Targeting Requirements Violations of Autonomous
Driving Systems by Dynamic Evolutionary Search

Yixing Luo*T, Xiao-Yi Zhangi, Paolo Arcainit, Zhi Jin*T, Haiyan Zhao*T,
Fuyuki Ishikawa!, Rongxin Wu¥, Tao Xie*!

*Key Lab. of High-Confidence Software Technologies (Peking University), Ministry of Education, Beijing, China
TDepartment of Computer Science and Technology, School of EECS, Peking University, Beijing, China
National Institute of Informatics, Tokyo, Japan
§School of Informatics, Xiamen University, Xiamen, China
Email: {yixingluo, zhijin, zhhy.sei, taoxie} @pku.edu.cn {xiaoyi, arcaini, f-ishikawa}@nii.ac.jp

wurongxin@xmu.edu.cn

Abstract—Autonomous Driving Systems (ADSs) are complex
systems that must satisfy multiple requirements such as safety,
compliance to traffic rules, and comfortableness. However, sat-
isfying all these requirements may not always be possible due
to emerging environmental conditions. Therefore, the ADSs may
have to make trade-offs among multiple requirements during
the ongoing operation, resulting in one or more requirements
violations. For ADS engineers, it is highly important to know
which combinations of requirements violations may occur, as
different combinations can expose different types of failures.
However, there is currently no testing approach that can gen-
erate scenarios to expose different combinations of requirements
violations. To address this issue, in this paper, we introduce the
notion of requirements violation pattern to characterize a specific
combination of requirements violations. Based on this notion, we
propose a testing approach named EMOOD that can effectively
generate test scenarios to expose as many requirements violation
patterns as possible. EMOOD uses a prioritization technique to
sort all possible patterns to search for, from the most to the least
critical ones. Then, EMOOD iteratively includes an evolutionary
many-objective optimization algorithm to find different combi-
nations of requirements violations. In each iteration, the targeted
pattern is determined by a dynamic prioritization technique to
give preferences to those patterns with higher criticality and
higher likelihood to occur. We apply EMOOD to an industrial ADS
under two common traffic situations. Evaluation results show that
EMOOD outperforms three baseline approaches in generating test
scenarios by discovering more requirements violation patterns.

Index Terms—Many-Objective Optimization, Autonomous
Driving Systems, Requirements-Based Testing

I. INTRODUCTION

Autonomous Driving Systems (ADSs) are making revolu-
tionary changes in the domain of transportation. As ADSs
are complex and safety-critical systems, their testing is vital
for their wide acceptance [1]. Although on-road testing of

This work is supported in part by the National Natural Science Foundation
of China under Grant NO. 61620106007 and 61751210. Zhi Jin is the
corresponding author. X. Zhang, P. Arcaini, and F. Ishikawa are supported
by ERATO HASUO Metamathematics for Systems Design Project (No.
JPMIJER1603), JST, and MIRAI Engineerable Al Project (No. JPMIMI20BS),
JST. We thank our industry partner Mazda for providing the software used
in our work and discussing principles in testing and improving complex real-
world automotive systems. The provided software is a prototype constructed
for the purpose of evaluating new testing techniques, and its quality has no
relation with the quality of Mazda products.

autonomous vehicles is necessary and widely used in industrial
ADSs such as Waymo [2] and Voyage.auto [3], existing
studies [4], [5] have shown that billions of miles provide
only limited assurance, since such time-consuming and costly
testing approach would still miss dangerous and rare situations
in the real world.

One-road testing for the ADS under test can be augmented
by existing approaches [6]-[18] of virtual testing in computer
simulations [18], [19] (in short as simulation-based testing),
e.g., generating critical test scenarios in which the autonomous
vehicle under test fails (e.g., the vehicle collides with ob-
stacles). Considering that the test scenario space is complex
and multidimensional, evolutionary search techniques [6]—[14]
are applied to explore this test scenario space. In particular,
these evolutionary search techniques aim to identify critical
test scenarios that indicate complex driving conditions under
which the ADS’ behaviors violate specific requirements, e.g.,
safety [6], [7], [10] and compliance to traffic regulations such
as lane keeping [9] and adhering to traffic light [8].

However, these existing simulation-based testing approaches
do not consider combinations of requirements violations,
which are highly important for two main reasons. First,
satisfying all the requirements may not be possible for an
ADS in practice, as unexpected events may happen in highly
open and dynamic environments, e.g., intrusion of a hidden
traffic participant or weather disturbances [20]. In response
to these unexpected events, the control software of the ADS
has to make trade-offs among requirements, likely resulting
in one or more requirements being violated. Second, different
combinations of requirements violations can expose different
types of failures. For example, the type of failure in which
the autonomous vehicle collides while running a red light
is different from the one in which the autonomous vehicle
collides while violating the lane keeping, as the different
combinations of requirements violations may provide different
insights about the cause of the collisions.

Generating scenarios that expose different combinations of
requirements violations is a challenging problem. One idea
is to enumerate all possible combinations of requirements
violations as the objective functions in the evolutionary search,

in order to identify critical test scenarios that expose dif-
ferent combinations of requirements violations. However, as
the number of the requirements increases, the number of
combinations of requirements violations grows exponentially;
thus, testing all of them could be impossible under limited
time and resources.

To address the preceding challenge, our work is based on
an insight consisting of two aspects. First, the search should
first focus on combinations of requirements violations with
higher criticality, i.e., including more violated requirements
with higher importance, as these combinations may lead to
more serious accidents for the ADS under test. Second, some
combinations of requirements violations are impossible to
occur for the ADS in reality, and the search should not focus
on them, in order to avoid wasting the search time.

