
Targeting Requirements Violations of Autonomous
Driving Systems by Dynamic Evolutionary Search

Yixing Luo∗†, Xiao-Yi Zhang‡, Paolo Arcaini‡, Zhi Jin∗†, Haiyan Zhao∗†,
Fuyuki Ishikawa‡, Rongxin Wu§, Tao Xie∗†

∗Key Lab. of High-Confidence Software Technologies (Peking University), Ministry of Education, Beijing, China
†Department of Computer Science and Technology, School of EECS, Peking University, Beijing, China

‡National Institute of Informatics, Tokyo, Japan
§School of Informatics, Xiamen University, Xiamen, China

Email: {yixingluo, zhijin, zhhy.sei, taoxie}@pku.edu.cn {xiaoyi, arcaini, f-ishikawa}@nii.ac.jp
wurongxin@xmu.edu.cn

Abstract—Autonomous Driving Systems (ADSs) are complex
systems that must satisfy multiple requirements such as safety,
compliance to traffic rules, and comfortableness. However, sat-
isfying all these requirements may not always be possible due
to emerging environmental conditions. Therefore, the ADSs may
have to make trade-offs among multiple requirements during
the ongoing operation, resulting in one or more requirements
violations. For ADS engineers, it is highly important to know
which combinations of requirements violations may occur, as
different combinations can expose different types of failures.
However, there is currently no testing approach that can gen-
erate scenarios to expose different combinations of requirements
violations. To address this issue, in this paper, we introduce the
notion of requirements violation pattern to characterize a specific
combination of requirements violations. Based on this notion, we
propose a testing approach named EMOOD that can effectively
generate test scenarios to expose as many requirements violation
patterns as possible. EMOOD uses a prioritization technique to
sort all possible patterns to search for, from the most to the least
critical ones. Then, EMOOD iteratively includes an evolutionary
many-objective optimization algorithm to find different combi-
nations of requirements violations. In each iteration, the targeted
pattern is determined by a dynamic prioritization technique to
give preferences to those patterns with higher criticality and
higher likelihood to occur. We apply EMOOD to an industrial ADS
under two common traffic situations. Evaluation results show that
EMOOD outperforms three baseline approaches in generating test
scenarios by discovering more requirements violation patterns.

Index Terms—Many-Objective Optimization, Autonomous
Driving Systems, Requirements-Based Testing

I. INTRODUCTION

Autonomous Driving Systems (ADSs) are making revolu-
tionary changes in the domain of transportation. As ADSs
are complex and safety-critical systems, their testing is vital
for their wide acceptance [1]. Although on-road testing of

This work is supported in part by the National Natural Science Foundation
of China under Grant NO. 61620106007 and 61751210. Zhi Jin is the
corresponding author. X. Zhang, P. Arcaini, and F. Ishikawa are supported
by ERATO HASUO Metamathematics for Systems Design Project (No.
JPMJER1603), JST, and MIRAI Engineerable AI Project (No. JPMJMI20B8),
JST. We thank our industry partner Mazda for providing the software used
in our work and discussing principles in testing and improving complex real-
world automotive systems. The provided software is a prototype constructed
for the purpose of evaluating new testing techniques, and its quality has no
relation with the quality of Mazda products.

autonomous vehicles is necessary and widely used in industrial
ADSs such as Waymo [2] and Voyage.auto [3], existing
studies [4], [5] have shown that billions of miles provide
only limited assurance, since such time-consuming and costly
testing approach would still miss dangerous and rare situations
in the real world.

One-road testing for the ADS under test can be augmented
by existing approaches [6]–[18] of virtual testing in computer
simulations [18], [19] (in short as simulation-based testing),
e.g., generating critical test scenarios in which the autonomous
vehicle under test fails (e.g., the vehicle collides with ob-
stacles). Considering that the test scenario space is complex
and multidimensional, evolutionary search techniques [6]–[14]
are applied to explore this test scenario space. In particular,
these evolutionary search techniques aim to identify critical
test scenarios that indicate complex driving conditions under
which the ADS’ behaviors violate specific requirements, e.g.,
safety [6], [7], [10] and compliance to traffic regulations such
as lane keeping [9] and adhering to traffic light [8].

However, these existing simulation-based testing approaches
do not consider combinations of requirements violations,
which are highly important for two main reasons. First,
satisfying all the requirements may not be possible for an
ADS in practice, as unexpected events may happen in highly
open and dynamic environments, e.g., intrusion of a hidden
traffic participant or weather disturbances [20]. In response
to these unexpected events, the control software of the ADS
has to make trade-offs among requirements, likely resulting
in one or more requirements being violated. Second, different
combinations of requirements violations can expose different
types of failures. For example, the type of failure in which
the autonomous vehicle collides while running a red light
is different from the one in which the autonomous vehicle
collides while violating the lane keeping, as the different
combinations of requirements violations may provide different
insights about the cause of the collisions.

Generating scenarios that expose different combinations of
requirements violations is a challenging problem. One idea
is to enumerate all possible combinations of requirements
violations as the objective functions in the evolutionary search,

in order to identify critical test scenarios that expose dif-
ferent combinations of requirements violations. However, as
the number of the requirements increases, the number of
combinations of requirements violations grows exponentially;
thus, testing all of them could be impossible under limited
time and resources.

To address the preceding challenge, our work is based on
an insight consisting of two aspects. First, the search should
first focus on combinations of requirements violations with
higher criticality, i.e., including more violated requirements
with higher importance, as these combinations may lead to
more serious accidents for the ADS under test. Second, some
combinations of requirements violations are impossible to
occur for the ADS in reality, and the search should not focus
on them, in order to avoid wasting the search time.

