in the same class. Through our 
manual inspection, we found that the RR methods are called 
only either by the finalize() method in the same class, or 
when unexpected behavior occurs during the operation in the 
other methods, which are forced to terminate and need im-
mediate clean-up. In addition, the feature "hasReleaseWord-
sInComment" is also dropped. Although the comments for 
RR methods usually involve phrases such as "release re-
source" or "allow garbage collection", the comments are 
missing at certain occasions, partially due to the developers’ 
assumption that they have already expressed their intention 
using the method names.  

Figure 13.  The decision-tree classification model. 

 

Figure 14.  Distributions of the correctly identified RR methods. 
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public void shutdown() { 
        if (shutdown) { 
               return; 
        } 
       shutdown = true; 
       lock.lock(); 

try { 
               condition.signalAll(); 
       } finally { 
               lock.unlock(); 
       } 
} 

//  Stops  event  threads.  After  the
EventManager  is  stopped,  it  can not
be  restarted  and  should  be  dis‐
carded. 
public void shutdown() { 
        stopped = true; 
        for  (DispatchThread  thread  :
dispatchThreads) { 
            thread.interrupt(); 
         } 
 } 

1 This model was trained with precision of 93.8%, recall of 85.4%, and F-
Score of 92.8%. 

overrideReleaseM = yes
|   hasReleaseWordsInNameOrComment = yes 
|   |   hasNoneReleaseWordsInName = no 
|   |   |   callersInClassCount <= 2.5 
|   |   |   |   callersInClassPercent <= 0.202041 
|   |   |   |   |   calleesInClassPercent <= 0.188345: yes 
overrideReleaseM = no 
|   hasNoneReleaseWordsInName = no 
|   |   releaseStmtPercent <=  0.377976 
|   |   |   implCloseable = yes: yes 
|   |   |   implCloseable = no 
|   |   |   |   calledByFinalize = yes: yes  
|   |   |   |   calledByFinalize = no 
|   |   |   |   |   forbiddenMtdPercent > 0.33333 
|   |   |   |   |   |   hasReleaseWordsInNameOrComment = yes 
|   |   |   |   |   |   |   callersInClassPercent <= 0.052983 
|   |   |   |   |   |   |   |   callersInClassCount <= 2.5 
|   |   |   |   |   |   |   |   |   calleesInClassPercent <= 0.101282: yes 
|   |   releaseStmtPercent >  0.377976: yes 



D. RQ4: Benefits of Propagations 

To discover the benefits of the propagations, we investi-
gated the distribution of the correctly identified RR methods 
considering the way that they are identified, shown in Figure 
14. Of all the correctly identified RR methods, 17.3% are 
identified via call-graph-based propagation and 18.0% via 
class-hierarchy-based propagation. The results show that the 
propagations enable RRFinder to identify more RR methods. 

E. RQ5:Usefulness of the Mined Specifications 

Finally, to evaluate the usefulness of the mined specifica-
tions, we used these specifications to detect defects in open 
source projects. Figure 15 shows a confirmed defect con-
cerning the specification (SessionFactory.openSession(), 
Session.close()). The left-hand-side code snippet shows the 
found defect: when the method invocation synsDAO.get() 
throws exceptions, the session created in newSession() will 
be left unclosed. The right-hand-side code snippet shows 
how the defect is fixed. More examples of the detected de-
fects are not shown due to the space limit.  

VII. CONCLUSION 

We have proposed an approach, RRFinder, to automati-
cally mining RR specifications for API libraries. RRFinder 
first identifies RR API methods, and then searches for the 
corresponding RA API methods. To identify RR API me-
thods, RRFinder iteratively produces rich and precise results 
by interleaving the step of model-based prediction with the 
steps of call-graph-based and class-hierarchy-based propaga-
tions. Evaluation results on eight open source libraries show 
that our approach performed effectively and the mined speci-
fications are useful in detecting resource leak defects. 
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Figure 15.  A confirmed defect in Mesh4j. 