Based on our insight, in this paper, we propose EMOOD,
a search-based testing approach to generating diverse test
scenarios that effectively expose different combinations of
requirements violations in the ADS testing. Similar to existing
work [6], [7], [10], we cast the problem of exposing different
combinations of requirements violations into a search-based
test-scenario generation problem. For EMOOD, we introduce
the notion of requirements violation pattern (also referred to
as pattern in the rest of the paper), i.e., a specific combination
of requirements violations that the ADS under test can exhibit
as the objective functions to search for. The notion of re-
quirements violation pattern facilitates the determination of the
ADS behaviors’ violations of requirements. EMOOD conducts
a type of dynamic evolutionary search, i.e., Evolutionary
Many-Objective Optimization (EMOO), whose objectives are
determined by Dynamic Prioritization (DP) that prioritizes the
patterns in terms of criticality and likelihood to occur.

In particular, EMOOD starts with the initial ranking (of
all the patterns) built statically based on the criticality of
each requirement, and iteratively runs the heuristic dynamic
prioritization algorithm (DP) to adjust the ranking additionally
based on the dynamically estimated likelihood of occurrence
of patterns: the more similar an unexposed violation pattern
with exposed patterns is, the more likely the pattern can occur.

This paper makes the following main contributions:

e The notion of requirements violation pattern for character-
izing different combinations of requirements violations.

e An effective approach for generating test scenarios to
expose diverse requirements violation patterns, namely,
EMOOD, which iteratively applies Evolutionary Many-
Objective Optimization (EMOO) whose objective functions
are selected by dynamic prioritization (DP).

e An initial prioritization technique (IP) for ranking patterns
based on their criticality, i.e., the importance and number
of violated requirements included in a pattern.

e A heuristic technique in DP for prioritizing patterns to
dynamically rank them based on their criticality and like-
lihood of occurrence.

e Evaluation results for showing that EMOOD can discover
diverse patterns with higher criticality, and given the same

testing budget, it is more effective than baseline approaches
that do not prioritize the patterns during the search.

II. MOTIVATION

Fig. 1(a) shows the decision process of an autonomous
driving system (ADS), as reported in previous work [4]: the
ADS is operating in a complex environment (including traffic
participants). The autonomous vehicle running the ADS is
called ego vehicle. The environment is perceived by sensors
(e.g., camera, Lidar, and radar for object detection and local-
ization). The ADS requirements are determined by different
stakeholders, such as the passengers (e.g., comfortableness)
and the authorities (e.g., safety standards [21]). Then, the ADS
makes optimal decisions based on the observed situation and
controls the vehicle through actuators, e.g., accelerating and
direction changing. Both sensor inputs and actuator outputs are
sequences of timestamped values. The ADS runs iteratively at
regular time steps. At every time step, the ADS decides the
optimal trajectory to be followed by minimizing cost functions
related to different requirements to achieve (requirements
violations are penalized in the cost function). In such a process,
the ADS needs to make trade-offs among the requirements.
The final output is the trajectory with the least overall cost
(the red line in Fig. 1(b)).

As a case study, we use an ADS with an optimization-
based path planner (provided by our industry partner) called
ADSpp, which repeatedly uses a weighted cost function
that considers various requirements to select the least costly
path. ADSpp can run in a simulator, as shown in Fig. 1(b).
Besides the navigation mission, i.e., moving from an initial
position to the destination, ADSpp considers four categories
of requirements during the planning process as follows:

e Stability (R;): the ADS should assure the stable control
and avoid dangerous actions for the vehicle [22]. Rj.1: the
ADS should avoid impossible steering angles.

e Safety (R): the ADS should avoid collision with moving
or static objects along the path [22]. Ry.1: the ADS should
keep a safe distance from other objects.

e Compliance (R3): the ADS should respect the traffic
regulations enforced by law in a geographical area [22].
R3.1: the velocity of the vehicle should be less than the
speed limit; Rs.2: the vehicle should not run the red light;
R3:3: the vehicle should stay in the correct lane.

e Comfortableness (R,): the planned trajectory should be
comfortable for the passenger [23]. Rg4.1: the vehicle’s
velocity should not change too much; Ry.2: the vehicle’s
acceleration should not change too much.

During the operation, ADSpp is required to respond to the
uncertain and dynamic environment, and adjust the trajectory
for the ego vehicle to follow. For example, Fig. 1(b) shows a
type of scenario in which the ego vehicle plans to turn right
into lane-1 at the intersection, while vehicle-a is crossing the
intersection from left to right. However, there are different
versions of this scenario that can lead to different behaviors
of ADSpp, and different satisfaction/violation of the require-
ments; we here consider two examples, i.e., Scenario-A and

Fig. 2: Requirements violation evaluation functions

- (b) ADS at the intersection . . .
(a) ADS decision process (adapted from [4]) for the ego vehicle to follow. A scenariSce describes the

environment in which the ego vehicle is operating, including
(i) a map of the road structure; (ii) information of trafc
regulations (e.g., location of traf ¢ lights); (iii) dynamic be-

Scenario-B In Scenario-A vehicle-aproceeds at high speed,nNaviors of objects[€g; :::;s%];02 O); (iv) initial state of the

and theego vehicleorders an emergency braking to bring?90 Vehiclesg; (v) target destination for the ego vehighg;

the vehicle to a halt; however, thegjo vehiclecannot stop in (vi) duration of the s_|mula_t|orT. We assume_that the driving

time and collides withvehicle-ai.e., violation of requirement Model of other vehicles is xed and described by standard

R,). In Scenario-B instead, thevehicle-aproceeds slightly Kinematic equations.

slower than inScenario-A and, in this case, thego vehicle =~ The system under test is the ADS of the ego vehicle. For

accelerates and tries to cut into the lane befareicle-a This simplicity, we view it as a function that, given a scenéice,

action plan requires a higher speed from ¢ge vehicleto the Pproduces the trajectory of the ego vehicle, ifes ADS (Sce).