Based on our insight, in this paper, we propose EMOOD,
a search-based testing approach to generating diverse test
scenarios that effectively expose different combinations of
requirements violations in the ADS testing. Similar to existing
work [6], [7], [10], we cast the problem of exposing different
combinations of requirements violations into a search-based
test-scenario generation problem. For EMOOD, we introduce
the notion of requirements violation pattern (also referred to
as pattern in the rest of the paper), i.e., a specific combination
of requirements violations that the ADS under test can exhibit
as the objective functions to search for. The notion of re-
quirements violation pattern facilitates the determination of the
ADS behaviors’ violations of requirements. EMOOD conducts
a type of dynamic evolutionary search, i.e., Evolutionary
Many-Objective Optimization (EMOO), whose objectives are
determined by Dynamic Prioritization (DP) that prioritizes the
patterns in terms of criticality and likelihood to occur.

In particular, EMOOD starts with the initial ranking (of
all the patterns) built statically based on the criticality of
each requirement, and iteratively runs the heuristic dynamic
prioritization algorithm (DP) to adjust the ranking additionally
based on the dynamically estimated likelihood of occurrence
of patterns: the more similar an unexposed violation pattern
with exposed patterns is, the more likely the pattern can occur.

This paper makes the following main contributions:

• The notion of requirements violation pattern for character-
izing different combinations of requirements violations.
• An effective approach for generating test scenarios to

expose diverse requirements violation patterns, namely,
EMOOD, which iteratively applies Evolutionary Many-
Objective Optimization (EMOO) whose objective functions
are selected by dynamic prioritization (DP).
• An initial prioritization technique (IP) for ranking patterns

based on their criticality, i.e., the importance and number
of violated requirements included in a pattern.
• A heuristic technique in DP for prioritizing patterns to

dynamically rank them based on their criticality and like-
lihood of occurrence.
• Evaluation results for showing that EMOOD can discover

diverse patterns with higher criticality, and given the same

testing budget, it is more effective than baseline approaches
that do not prioritize the patterns during the search.

II. MOTIVATION

Fig. 1(a) shows the decision process of an autonomous
driving system (ADS), as reported in previous work [4]: the
ADS is operating in a complex environment (including traffic
participants). The autonomous vehicle running the ADS is
called ego vehicle. The environment is perceived by sensors
(e.g., camera, Lidar, and radar for object detection and local-
ization). The ADS requirements are determined by different
stakeholders, such as the passengers (e.g., comfortableness)
and the authorities (e.g., safety standards [21]). Then, the ADS
makes optimal decisions based on the observed situation and
controls the vehicle through actuators, e.g., accelerating and
direction changing. Both sensor inputs and actuator outputs are
sequences of timestamped values. The ADS runs iteratively at
regular time steps. At every time step, the ADS decides the
optimal trajectory to be followed by minimizing cost functions
related to different requirements to achieve (requirements
violations are penalized in the cost function). In such a process,
the ADS needs to make trade-offs among the requirements.
The final output is the trajectory with the least overall cost
(the red line in Fig. 1(b)).

As a case study, we use an ADS with an optimization-
based path planner (provided by our industry partner) called
ADSP P , which repeatedly uses a weighted cost function
that considers various requirements to select the least costly
path. ADSP P can run in a simulator, as shown in Fig. 1(b).
Besides the navigation mission, i.e., moving from an initial
position to the destination, ADSP P considers four categories
of requirements during the planning process as follows:
• Stability (R1): the ADS should assure the stable control

and avoid dangerous actions for the vehicle [22]. R1:1: the
ADS should avoid impossible steering angles.

• Safety (R2): the ADS should avoid collision with moving
or static objects along the path [22]. R2:1: the ADS should
keep a safe distance from other objects.

• Compliance (R3): the ADS should respect the traffic
regulations enforced by law in a geographical area [22].
R3:1: the velocity of the vehicle should be less than the
speed limit; R3:2: the vehicle should not run the red light;
R3:3: the vehicle should stay in the correct lane.

• Comfortableness (R4): the planned trajectory should be
comfortable for the passenger [23]. R4:1: the vehicle’s
velocity should not change too much; R4:2: the vehicle’s
acceleration should not change too much.

During the operation, ADSP P is required to respond to the
uncertain and dynamic environment, and adjust the trajectory
for the ego vehicle to follow. For example, Fig. 1(b) shows a
type of scenario in which the ego vehicle plans to turn right
into lane-1 at the intersection, while vehicle-a is crossing the
intersection from left to right. However, there are different
versions of this scenario that can lead to different behaviors
of ADSP P , and different satisfaction/violation of the require-
ments; we here consider two examples, i.e., Scenario-A and

(a) ADS decision process (adapted from [4])(b) ADS at the intersection

Fig. 1: Overview of an autonomous driving system (ADS)

Scenario-B. In Scenario-A, vehicle-aproceeds at high speed,
and theego vehicleorders an emergency braking to bring
the vehicle to a halt; however, theego vehiclecannot stop in
time and collides withvehicle-a(i.e., violation of requirement
R2). In Scenario-B, instead, thevehicle-aproceeds slightly
slower than inScenario-A, and, in this case, theego vehicle
accelerates and tries to cut into the lane beforevehicle-a. This
action plan requires a higher speed from theego vehicle, to the
point to exceed the speed limit; still, theego vehiclecannot
cut into the lane quickly enough, and collides withvehicle-
a (i.e., it violates bothR2 andR3). Although theego vehicle
collides in both scenarios,Scenario-Bmay be more interesting
for debugging, because the occurrence of collision could be
related to the violation of the speed limit requirement, which
can provide a different insight about the cause of the collision.
For example, if theego vehicledecelerates to wait forvehicle-
a to pass, the collision may not happen inScenario-B.

Testing how ADS P P handles the requirements requires
�nding critical scenarios in which one or more requirements
are violated; such type of testing is particularly challenging.
Furthermore, with the increase of the number of requirements,
there could be different requirements violation combinations.
We need approaches that can (1) �nd critical test scenarios
for ADS P P in which one or more requirements are violated;
(2) expose all possible combinations of requirements viola-
tions for ADS P P , if these combinations can occur in reality.

III. F ORMALIZATION AND PROBLEM STATEMENT

We here formalize an ADS and its environment by consid-
ering the input and con�guration variables ofADS P P .