point to exceed the speed limit; still, thego vehiclecannot

cut_ intq th_e lane quickly enough, and collides w'uhhic_le- B. Requirements Violation Evaluation

a (i.e., it violates bothR, andR3). Although theego vehicle

collides in both scenario§cenario-Bmay be more interesting It is challenging to verify the absolute violation/satisfaction

for debugging, because the occurrence of collision could Halse/true) of requirements directly from the behaviors of the

related to the violation of the speed limit requirement, whicADS operating in complex and changing environments [24].

can provide a different insight about the cause of the collisiolm previous work [9], [10], various quanti able metrics are

For example, if theego vehicledecelerates to wait farehicle- provided to indicate the dangerous behaviors of the ADS.

a to pass, the collision may not happenSeenario-B However, the previous work does not show how these metrics
Testing howADSpp handles the requirements requirese ect requirements violation/satisfaction results.

nding critical scenarios in which one or more requirements To |l this gap, we provide a systematic way to design

are violated; such type of testing is particularly challenginghe quanti able metrics (QMs) for requirements and their

Furthermore, with the increase of the number of requirementsapping functions to the requirements evaluation results.

Fig. 1. Overview of an autonomous driving system (ADS)

We need approaches that can (1) nd critical test scenaritgs consider during the decision process, we introd¥geas

for ADSpp in which one or more requirements are violatedhe QM for each requiremeiR;. X; is de ned as a function of

(2) expose all possible combinations of requirements violthe trajectory of the ego vehicle and the running scenario, i.e.,
tions for ADSpp, if these combinations can occur in realityX; = h; (T ; Sce). To evaluate the violation of requiremert,

we compareX; with thethresholdg; speci ed in the de nition

of Rj; in this way, we get the evaluation resyjt= f (X;; Ri),

We here formalize an ADS and its environment by considanging over the Boolean domalh . We set up three types of
ering the input and con guration variables 8DSpp . evaluation functions according to the relationship between the
QM and the threshold in the requirement to indicate whether
a requirement is violatedy(= 1) or satis ed ; = 0). Fig. 2

At any time instank, the state of an object is a tuple of threshows the three Boolean evaluation functions, in whigh
elements, i.esk = (py;Vk; ax). The vectop, = (x;y) isthe ub;, andg are the lower bound, upper bound, and threshold
geometric center of the position of the object, whileanday, of X;, as speci ed in the requirements. The functibh(X;)
are its velocity and acceleration. The state of the ego vehidescribes the LESS THAN relationship. A requiremBntis
is s;. We de ne O as the set of objects interacting with thesatis ed if X; g ; otherwise, the requirement is violated
ego vehicle, e.g., pedestrians, other vehicles; their state carabey; = 1. Similarly, f ™ (X;) describes the MORE THAN
described as?; with 0 2 O. The trajectory of the ego vehiclerelationship ¢ X ;), andf (X;) describes the AS CLOSE

IIl. FORMALIZATION AND PROBLEM STATEMENT

A. Autonomous Driving System

is a sequence of the vehicle's stafes= [s§;:::;s§], where AS POSSIBLE relationshipg{ i X i g+ ;). Note that
the time interval between two consecutive states is xed ,as there can be other evaluation techniques to describe require-
andT is the simulation time duration. ments satisfaction, such as fuzzy membership functions [25].

The ego vehicle continuously interacts with the dynamic amdl the QMs of the requirements described in Section Il can
uncertain environments, and the ADS generates the trajectbeyassessed from our project website [26].

Example 1. RequirementR,.; states that the ego vehicle
should keep safe distance from other objects. GM; =

min _(kpy ppk) is the minimum Euclidean distance
k2T;020

between the ego vehicle and other objects including vehicles,
pedestrians, etcX,.; should be MORE THAN the minimum
separation mj, ; otherwise, there could be collisions. The eval-
uation function is formulated with functioh™ as follows:

O; min X 2:1

Yo2:1 =) .
L otherwise Fig. 3: Overview of the proposed approadiMOOPD

De nition 1 (Requirements Violation Patternl.et D=D;
D, be the space of evaluation results for all requirements,
whereDj is the domain ofy; . A requirements violation pat- by DP. In particular, DP aims to give preferences to those
ternV; =[y1;:::;yn] 2 D is a vector, representing a distinctoatterns with higher criticality and likelihood to occur. The
combination of requirements violation for the behavior of theombination of EMOO, IP, and DP makes it possible for our
ADS under test. Given the violation pattevh, the initial re- approach to explore different test scenarios, thereby exposing
quirements seR can be split into two subsets of requirementgnore types of requirements violation patterns.
i.e., the set of satis ed requiremenis = fRyjVi[k] = Og More speci cally, the approach works as follows. In the
and the set of violated requiremeRs, = fR«jVi[k]=1g. beginning, in IP, given the ADS requirements and their im-
. portance, we rank the requirements violation patterns based
For e>.<ample,\/i - [1;1;_0; 0,0,0:0] represents a require- g, e criticality (see Section IV-B). Theriticality ranking
ments violation pattern with the eyaluatmn of seven requIgist of all patterns after IP i¥.. Then, test generation starts by
ments, _Where the rst two are V'.OlatEd’ a_nd the oth_er Y%mploying anterative evolutionary process. At each iteration,
are satls_ed. The set of all possible requwements_ wolatmme thess functions of the searching process (i.e., EMOO) are
patterns is de ned ay = .f Voi:::iVm 10, Wherem is the o heg paged on the targeted pattern (see Section IV-C); in
total.number of pattern; . F(.)rADSPP » W eva7luate the the rst iteration, the targeted pattern\&[0]. The population
requ!rements r(.apor.ted in Section I, and there 2fre= 128 speci es values for the variables of abstract test scenario
requirements violation patterns iA (i.e., a scenario in which some elds are parameterized). It
C. Problem Statement is instantiated by these values to producecancrete test
scenario Sce that is executed with the ADS simulator. The
tness scoresX of the behaviors of ADST in each test

V|0Iat|on§ can be de n_ed asafuncud)ﬁ;vﬂ = T(ADS;R), scenario are computed by running the ADS simulator and
whereS is a set of critical test scenarios exposedibgnd Vs doing requirements violation evaluation

is the set of requw_ements V|0!at|0n patterns that are coveredA1Eter the execution of EMOO, we perform the dynamic
by S (Vi V). Itis challenging for testers to explore the

prioritization (see Section IV-D). In particular, the pattern

space of all possible scenarios to expose all the patterns V\ﬂ%lihood prioritization (see Alg. 1) is used to sort all possible

limited time or computing resources. Another challenge is thﬁéé%ﬂremems violation patterns based on their likelihood to

some pattgrns may not b‘? achievable, and the testers Sh% r. Such likelihood is estimated by considering the relation
avoid wasting time searching for these patterns. In summ tween exposed and unexposed patterns. The occurrence

the general problem that we aim 1o solve is as follows: likelihood ranking of pattern¥, is merged with the criticality

Given the ADS as the system under test, along with a ?‘gﬁkingvc to update the list of patterns to search Y61 so as

of r_eqwreme_ntsR that should l_)e ach|e_ved by th_e systengo identify the most critical patterns that are likely to occur.
design a testing approach targeting requirements V|olat|ons,The st elementV; [0] of the merged list is used, in the next
which can effectively nd test scenarios to expose diﬁereﬁ!&ration as the pattern targeted by EMOO '

requirements violation patterns of high importance. Using DP, the approach continually changes its tness

IV. APPROACH functions round by round, until the given testing time or
resource budget exhausts. The whole process is described in
Section IV-E in detail. The output is a set of test scenarios that

Fig. 3 shows the work ow ofEMOODwhich rst applies facilitate reproducing the wrong behaviors of the ADS and the

Initial Prioritization (IP) and then iteratively applies Evolu-set of requirements violation patterns that have been identi ed

tionary Many-Objective Optimization (EMOO) and Dynamiaiuring the testing.

Prioritization (DP) to achieve efcient ADS testing. IP is - o

used for identifying the most critical requirements violatio- INitial Prioritization (IP)

patterns. EMOO is used for nding scenarios violating and As it is time-consuming and economically expensive to test

satisfying requirements, as speci ed by the given targetethether each pattern in the s¥tis possible to occur, we

pattern. This targeted pattern in a search round is identi eseed to determine their order of being searched for. In the

For the ADS, the testing approadhtargeting requirements

A. Overview

beginning, we prioritize the patterns based on theiticality,
which is de ned based on the following two ranking rules:

P 1: a patternV; is ranked higher than another patténif

the highestimportance levebf the violated requirements

in V; is higher than that iV .

P »: a patternV,; is ranked higher than another patter/n

if Vi has more violated requirements in importance level

p than V;, while V; has the same number of violated Fig. 4: The relationship of requirements violation patterns

requirements in importance levelsV; for 8p<l< = q

whereq is the maximum importance level.

Rule P is designed based on the prede ned importance FOF the many-objective optimization algorithm, we use the
levels among different categories of requirements in ADXON-dominated Sorting Genetic Algorithm version 3 (NSGA-

behaviors as de ned in previous work [22] (e.g., the safetg/l) _[29]' as it is good in solving prgblems with many ob-
requirement's importance level is higher than that of thgctives (four or more) [30] and so is suitable for our case.

compliance requirement). For the functionality of the sysl' OUr work, NbSGA'”! generates _a_m_;mberhof_ A(‘jDS cnUcEI
tem, certain requiremenR; may be split into a set of LSt Scenarios by maximizing or minimizing the indicators that

sub-requirementtR; 1 112 Rim . g to be achieved, wher; characterize the violation or satisfaction of the requirements
Ly ey LM ’ I
is the number of sub-requirements (e.B3 is instantiated (i.e., QMsX; introduced in Section 1I-B). Here, we discuss

into fRa.1; Ra:2; Ra:3g). For simplicity, we assign the same!OW We apply NSGA-IIl to our case.

importance level to the sub-requirements belonging to thedividuals. As explained in Section IlI-A, test scenarios de-
same category, as done ADSpp provided by our industry scribe the characteristics of the operating environment and the

partner. FOorADSpp, the requirements listed in Section liinitial state of the ego vehicle. In EMOO, we aim at generating
rank from the highest to the lowest one, i.R; R test scenarios. However, searching over all the possible sce-
RafRs1:Raz;R33g RafRan:Razg. Thus, according to Narios is not feasible. Hence, we follow a pragmatic approach
Py, Vi is ranked higher than (p,) V; if 9R, 2 R, ;8Ryo0 2 also adopted by ot_her work [_31], [32]. Speci cally, we de ne
RL:Re Ry an abstract scenaridhat speci es some xed charagtgnsncs,_
Assume that importance levglis the highest level where SUch as the road structure and the other traf ¢ participants; in

patternsV; andV, differ in terms of the number of violated the abstract scenario, some characteristics (e.qg., initial position
requirements in the same level. Rk is designed based and acceleration of a vehicle) are parameterized with variables

on the assumption that in the critical scenarios in which tf¢ ned over some domains. In the search, an individual is an

trajectory generated by the ADS violates a larger number 8§Signment to these variables. Given an individualorcrete
requirements in importance levp) the wrong decision logic €St scenariocan be derived by instantiating the abstract
of the control software is more likely to be exposed. scenario with the values assigned to the variables in the