A. Autonomous Driving System

At any time instantk, the state of an object is a tuple of three
elements, i.e.,sk = (pk ; vk ; ak). The vectorpk = (x; y) is the
geometric center of the position of the object, whilevk andak

are its velocity and acceleration. The state of the ego vehicle
is se

k . We de�ne O as the set of objects interacting with the
ego vehicle, e.g., pedestrians, other vehicles; their state can be
described asso

k ; with o 2 O . The trajectory of the ego vehicle
is a sequence of the vehicle's statesT = [se

0; : : : ; se
T], where

the time interval between two consecutive states is �xed as� ,
andT is the simulation time duration.

The ego vehicle continuously interacts with the dynamic and
uncertain environments, and the ADS generates the trajectory

Fig. 2: Requirements violation evaluation functions

for the ego vehicle to follow. A scenarioSce describes the
environment in which the ego vehicle is operating, including
(i) a map of the road structure; (ii) information of traf�c
regulations (e.g., location of traf�c lights); (iii) dynamic be-
haviors of objects ([so

0; : : : ; so
T]; o 2 O); (iv) initial state of the

ego vehiclese
0; (v) target destination for the ego vehiclepd;

(vi) duration of the simulationT. We assume that the driving
model of other vehicles is �xed and described by standard
kinematic equations.

The system under test is the ADS of the ego vehicle. For
simplicity, we view it as a function that, given a scenarioSce,
produces the trajectory of the ego vehicle, i.e.,T = ADS(Sce).

B. Requirements Violation Evaluation

It is challenging to verify the absolute violation/satisfaction
(false/true) of requirements directly from the behaviors of the
ADS operating in complex and changing environments [24].
In previous work [9], [10], various quanti�able metrics are
provided to indicate the dangerous behaviors of the ADS.
However, the previous work does not show how these metrics
re�ect requirements violation/satisfaction results.

To �ll this gap, we provide a systematic way to design
the quanti�able metrics (QMs) for requirements and their
mapping functions to the requirements evaluation results.
Given a requirements setR = f R1; : : : ; Rn g for the ADS
to consider during the decision process, we introduceXi as
the QM for each requirementRi . Xi is de�ned as a function of
the trajectory of the ego vehicle and the running scenario, i.e.,
Xi = hi (T ; Sce). To evaluate the violation of requirementRi ,
we compareXi with thethresholdgi speci�ed in the de�nition
of Ri ; in this way, we get the evaluation resultyi = f (Xi ; Ri),
ranging over the Boolean domainD i . We set up three types of
evaluation functions according to the relationship between the
QM and the threshold in the requirement to indicate whether
a requirement is violated (yi = 1) or satis�ed (yi = 0). Fig. 2
shows the three Boolean evaluation functions, in whichlbi ,
ubi , andgi are the lower bound, upper bound, and threshold
of Xi , as speci�ed in the requirements. The functionf lt (Xi)
describes the LESS THAN relationship. A requirementRi is
satis�ed if Xi � gi ; otherwise, the requirement is violated
and yi = 1 . Similarly, f mt (Xi) describes the MORE THAN
relationship (gi � X i), andf cl (Xi) describes the AS CLOSE
AS POSSIBLE relationship (gi � � i � X i � gi + � i). Note that
there can be other evaluation techniques to describe require-
ments satisfaction, such as fuzzy membership functions [25].
All the QMs of the requirements described in Section II can
be assessed from our project website [26].

Example 1. RequirementR2:1 states that the ego vehicle
should keep safe distance from other objects. QMX2:1 =

min
k2 T;o2O

(kpe
k � po

k k) is the minimum Euclidean distance

between the ego vehicle and other objects including vehicles,
pedestrians, etc.X2:1 should be MORE THAN the minimum
separation� min ; otherwise, there could be collisions. The eval-
uation function is formulated with functionf mt as follows:

y2:1 =
�

0; � min � X 2:1

1; otherwise

De�nition 1 (Requirements Violation Pattern). Let D= D1 �
: : :� Dn be the space of evaluation results for all requirements,
whereD j is the domain ofyj . A requirements violation pat-
tern Vi = [y1; : : : ; yn] 2 D is a vector, representing a distinct
combination of requirements violation for the behavior of the
ADS under test. Given the violation patternVi , the initial re-
quirements setR can be split into two subsets of requirements,
i.e., the set of satis�ed requirementsR i

S = f Rk jVi [k] = 0g
and the set of violated requirementsR i

V = f Rk jVi [k] = 1g.

For example,Vi = [1 ; 1; 0; 0; 0; 0; 0] represents a require-
ments violation pattern with the evaluation of seven require-
ments, where the �rst two are violated, and the other �ve
are satis�ed. The set of all possible requirements violation
patterns is de�ned asV = f V0; : : : ; Vm � 1g, wherem is the
total number of patterns inV. For ADS P P , we evaluate the
requirements reported in Section II, and there are27 = 128
requirements violation patterns inV.

C. Problem Statement

For the ADS, the testing approachT targeting requirements
violations can be de�ned as a functionhS;Vf i = T(ADS; R),
whereS is a set of critical test scenarios exposed byT andVf

is the set of requirements violation patterns that are covered
by S (Vf � V). It is challenging for testers to explore the
space of all possible scenarios to expose all the patterns with
limited time or computing resources. Another challenge is that
some patterns may not be achievable, and the testers should
avoid wasting time searching for these patterns. In summary,
the general problem that we aim to solve is as follows:
Given the ADS as the system under test, along with a set
of requirementsR that should be achieved by the system,
design a testing approachT targeting requirements violations,
which can effectively �nd test scenarios to expose different
requirements violation patterns of high importance.

IV. A PPROACH

A. Overview

Fig. 3 shows the work�ow ofEMOOD, which �rst applies
Initial Prioritization (IP) and then iteratively applies Evolu-
tionary Many-Objective Optimization (EMOO) and Dynamic
Prioritization (DP) to achieve ef�cient ADS testing. IP is
used for identifying the most critical requirements violation
patterns. EMOO is used for �nding scenarios violating and
satisfying requirements, as speci�ed by the given targeted
pattern. This targeted pattern in a search round is identi�ed

Fig. 3: Overview of the proposed approach (EMOOD)

by DP. In particular, DP aims to give preferences to those
patterns with higher criticality and likelihood to occur. The
combination of EMOO, IP, and DP makes it possible for our
approach to explore different test scenarios, thereby exposing
more types of requirements violation patterns.

More speci�cally, the approach works as follows. In the
beginning, in IP, given the ADS requirements and their im-
portance, we rank the requirements violation patterns based
on their criticality (see Section IV-B). Thecriticality ranking
list of all patterns after IP isVc. Then, test generation starts by
employing aniterativeevolutionary process. At each iteration,
the �tness functions of the searching process (i.e., EMOO) are
de�ned based on the targeted pattern (see Section IV-C); in
the �rst iteration, the targeted pattern isVc[0]. The population
speci�es values for the variables of anabstract test scenario
(i.e., a scenario in which some �elds are parameterized). It
is instantiated by these values to produce aconcrete test
scenarioSce that is executed with the ADS simulator. The
�tness scoresX of the behaviors of ADST in each test
scenario are computed by running the ADS simulator and
doing requirements violation evaluation.

After the execution of EMOO, we perform the dynamic
prioritization (see Section IV-D). In particular, the pattern
likelihood prioritization (see Alg. 1) is used to sort all possible
requirements violation patterns based on their likelihood to
occur. Such likelihood is estimated by considering the relation
between exposed and unexposed patterns. The occurrence
likelihood ranking of patternsVl is merged with the criticality
rankingVc to update the list of patterns to search forVt , so as
to identify the most critical patterns that are likely to occur.
The �rst elementVt [0] of the merged list is used, in the next
iteration, as the pattern targeted by EMOO.

Using DP, the approach continually changes its �tness
functions round by round, until the given testing time or
resource budget exhausts. The whole process is described in
Section IV-E in detail. The output is a set of test scenarios that
facilitate reproducing the wrong behaviors of the ADS and the
set of requirements violation patterns that have been identi�ed
during the testing.

B. Initial Prioritization (IP)

As it is time-consuming and economically expensive to test
whether each pattern in the setV is possible to occur, we
need to determine their order of being searched for. In the

beginning, we prioritize the patterns based on theircriticality,
which is de�ned based on the following two ranking rules:

� P 1: a patternVi is ranked higher than another patternVj if
the highestimportance levelof the violated requirements
in Vi is higher than that inVj .

� P 2: a patternVi is ranked higher than another patternVj

if Vi has more violated requirements in importance level
p than Vj , while Vi has the same number of violated
requirements in importance levell asVj for 8p < l < = q
whereq is the maximum importance level.

Rule P1 is designed based on the prede�ned importance
levels among different categories of requirements in ADS
behaviors as de�ned in previous work [22] (e.g., the safety
requirement's importance level is higher than that of the
compliance requirement). For the functionality of the sys-
tem, certain requirementRi may be split into a set of
sub-requirementsf Ri: 1; :::; Ri:M i g to be achieved, whereM i

is the number of sub-requirements (e.g.,R3 is instantiated
into f R3:1; R3:2; R3:3g). For simplicity, we assign the same
importance level to the sub-requirements belonging to the
same category, as done inADS P P provided by our industry
partner. ForADS P P , the requirements listed in Section II
rank from the highest to the lowest one, i.e.,R1 � R2 �
R3f R3:1; R3:2; R3:3g � R4f R4:1; R4:2g. Thus, according to
P1, Vi is ranked higher than (� P 1) Vj if 9Rk 2 R i

V ; 8Rk 0 2
R j

V : Rk � Rk 0.
Assume that importance levelp is the highest level where

patternsVi and Vj differ in terms of the number of violated
requirements in the same level. RuleP2 is designed based
on the assumption that in the critical scenarios in which the
trajectory generated by the ADS violates a larger number of
requirements in importance levelp, the wrong decision logic
of the control software is more likely to be exposed.

We apply these two ranking rules, assuming thatP1 takes
precedence overP2, as suggested by our industry partner.
Based onP1 and P2, to compare the criticality of patterns
Vi andVj is to compare the number of violated requirements
level by level from the highest to the lowest importance levels.
Therefore, the set of all requirements violation patternsV can
be transformed into a sorted list of patternsVc= Pf 1;2g(V),
ranging from the most to the least critical patterns; we name
the list criticality ranking. Note thatVc is a partial order, and
some patterns could have the same ranking. The �rst element
Vc[0] in V is a unit vector where all the requirements are
violated, while the last elementVc[m � 1] is the zero vector
indicating that all requirements are satis�ed.

C. Evolutionary Many-Objective Optimization (EMOO)

As it is dif�cult to generate critical test scenarios in which
one or more requirements are violated [27], we use a search-
based testing (SBT) approach, which has been shown to be
very effective for ADS testing [6], [9], [12]. We cast the
problem of generating ADS critical test scenarios for a speci�c
requirements violation pattern as a many-objective optimiza-
tion problem [28], where the �tness functions are de�ned as
the indicators for requirements satisfaction/violation.