We apply these two ranking rules, assuming tRattakes individual.
precedence oveP,, as Suggested by our industry partneEitness Functions. For a targeted requirements violation
Based onP; and P,, to compare the criticality of patternspatternVi 2 V, there is a corresponding set of quantitative
Vi andV; is to compare the number of violated requirement§1ess functionsk = fFy;:::;F,g, whose values indicate the
level by level from the highest to the lowest importance level@Ms of the requirements. Since the requirements evaluation
Therefore, the set of all requirements violation pattéfnsan is Boolean as shown in Fig. ; is an n-dimensional vector
be transformed into a sorted list of patterdig= P 1.4(V), Of f0;1g. For Vi[k]=0, the satisfaction of th&x should be
ranging from the most to the least critical patterns; we nangélaranteedRy 2 Rg), while for Vi[k] = 1, R is expected
the list criticality ranking. Note thatV, is a partial order, and to be violated Rk 2 R\). Based on the set of satised
some patterns could have the same ranking. The rst elemé@fd violated requirement®g and R\, the set of tness
Vc[0] in V is a unit vector where all the requirements arfunctionsF is also split intoFg andFy,. ForR¢ 2 R, the
violated, while the last element.[m 1] is the zero vector corresponding tness functioky 2 F g is to improveXy, i.e.,

indicating that all requirements are satis ed. trying to satisfyRk. For Rk 2 R, its corresponding tness

) Qs . . .
C. Evolutionary Many-Objective Optimization (EMOO) function Fy 2 F\, is to worsenXy, i.e., trying to violateRy.

As it is dif cult tp generate crit_ical test scenarios in which[%_ Dynamic Prioritization (DP)

one or more requirements are violated [27], we use a search-

based testing (SBT) approach, which has been shown to bén this phase, we select a pattern to be used as the target for
very effective for ADS testing [6], [9], [12]. We cast thethe next search round of EMOO. The rationale is that we want
problem of generating ADS critical test scenarios for a specito select a critical pattern that can occur in reality. Thus, DP
requirements violation pattern as a many-objective optimizast computes a ranking of patterns based on their likelihood
tion problem [28], where the tness functions are de ned aef occurrence. Then, DP merges this ranking with the ranking
the indicators for requirements satisfaction/violation. based on the criticality..

Algorithm 1: Pattern Likelihood Prioritization have been searched but not found (Vg \V), we de ne a

Input: Vi : patterns that have not been found: constant penalty as, . The remaining patterns are those that
Veq: patterns that have been searched for. need to be searched for (i.84 n Veq), and their reward is
output: V;: likelihood rankings for patterns — initialized as 0; we identify them a¢ (Line 2). The rewards
1 Initialize the reward of each pattern with Eq. (1); . .
2V, Vo nVeg: of patterns inVv; are updated as described as follows.
3 for V102 V| do To calculate the rewards of patterivs that we need to
Y C;et((\:/'is\slt()vi[) d W 1) do search for, we consider the rewards of their predecessors. The
6 if Vi is predecessf)r t, then idea is that if a predecess® of a requirements violation
7 k GetClass(Vi); patternV; has been previously foundVi(2 V n V), it is
8 rvp)+= K r(vi) likely that V; may occur. On the other hand, ¥ has been
9 Vi sort(Vi;r (V)

searched for but not found/(2 Vg \ V ¢), the likelihood

that patternV; can be found is low. Based on these heuristic

rules, the algorithm works as follows. Given a patt¥fnthat

has not been searched for and not been found (Line 3), the
1) Likelihood Prioritization: The intuition of occurrence algorithm iterates over the other patters initialized with

likelihood rankingfor requirements violation patterns is that ifyon-zero rewards (Line 5); for those that are predecessors of

a speci c requirements violation pattern has been found, the\p}e (Line 6), it updates the reward of; with rewardr(V;)

is a high likelihood to expose similar/related violation patterngscounted based on the distance betwdeandV, (Line 8).

that are less critical than the found pattern. To prioritize thggie that 2 (0:1), and so the factor k® k decreases as

patterns, we rst de ne the relationship between differenfye gistance increases. Finally, it prioritizes the sequefice

patterns to estimate the likelihood of their occurrence. of requirements violation patterns to search for, based on the

De nition 2. (Requirement Violation Pattern Relationship) Computed rewards ranging from the highest to the lowest
Given two requirements violation pattervg = [yi::::;Yn] (Line 9), as the higher the reward, the higher the likelihood

=
o

return V,

and Vie = [y 0, if 9 2 f1;1::; ng:y, =17y0= that this pattern is exposed in the next round. We ¥albs
LR | 1 LR | - 1

07 (8 2f1;::;ngnfig:y; = yP), then patterrV is the (estimated) likelihood ranking _

predecessobf patternVio, andVio is the successoof V. 2) Merging Criticality and Likelihood RankingsThen, we

merge the rankings of requirements violation patterng iand

As shown in Fig. 4, we construct a graph to describe thg with a weighted sum, following a classical approach used in
relationship between different requirements violation patterfsulti-criteria decision-making [33]. Theriticality ranking V¢
based on Def. 2. The relationship between two patternsiiglicates the importance of the patterns, while likelihood
described with an arrow (), where the left-hand side of theranking V; indicates the likelihood of the occurrence of each
arrow indicates the direct predecessor and the right-hand sjgigtern. By combining these two ranking algorithms, we can
of the arrow indicates the successor. Note that a requiremesésect (for the next round of EMOO) the patterns that are
violation patternV; could have multiple direct predecessorsyoth critical and likely to be found. The weights for these two
as well as multiple successors. Therefore, the set of pattefiggs are de ned as a VeCﬁQWc;Wu], and the nal rank of a
V is a partially ordered set according to the relationship. ThgatternV, is determined by | o, W; rank (Vj (V)), where
pattern with all requirements violatefil{1;:::;1;1]), has no rank (V; (\)) is the function to retrieve the rank & in V.
predecessors, while the pattern with no requirements violateHe merged ranking substitut®s.
([0;0;:::;0;0]) has no successors. All the patterns can be

of violated requirements. We here describe the details of oBMOOMpproach (as

Alg. 1 shows the prioritization based on likelihood thashown in Fig. 3), i.e., how to combine the initial prioritization
exploits the pattern relationship introduced in Def. 2. Firs{|P, Section IV-B), the evolutionary many-objective optimiza-
we initialize a reward function for each patte¥f asr(V;) tion (EMOO, Section IV-C), and the dynamic prioritization
(Line 1), indicating the likelihood that the pattern occurs i(DP, Section IV-D) during the testing process. Alg. 2 shows
reality. The higher the reward is, the higher the likelihood dhe algorithm ofEMOOPDaiming at generating test scenarios
the pattern is to be found. Given the ligt of patterns that that expose different requirements violation patterns.
have not been found so far, and the N& of patterns that EMOOReceives a sé¥ of requirements violation patterns to
have been treated as tness functions to search for, the rewasdrch for, the total numbé&t of generations, and the budget
for each requirement violation pattern is initialized as followss of generations in each search round. The outpuEMOOD

8 is a setS of test scenarios and requirements violation patterns
V; that have been found.