Fig. 4: The relationship of requirements violation patterns

For the many-objective optimization algorithm, we use the
Non-dominated Sorting Genetic Algorithm version 3 (NSGA-
III) [29], as it is good in solving problems with many ob-
jectives (four or more) [30] and so is suitable for our case.
In our work, NSGA-III generates a number of ADS critical
test scenarios by maximizing or minimizing the indicators that
characterize the violation or satisfaction of the requirements
(i.e., QMsXi introduced in Section III-B). Here, we discuss
how we apply NSGA-III to our case.
Individuals. As explained in Section III-A, test scenarios de-
scribe the characteristics of the operating environment and the
initial state of the ego vehicle. In EMOO, we aim at generating
test scenarios. However, searching over all the possible sce-
narios is not feasible. Hence, we follow a pragmatic approach
also adopted by other work [31], [32]. Speci�cally, we de�ne
an abstract scenariothat speci�es some �xed characteristics,
such as the road structure and the other traf�c participants; in
the abstract scenario, some characteristics (e.g., initial position
and acceleration of a vehicle) are parameterized with variables
de�ned over some domains. In the search, an individual is an
assignment to these variables. Given an individual, aconcrete
test scenariocan be derived by instantiating the abstract
scenario with the values assigned to the variables in the
individual.
Fitness Functions. For a targeted requirements violation
patternVi 2 V , there is a corresponding set of quantitative
�tness functionsF = f F1; : : : ; Fn g, whose values indicate the
QMs of the requirements. Since the requirements evaluation
is Boolean as shown in Fig. 2,Vi is an n-dimensional vector
of f 0; 1g. For Vi [k]=0 , the satisfaction of theRk should be
guaranteed (Rk 2 R i

S), while for Vi [k] = 1 , Rk is expected
to be violated (Rk 2 R i

V). Based on the set of satis�ed
and violated requirementsR i

S and R i
V , the set of �tness

functionsF is also split intoF i
S andF i

V . For Rk 2 R i
S , the

corresponding �tness functionFk 2 F i
S is to improveXk , i.e.,

trying to satisfyRk . For Rk 2 R i
V , its corresponding �tness

function Fk 2 F i
V is to worsenXk , i.e., trying to violateRk .

D. Dynamic Prioritization (DP)

In this phase, we select a pattern to be used as the target for
the next search round of EMOO. The rationale is that we want
to select a critical pattern that can occur in reality. Thus, DP
�rst computes a ranking of patterns based on their likelihood
of occurrence. Then, DP merges this ranking with the ranking
based on the criticalityVc.

Algorithm 1: Pattern Likelihood Prioritization
Input: Vt : patterns that have not been found;

Ved : patterns that have been searched for.
Output: Vl : likelihood rankings for patterns

1 Initialize the reward of each pattern with Eq. (1);
2 Vl V t n Ved ;
3 for Vj 2 V l do
4 k0 GetClass(Vj) ;
5 for Vi 2 (V n Vt) [(Ved \ V t) do
6 if Vi is predecessor toVj then
7 k GetClass(Vi);
8 r (Vj) +=
 k 0� k � r (Vi)
9 Vl sort (Vl ; r (Vl)) ;

10 return Vl

1) Likelihood Prioritization: The intuition of occurrence
likelihood rankingfor requirements violation patterns is that if
a speci�c requirements violation pattern has been found, there
is a high likelihood to expose similar/related violation patterns
that are less critical than the found pattern. To prioritize the
patterns, we �rst de�ne the relationship between different
patterns to estimate the likelihood of their occurrence.

De�nition 2. (Requirement Violation Pattern Relationship)
Given two requirements violation patternsVk = [y1; : : : ; yn]
and Vk 0 = [y0

1; : : : ; y0
n], if 9i 2 f 1; : : : ; ng: yi = 1 ^ y0

i =
0 ^ (8j 2 f 1; : : : ; ng n f ig: yj = y0

j), then patternVk is the
predecessorof patternVk 0, andVk 0 is thesuccessorof Vk .

As shown in Fig. 4, we construct a graph to describe the
relationship between different requirements violation patterns
based on Def. 2. The relationship between two patterns is
described with an arrow (!), where the left-hand side of the
arrow indicates the direct predecessor and the right-hand side
of the arrow indicates the successor. Note that a requirements
violation patternVi could have multiple direct predecessors,
as well as multiple successors. Therefore, the set of patterns
V is a partially ordered set according to the relationship. The
pattern with all requirements violated ([1; 1; : : : ; 1; 1]), has no
predecessors, while the pattern with no requirements violated
([0; 0; : : : ; 0; 0]) has no successors. All the patterns can be
classi�ed inton+1 classes (C0; : : : ; Cn) based on the number
of violated requirements.

Alg. 1 shows the prioritization based on likelihood that
exploits the pattern relationship introduced in Def. 2. First,
we initialize a reward function for each patternVi as r (Vi)
(Line 1), indicating the likelihood that the pattern occurs in
reality. The higher the reward is, the higher the likelihood of
the pattern is to be found. Given the listVt of patterns that
have not been found so far, and the listVed of patterns that
have been treated as �tness functions to search for, the reward
for each requirement violation pattern is initialized as follows:

r (Vi) =

8
><

>:

r +
0 ; Vi 2 V n Vt

r �
0 ; Vi 2 Ved \ V t

0; Vt n Ved

(1)

For requirements violation patterns that have been found
(V n Vt), we assign a positive rewardr +

0 , and for patterns that

have been searched but not found (i.e.,Ved \ V t), we de�ne a
constant penalty asr �

0 . The remaining patterns are those that
need to be searched for (i.e.,Vt n Ved), and their reward is
initialized as 0; we identify them asVl (Line 2). The rewards
of patterns inVl are updated as described as follows.

To calculate the rewards of patternsVl that we need to
search for, we consider the rewards of their predecessors. The
idea is that if a predecessorVi of a requirements violation
pattern Vj has been previously found (Vi 2 V n Vt), it is
likely that Vj may occur. On the other hand, ifVi has been
searched for but not found (Vi 2 Ved \ V t), the likelihood
that patternVj can be found is low. Based on these heuristic
rules, the algorithm works as follows. Given a patternVj that
has not been searched for and not been found (Line 3), the
algorithm iterates over the other patternsVi initialized with
non-zero rewards (Line 5); for those that are predecessors of
Vj (Line 6), it updates the reward ofVj with reward r (Vi)
discounted based on the distance betweenVi andVj (Line 8).
Note that
 2 (0; 1), and so the factor
 k 0� k decreases as
the distance increases. Finally, it prioritizes the sequenceVl

of requirements violation patterns to search for, based on the
computed rewards ranging from the highest to the lowest
(Line 9), as the higher the reward, the higher the likelihood
that this pattern is exposed in the next round. We callVl as
(estimated) likelihood ranking.

2) Merging Criticality and Likelihood Rankings:Then, we
merge the rankings of requirements violation patterns inVl and
Vc with a weighted sum, following a classical approach used in
multi-criteria decision-making [33]. Thecriticality ranking Vc

indicates the importance of the patterns, while thelikelihood
ranking Vl indicates the likelihood of the occurrence of each
pattern. By combining these two ranking algorithms, we can
select (for the next round of EMOO) the patterns that are
both critical and likely to be found. The weights for these two
lists are de�ned as a vector[wc; wl], and the �nal rank of a
patternVi is determined by

P
j 2f c;l g wj � rank (Vj (Vi)) , where

rank (Vj (Vi)) is the function to retrieve the rank ofVi in Vj .
The merged ranking substitutesVt .

E. Details of EMOOD

We here describe the details of ourEMOODapproach (as
shown in Fig. 3), i.e., how to combine the initial prioritization
(IP, Section IV-B), the evolutionary many-objective optimiza-
tion (EMOO, Section IV-C), and the dynamic prioritization
(DP, Section IV-D) during the testing process. Alg. 2 shows
the algorithm ofEMOOD, aiming at generating test scenarios
that expose different requirements violation patterns.

EMOODreceives a setV of requirements violation patterns to
search for, the total numberM of generations, and the budget
G of generations in each search round. The output ofEMOOD
is a setS of test scenarios and requirements violation patterns
Vf that have been found.

Initially, the approach applies initial prioritization (see
Section IV-B) to rank the patterns by criticality (Line 1),
obtaining rankingVc. The list of patterns to search forVt

is initialized with Vc (Line 2). Then, at each iteration, EMOO

Algorithm 2: EMOOD
Input: V: a set of requirements violation patterns;

M : total number of generations;
G: budget of generations for each execution of EMOO.

Output: S: a set of test scenarios;
Vf : requirements violation patterns that have been found

1 Vc P f 1;2g (V); // IP
2 Vt V c ; Ved ; ;
3 Pop ; ;
4 while M > 0 ^ V t 6= ; do
5 Select an initial population setP randomly;
6 F ObjGenerate (Vt [0]);
7 Q; g NSGA-III(G; P; F ; stop condition); // EMOO

// g: used generations; Q: all solutions
8 M = M � g;
9 Q Q [P op ;

10 Ved V ed [fV t [0]g;
11 Vt GetUnfoundPatterns (Q; Vt);
12 Vl RelationRanking (Vt ; Ved); // DP
13 Vt MergedRanking (Vl ; Vc); // DP
14 S SceneEncoding(P op), Vf V c n Vt ;
15 return hS; Vf i

starts with a randomly selected population setP (Line 5), and
a requirement violation pattern to search for that de�nes the
�tness functions (Line 6): the pattern is the �rst element of
the list of unfound patternsVt . EMOO performs a number
g of generations using NSGA-III [29] (Line 7) until the
stop condition is reached: either the total numberG of
generations is reached or the targeted pattern has been found.
The numberg of used generations is subtracted from the total
budgetM of generations (Line 8). The pattern that has been
searched for is stored in setVed (Line 10). Then,Vt is updated
by removing the patterns that have been found (the targeted
one and/or also other patterns) according to the requirements
violation evaluations of all solutions generated during search
(Line 11). Note that some of the patterns, despite having been
searched for, may not be discovered within their dedicated
search round, either because they are too dif�cult to discover
or they are not achievable at all.

Finally, EMOODapplies dynamic prioritization: it �rst uses
Alg. 1 to get the likelihood rankingVl of the patterns
(Line 12); then, it merges the rankingsVt and Vl with a
weighted sum (Line 13).EMOODcan be stopped when the total
numberM of generations is reached or all patterns have been
found, i.e.,Vt 6= ; (Line 4). Note that, in the ADS testing, the
most time-consuming part of the search is running simulations
to compute �tness functions.EMOODdoes not increase the
number of simulations compared to EMOO with the original
NSGA-III.

V. EVALUATION

To demonstrate the effectiveness of our approach, we
investigate the following research questions.
RQ1 (Pattern Detection): How is the exploration capability
of EMOODin generating test scenarios to expose different
requirements violation patterns?
RQ2 (Pattern Criticality) : How effective is EMOODin
discovering critical requirements violation patterns?

TABLE I: Two traf�c scenarios used in the experiments

Name Description #Vars.

Overtake
(SO)

The ego vehicle tries to overtake anothervehicle-a
proceeding slowly, whilevehicle-b is coming from
behind.

15

Turn Right
(ST)

The ego vehicle must turn right at the intersection.
Another vehicle-a is crossing from left, andvehicle-
b from right. Vehicle-cis waiting at the intersection.

12

(a) Overtake (SO) (b) Turn Right (ST)

Fig. 5: Two abstract traf�c scenarios for the experiments

A. Experimental Design and Settings

1) Traf�c Scenarios: We consider two abstract traf�c sce-
narios (where left-hand traf�c is assumed), as shown in Table I.
Each abstract traf�c scenario de�nes shared characteristics of
the generated test scenarios (e.g., road map, speed limit), and
speci�c characteristics (e.g., position, speed, acceleration of
the ego vehicle and other vehicles, duration of the traf�c light)
that are left as search variables for EMOO. The ego vehicle
with ADS P P follows the requirements reported in Section II.