Initially, the approach applies initial prioritization (see
Section IV-B) to rank the patterns by criticality (Line 1),
For requirements violation patterns that have been fouotitaining rankingV.. The list of patterns to search far;

(V n\), we assign a positive rewarg , and for patterns that is initialized with V; (Line 2). Then, at each iteration, EMOO

2r5; Vi2vnV
r(Vi)= _ro; Vi2Vea\V, 1)
© 0 Vi N Ve

TABLE I: Two traf c scenarios used in the experiments

Algorithm 2: EMOOD

Ineut M p se} o reguire][nents S ion pattems; name ?ﬁscgggocmicle tries to overtake anotheghicle a#Vars.
: total number of generations; Overtake) . A > N y
G: budget of generations for each execution of EMOO. (So) g;%ﬁﬁgdmg slowly, whilevehicle-bis coming from 15
Output: S: a set of test scenarios; :
P V; : requirements violation patterns that have been found Turn Righg 1N€ €go vehicle must turn right at the intersection.
1 Ve P og1ag(V); /I 1P (Sr) Another vehicle-ais crossing from left, and/ehicley 12
2Vt V ¢iVed & b from right. Vehicle-cis waiting at the intersection.
3 Pop ;
4 whileM > 0~V 6 ; do
5 Select an initial population s€ randomly;
6 F ObjGenerate (Vi [0]);
7 Q;g NSGA-III(G; P; F; stop_condition); /I EMOO
/I g: used generations; Q: all solutions
8 M=M g
9 Q Q[Pop;

10 Ved V e [V {[0]g;

1 Vi GetUnfoundPatterns (Q; Vt);

12 V| RelationRanking (Vi;Ved); /I DP

13 Vi MergedRanking (V; Vc); Il DP (a) Overtake $o) (b) Turn Right S7)
14 S SceneEncoding(Pop), Vi V c¢nVi;

15 return hS; Vi i Fig. 5: Two abstract traf ¢ scenarios for the experiments

starts with a randomly selected population BefLine 5), and . . :

a requirement violation pattern to search for that de nes tHAé' Experimental Design and Settings
tnes; functions (Line 6): the pattern is the rst element of 1) Traf ¢ Scenarios: We consider two abstract traf ¢ sce-
the list of unfound patterns. EMOO performs a number arips (where left-hand traf ¢ is assumed), as shown in Table .
g of generations using NSGA-IIl [29] (Line 7) until the ach apstract traf ¢ scenario de nes shared characteristics of
stop_condition is reached: either the total numb@& of the generated test scenarios (e.g., road map, speed limit), and
generations is reached or the targeted pattern has been fouddci ¢ characteristics (e.g., position, speed, acceleration of
The numberg of used generations is subtracted from the totgie ego vehicle and other vehicles, duration of the traf ¢ light)
budgetM of generations (Line _8). The pattern t_hat has begAat are left as search variables for EMOO. The ego vehicle
searched for is stored in Sé (Line 10). ThenV: is updated \yith ADSpp follows the requirements reported in Section Il.
by removing the patterns that have heen found (the targeteq.he two abstract trafc scenarios identify two different
one andfor also other patterns) according to the requireme ming situations that will possibly lead to different behav-
viglation evaluations of all solutions generated.during' searglls of ADSpp , and thus patterns of potential requirements
(Line 11). Note that some of Fhe patterns,_dgsplte _havmg be\ﬁ lations. To ensure that the simulations start from a valid
searched for, may not be discovered W"h”? their deglmatg d meaningful state, we have the following two constraints
search round, either because they are too dif cult to d'SCOVSH the initial state of the simulation (also used for other ADSs

or;hey”argl\r/llc())tg[;hle\l/_ablz at aII: oritization: it rst in previous work [8]): (1) there is a safe distance between the
inatly, pplies dynamic prioritization: 1t TSt uses ego vehicle and other vehicles when all the vehicles start, and

Alg. 1 to get the likelihood rank|n_gV| of the pqtterns (2) the ego vehicle is far from the traf c light such that it has
(Line 12); then, it merges the rankingg and V, with a uf cient time to react

weighted sum (Line 13EMOODan be stopped when the totaF ertake (So): As sr;own in Fig. 5(a), the ego vehicle is
numberM of generations is reached or all patterns have begﬁl di Orhé i gr']_ | ' % lowl
found, i.e.,V; 6 ; (Line 4). Note that, in the ADS testing, theProc€eding o ne-2 encountersenicle-aproceeding slowly,

most time-consuming part of the search is running simulatio gd tries to overtake it. Meanwhileghicle-bis coming from

to compute tness functionsEMOODHoes not increase the ehind the ego vehicle on the passing ldmee-1 Moreover,

number of simulations compared to EMOO with the originz%feh'(:le'c'S proceeding in the oppos_lte d|re(_:t|on ona dlﬁt_ar_e_nt
ane. InSp, there are 15 search variables, including the initial

NSGA-IIIL. - . . .
states (i.e., position, velocity, and acceleration) of the ego
V. EVALUATION vehicle, vehicle-a vehicle-h and vehicle-¢ respectively, and
To demonstrate the effectiveness of our approach, vlee location and duration of the traf c light. Table Il reports
investigate the following research questions. the search space for the traf c scenaBg .