The two abstract traf�c scenarios identify two different
driving situations that will possibly lead to different behav-
iors of ADS P P , and thus patterns of potential requirements
violations. To ensure that the simulations start from a valid
and meaningful state, we have the following two constraints
on the initial state of the simulation (also used for other ADSs
in previous work [8]): (1) there is a safe distance between the
ego vehicle and other vehicles when all the vehicles start, and
(2) the ego vehicle is far from the traf�c light such that it has
suf�cient time to react.
Overtake (SO): As shown in Fig. 5(a), the ego vehicle is
proceeding onlane-2, encountersvehicle-aproceeding slowly,
and tries to overtake it. Meanwhile,vehicle-bis coming from
behind the ego vehicle on the passing lanelane-1. Moreover,
vehicle-cis proceeding in the opposite direction on a different
lane. InSO , there are 15 search variables, including the initial
states (i.e., position, velocity, and acceleration) of the ego
vehicle, vehicle-a, vehicle-b, and vehicle-c, respectively, and
the location and duration of the traf�c light. Table II reports
the search space for the traf�c scenarioSO .
Turn Right (ST): As shown in Fig. 5(b), the ego vehicle turns
right at the intersection. Meanwhile,vehicle-ais crossing from
left, vehicle-bis crossing from right, andvehicle-cis waiting
at the intersection. As shown in Table II, there are 12 search
variables: the initial states of the ego vehicle and the other
three vehicles, respectively, and the duration of the traf�c light.

TABLE II: Search spaces for traf�c scenariosSO andST

Objects Variables Intervals

SO

ego vehicle p e
0 [y] , v e

0 [5, 25], [5, 16]
vehicle-a p a

0 [y], v a
0 , a a

0 [45, 65], [4, 16], [0, 3]
vehicle-b p b

0 [y], v b
0 , a b

0 [0, 20], [4, 16], [0, 3]
vehicle-c p c

0 [y], v c
0 , a c

0 [40, 90], [4, 16], [0, 3]
traf�c light p [y]; t g ; t y ; t r [70, 80], [5, 10], [1, 2], [2, 4]

ST

ego vehicle p e
0 [y] , v e

0 [150, 190], [4, 16]
vehicle-a p a

0 [x], v a
0 , a a

0 [-75, -25], [4, 16], [0, 3]
vehicle-b p b

0 [x], v b
0 , a b

0 [25, 75], [4, 16], [0, 3]
vehicle-c p c

0 [y] [225, 235]
traf�c light t g ; t y ; t r [6, 12], [1, 2], [2, 4]

2) Baseline Approaches:To the best of our knowledge,
at the moment of writing, there do not exist any automated
testing approaches targeting requirements violation patterns.
We compareEMOODwith three approaches, including the
random test generation algorithm (the baseline of comparison
typically adopted in SBSE research [34]) and two variants of
EMOOD, to demonstrate the effectiveness of our approach in
terms of pattern detection and coverage.

� Random: it randomly generates values for variables in the
search space ofSO and ST to create test scenarios and
checks which patterns are discovered.

� EMOO: application of EMOO using �tness functions target-
ing patternVc[0] (i.e., all requirements violated). Fitness
functions are never changed over the search process. Note
that, sinceVc[0] is the most critical pattern and the ancestor
of all the patterns, other patterns can be discovered while
trying to cover it.

� EMOO-IP: the combination of initial prioritization with
updated objective functions but without the dynamic prior-
itization. In this case, each EMOO execution uses the most
critical pattern (inVc) that has not been searched so far.

3) Con�gurations and Implementations:We implement the
baselines and our approach in Python, and use jMetalPy [35]
as the search framework. ForRandom, we use the implemen-
tation of random search in jMetalPy [35]. For the settings of
the EMOO algorithm, we adopt NSGA-III [29]. The settings
for NSGA-III are the default ones in jMetalPy: parent selec-
tion with tournament selection [36], SBX crossover operator,
polynomial mutation operator, crossover rate of 100%, and
mutation rate equal to the reciprocal of the number of search
variables. For each EMOO-based algorithm, the size of the
population is 50. The weights used when mergingVc and Vl

are [wc; wl] = [1 ; 1].
Each approach (EMOODand the baselines) is used to test

the ADS for some generations. As the termination condition
G for EMOO, EMOO-IP, andEMOOD, we set 100 generations
for the �rst round and 50 generations for the subsequent
rounds. As global budgetM , we set a total number of
400 generations across all the rounds. Hence, totally we can
evaluate50� 400=20000scenarios. ForRandom, in order to
assure a fair comparison, we set20000�tness evaluations as
the termination condition. To take into account the random
effect during the search, we repeat each algorithm ten times.

(a) Overtake (SO). (b) Turn Right (ST).

Fig. 6: RQ1 – Average number of discovered patterns

TABLE III: RQ1 – Statistical test results comparing the
number of patterns discovered by the approaches

Approaches Overtake (SO) Turn Right (ST)
p-value Â 12 p-value Â 12

EMOODvs. Random 1.64e-4 1.00 1.22e-4 1.00
EMOODvs. EMOO 1.73e-4 1.00 1.57e-4 1.00

EMOODvs. EMOO-IP 1.58e-4 1.00 2.38e-4 0.99
EMOO-IP vs. Random 1.54e-4 1.00 1.19e-4 1.00

EMOO-IP vs. EMOO 1.62e-4 1.00 8.06e-4 0.94
EMOOvs. Random 6.06e-4 0.96 0.0012 0.92

The experiments are executed on servers with CPU (Intel Xeon
E5-2697A V4@2.6GHz), 32 cores, and 128 GB of memory.
The time budget for scenario simulation is set as 100 seconds.
More details of experimental results can be found online [26].

B. Results and Analysis

We next answer the two research questions and then provide
qualitative analysis.

1) Evaluation on Pattern Detection (RQ1): We investigate
the discovered requirements violation patterns by the different
approaches and how the patterns are related. Fig. 6 shows
the average number of the patterns discovered during the
allocated generations. The detailed comparisons of the patterns
discovered during the search process are shown in Fig. 7.

As shown in Fig. 6, we can �ndEMOOD's average number
of discovered patterns to be 30.7 and 28.8 inSO and ST ,
respectively, outperforming the three baseline approaches, i.e.,
Random, EMOO, and EMOO-IP. For the �rst two baseline
approachesRandom and EMOO, there is a large increase in
the number of patterns discovered within the 50th generation,
while the speed to �nd new patterns decreases after the 100th
generation. The reason is that bothEMOO-IP and EMOOD
could change the objective functions to search for, leading
to the discovery of new patterns during the search process.
Compared with the third baseline approachEMOO-IP, EMOOD
adjusts the sequence of the targeting pattern to search for
by also considering the likelihood to occur, thus excluding
patterns that cannot occur and saving the search time. Hence,
in SO and inST , EMOODcould �nd, respectively, 4.7 and 3.2
patterns more thanEMOO-IP.

We also observe thatRandom performs better inST than
in SO , asST has a smaller search space. Thus, the gaps in the

(a) Overtake (SO). (b) Turn Right (ST).

Fig. 7: RQ1–Comparison of discovered patterns

TABLE IV: RQ1-Time cost of the testing process

Time Cost
(hours)

Overtake (SO) Turn Right (ST)
Rand. EMOO EMOO-IP EMOODRand. EMOO EMOO-IP EMOOD

Simulation 16.85 14.64 14.25 14.66 13.33 10.11 10.83 10.77
Computation - 0.14 0.16 0.19 - 0.14 0.15 0.18

Total 16.85 14.78 14.41 14.85 13.33 10.25 10.98 10.95
� In the simulator,ADS P P is terminated once collisions are detected.

average number of the discovered patterns between the four
approaches are smaller inST thanSO .

We next perform a statistical test on the �nal results of the
approaches across the ten runs. Following a guideline [37],
we use the Wilcoxon signed rank test [38] and the Vargha-
Delaney's Â12 effect size [39]. Table III reports the results
of the statistical test obtained when comparing the number of
the patterns discovered byRandom, EMOO, EMOO-IP, and
EMOODfor SO and ST . As shown in the table, thep-values
of the results betweenEMOODand the baseline approaches
are all lower than 0.05, and thêA12 statistics show a large
effect size (close or equal to 1). Hence, the number of the
patterns discovered byEMOODis signi�cantly higher than
those discovered by the baseline approaches; moreover, we
also notice that each technique of the approach (i.e., IP, DP,
and EMOO) signi�cantly improves over the approach without
that technique.

Moreover, we want to know whetherEMOOD's higher ef-
fectiveness is due to its capability to discover more patterns
(which do not necessarily subsume patterns discovered by
the baseline approaches) or its capability to subsume all the
patterns discovered by the baseline approaches plus some other
patterns. We compare all the discovered patterns in the ten
runs for the four approaches, as shown in Fig. 7. We �nd that,
across ten runs,EMOODcould aggregately discover 42 and
41 patterns inSO and ST , respectively. In addition,EMOOD
could discover 6 and 5 extra patterns (not discovered by any
baseline approach), accounting for 14% and 11.9% of the total
number of discovered patterns inSO and ST , respectively.
Thus, EMOOD's higher effectiveness lies in its capability to
discover extra patterns compared with the baseline approaches.

Finally, to check whether the effectiveness ofEMOODcomes
at the cost of computation time, we compare the whole execu-
tion time ofEMOODand the baseline approaches. Considering
that the simulation time of each test scenario could be large,
we parallelize the simulation of the generated test scenarios

Fig. 8: RQ2–The sum of criticality of discovered patterns

using 30 threads. Table IV reports, for each approach, the time
cost of the test simulations, the computation time (excluding
the simulation time during �tness evaluation), and the total
time cost.ADS P P will be terminated in the simulation after
violating some requirements, especially forSafety (R2:1), if
the ego vehicle's behaviors are abnormal. We observe that
the time costs ofEMOO, EMOO-IP, and EMOODare less
thanRandom, because these three approaches could generate
more scenarios with violations ofR2:1, and these scenarios
are terminated earlier. Moreover, we observe that the most
expensive part of the approaches is due to the simulations.

Answer to RQ1: Each phase (EMOO, IP, and DP) of
EMOODprovides a signi�cant contribution in discovering
requirements violation patterns. Indeed, the approaches of
Random, EMOO, EMOO-IP, andEMOODare in the order
of increasing effectiveness, indicating that the EMOO,
IP, and DP techniques all provide a relevant contribution
to EMOOD's overall effectiveness. Additionally,EMOOD's
effectiveness does not come at the cost of time.

2) Evaluation on Criticality (RQ2): We analyze the crit-
icality of requirements violation patterns discovered by each
approach; to this aim, we propose a metric for assessing the
criticality. As explained in Section IV-B, the initial ranking
Vc ranks the patterns based on their criticality. Therefore,
we quantify the criticality of each pattern by its rank inVc,
i.e., K(Vi) = 1 � rank (Vc (Vi))

jV c j . The sum of the criticality of
discovered patterns can be calculated as

P
Vi 2V f

K(Vi). Fig. 8
shows the results for the sum of the criticality of discovered
patterns. We �nd thatEMOODachieves the highest sum for
the criticality of discovered patterns, being 8.75 and 9.23 on
average forSO andST , respectively.

We also compare the results in Fig. 8, for each pair of
approaches forSO and ST , using the same statistical tests
used in RQ1. We report the results online [26] due to space
limit. Using signi�cance level� =0:01, we observe thatEMOOD
is always signi�cantly better than the baseline approaches;
EMOO-IP is always better thanRandom, and better than
EMOOin SO ; EMOOis better thanRandom in SO ; in the
other cases, there is no signi�cant difference.

Table V provides a detailed analysis by showing the aver-

	Introduction
	Motivation
	Formalization and Problem Statement
	Autonomous Driving System
	Requirements Violation Evaluation
	Problem Statement

	Approach
	Overview
	Initial Prioritization (IP)
	Evolutionary Many-Objective Optimization (EMOO)
	Dynamic Prioritization (DP)
	Likelihood Prioritization
	Merging Criticality and Likelihood Rankings

	Details of EMOOD

	Evaluation
	Experimental Design and Settings
	Traffic Scenarios
	Baseline Approaches
	Configurations and Implementations

	Results and Analysis
	Evaluation on Pattern Detection (RQ1)
	Evaluation on Criticality (RQ2)
	Requirements Violation Pattern Analysis

	Threats to Validity

	Related Work
	Conclusion and Future Work
	References