RQ1 (Pattern Detection) How is the exploration capability Turn Right (St): As shown in Fig. 5(b), the ego vehicle turns
of EMOODON generating test scenarios to expose differenght at the intersection. Meanwhileghicle-ais crossing from

requirements violation patterns? left, vehicle-bis crossing from right, andehicle-cis waiting
RQ2 (Pattern Criticality) : How effective is EMOODIn at the intersection. As shown in Table I, there are 12 search
discovering critical requirements violation patterns? variables: the initial states of the ego vehicle and the other

three vehicles, respectively, and the duration of the traf c light.

TABLE II: Search spaces for traf ¢ scenari® andSr

Objects | Variables | Intervals

ego vehicle pglyl . vg [5, 25], [5, 16]

vehicle-a p%[y], v§, aj [45, 65], [4, 16], [0, 3]
So vehicle-b | pJly],v3,ab [0, 20], [4, 16], [0, 3]

vehicle-c polyl. vg. ag [40, 90], [4, 16], [0, 3]

traf c light plylitg:ty;ty [70, 80], [5, 10], [1, 2], [2, 4]

ego vehicle palyl. vg [150, 190], [4, 16]

vehicle-a | p§[x], vy, ap [-75, -25], [4, 16], [0, 3]
St vehicle-b | p2[x], vy, a [25, 75], [4, 16], [0, 3]

vehicle-c psiyl [225, 235])

wafc light | tgity;ts 6, 12), [1, 2], [2, 4] (a) Overtake $o). (b) Turn Right 61).

Fig. 6: RQ1 — Average number of discovered patterns

2) Baseline ApproachesTo the best of our knowledge,
at the moment of writing, there do not exist any automated
testing approaches targeting requirements violation patterns. _
We compareEMOODwith three approaches, including the Approaches O"e:take (20) TumlR'ght EQST)
random test generation algorithm (the baseline of comparison pvalue | Asp | pvalue | Aro
typically adopted in SBSE research [34]) and two variants of EMOODs. Random | 1.64e-4 | 100 | 1.22e-4 | 1.00
ypically adop _ : EMOODRs. EMOO [1.73e-4 | 1.00 | 1.57e-4 | 1.00
EMOODto demonstrate the effectiveness of our approach in EMOO®s. EMOO-IP | 1.58e-4 | 1.00 | 2.38e-4| 0.99

terms of pattern detection and coverage. EMOO-IP vs.Random | 1.54e-4| 1.00 [1.19e-4[1.00
EMOO-IP vs. EMOO | 1.62e-4 | 1.00 | 8.06e-4 | 0.94
Random it randomly generates values for variables in the EMOGrs. Random 6.06e-4 | 0.96 | 0.0012 | 0.92

search space 05 and St to create test scenarios and
checks which patterns are discovered.
EMOOapplication of EMOO using tness functions target-The experiments are executed on servers with CPU (Intel Xeon
ing patternV,[0] (i.e., all requirements violated). FitnesgE5-2697A VA@2.6GHz), 32 cores, and 128 GB of memory.
functions are never changed over the search process. Nbie time budget for scenario simulation is set as 100 seconds.
that, sinceV,[0] is the most critical pattern and the ancestdvlore details of experimental results can be found online [26].
of all the patterns, other patterns can be discovered while
trying to cover it. B. Results and Analysis
EMOO-IP: the combination of initial prioritization with \we next answer the two research questions and then provide
updated objective functions but without the dynamic priogyyajitative analysis.
|t|_zz_;\t|on. In this case, each EMOO execution uses the mostl) Evaluation on Pattern DetectioRQ1): We investigate
critical pattern (inVe) that has not been searched so far. yhe giscovered requirements violation patterns by the different
3) Con gurations and ImplementationdMe implement the approaches and how the patterns are related. Fig. 6 shows
baselines and our approach in Python, and use jMetalPy [3b¢ average number of the patterns discovered during the
as the search framework. FRandom we use the implemen- allocated generations. The detailed comparisons of the patterns
tation of random search in jMetalPy [35]. For the settings afiscovered during the search process are shown in Fig. 7.
the EMOO algorithm, we adopt NSGA-III [29]. The settings As shown in Fig. 6, we can ndEMOOB average number
for NSGA-III are the default ones in jMetalPy: parent selewf discovered patterns to be 30.7 and 28.8S# and Sr,
tion with tournament selection [36], SBX crossover operataespectively, outperforming the three baseline approaches, i.e.,
polynomial mutation operator, crossover rate of 100%, amhndom EMOQand EMOO-IP. For the rst two baseline
mutation rate equal to the reciprocal of the number of searapproacheskandom and EMOOQthere is a large increase in
variables. For each EMOO-based algorithm, the size of ttiee number of patterns discovered within the 50th generation,
population is 50. The weights used when merdgingandV, while the speed to nd new patterns decreases after the 100th
are[wg; wi] =[1;1]. generation. The reason is that bd@MOO-IP and EMOOD
Each approachEMOOand the baselines) is used to testould change the objective functions to search for, leading
the ADS for some generations. As the termination conditidn the discovery of new patterns during the search process.
G for EMOQEMOO-IP, andEMOODwe set 100 generationsCompared with the third baseline appro&tiOO-1P, EMOOD
for the rst round and 50 generations for the subsequeatljusts the sequence of the targeting pattern to search for
rounds. As global budgeM, we set a total number of by also considering the likelihood to occur, thus excluding
400 generations across all the rounds. Hence, totally we gzatterns that cannot occur and saving the search time. Hence,
evaluate50 400=20000scenarios. FoRandom, in order to in Spo and inSy, EMOORould nd, respectively, 4.7 and 3.2
assure a fair comparison, we 8000 tness evaluations as patterns more thaBMOO-IP.
the termination condition. To take into account the random We also observe th&andom performs better irSt than
effect during the search, we repeat each algorithm ten timésSg, asSy has a smaller search space. Thus, the gaps in the

TABLE Ill: RQ1 — Statistical test results comparing the
number of patterns discovered by the approaches

(a) Overtake $o). (b) Turn Right 67).

Fig. 7: RQ1-Comparison of discovered patterns

TABLE IV: RQ1-Time cost of the testing process Fig. 8: RQ2-The sum of criticality of discovered patterns

Time Cost | Overtake (Sp) [Turn Right (St)
(hours) [Rand. EMOO EMOO-IP EMOQBand. EMOO EMOO-IP EMOOD

Simu'aﬂo_”rl 1685 1464 14.25 14-35 1333 1011 1083 1077 ysing 30 threads. Table IV reports, for each approach, the time
Computatio - 014 0.16 0.1 - 014 0.15 0.1 f the test si lati th tati ti ludi
Toml | 1685 1478 144l 14951333 1025 Toos 1toes COSt Of the test simulations, the computation time (excluding
In the simulatorADS pp is terminated once collisions are detected. t_he simulation time _du”ng tn_ess eV?"Ua“O”_)' and_ the total
time cost. ADSpp will be terminated in the simulation after
violating some requirements, especially ®afety (R2.1), if
average number of the discovered patterns between the ftheg ego vehicle's behaviors are abnormal. We observe that
approaches are smaller 8 thanSg. the time costs ofEMOQO EMOO-IP, and EMOODare less
We next perform a statistical test on the nal results of ththanRandom because these three approaches could generate
approaches across the ten runs. Following a guideline [3more scenarios with violations d®»:1, and these scenarios
we use the Wilcoxon signed rank test [38] and the Varghare terminated earlier. Moreover, we observe that the most
Delaney's A1, effect size [39]. Table Il reports the resultsexpensive part of the approaches is due to the simulations.

of the statistice_ll test obtained when comparing the number Apswer to RQL Each phase (EMOO, IP, and DP) of
the patterns discovered dyandom EMOOEMOO-IP, and gMmoomprovides a signi cant contribution in discovering
EMOODor So and St . As shown in the table, thp-values requirements violation patterns. Indeed, the approaches of
of the results betweeEMOOLaNd the baseline approache: Random EMOOEMOO-IP, andEMOORre in the order
are all lower than 0.05, and th&,, statistics show a large of increasing effectiveness, indicating that the EMOO,
effect size (close or equal to 1). Hence, the number of il |p ang DP techniques all provide a relevant contribution

patterns discovered bMOODS signi cantly higher than 1, EMOOB overall effectiveness. Additional\EEMOOB®
those discovered by the baseline approaches; moreover, offactiveness does not come at the cost of time.

also notice that each technique of the approach (i.e., IP, Lr,
and EMOO) signi cantly improves over the approach without 2) Evaluation on Criticality RQ2): We analyze the crit-
that technique. icality of requirements violation patterns discovered by each
Moreover, we want to know whethéiMOO® higher ef- approach; to this aim, we propose a metric for assessing the
fectiveness is due to its capability to discover more patternsticality. As explained in Section IV-B, the initial ranking
(which do not necessarily subsume patterns discovered Wy ranks the patterns based on their criticality. Therefore,
the baseline approaches) or its capability to subsume all twe quantify the criticality of each pattern by its rank Vi,
patterns discovered by the baseline approaches plus some ateerK(V;) = 1 W The sum of the criticality of
patterns. We compare all the discovered patterns in the tiscovered patterns can be calculated ag,,,, K(Vi). Fig. 8
runs for the four approaches, as shown in Fig. 7. We nd thahows the results for the sum of the criticality of discovered
across ten runsEMOO[xould aggregately discover 42 andpatterns. We nd thatEMOOUDachieves the highest sum for
41 patterns inSo and St , respectively. In additionEMOOD the criticality of discovered patterns, being 8.75 and 9.23 on
could discover 6 and 5 extra patterns (not discovered by aayerage forSo and St , respectively.
baseline approach), accounting for 14% and 11.9% of the totaM/e also compare the results in Fig. 8, for each pair of
number of discovered patterns By and Sy, respectively. approaches folSo and St, using the same statistical tests
Thus, EMOODP higher effectiveness lies in its capability toused in RQ1. We report the results online [26] due to space
discover extra patterns compared with the baseline approachiesit. Using signi cance level =0:01, we observe thaEMOOD
Finally, to check whether the effectivenessElOOBomes is always signi cantly better than the baseline approaches;
at the cost of computation time, we compare the whole exededMOO-IP is always better tharRandom and better than
tion time of EMOORNd the baseline approaches. ConsiderifgMOQGIn Sp; EMOGQGis better thanRandom in Sg; in the
that the simulation time of each test scenario could be larggher cases, there is no signi cant difference.
we parallelize the simulation of the generated test scenariosTable V provides a detailed analysis by showing the aver-

	Introduction
	Motivation
	Formalization and Problem Statement
	Autonomous Driving System
	Requirements Violation Evaluation
	Problem Statement

	Approach
	Overview
	Initial Prioritization (IP)
	Evolutionary Many-Objective Optimization (EMOO)
	Dynamic Prioritization (DP)
	Likelihood Prioritization
	Merging Criticality and Likelihood Rankings

	Details of EMOOD

	Evaluation
	Experimental Design and Settings
	Traffic Scenarios
	Baseline Approaches
	Configurations and Implementations

	Results and Analysis
	Evaluation on Pattern Detection (RQ1)
	Evaluation on Criticality (RQ2)
	Requirements Violation Pattern Analysis

	Threats to Validity

	Related Work
	Conclusion and Future Work
	References

