
FinFuzzer: One Step Further in Fuzzing Fintech
Systems

Qingshun Wang∗, Lihua Xu†, Jun Xiao‡, Qi Guo‡, Haotian Zhang‡, Liang Dou∗, Liang He∗, Tao Xie§
∗East China Normal University, †New York University Shanghai, ‡Ant Group Co. Ltd., §Peking University;

Key Laboratory of High Confidence Software Technologies (Peking University), Ministry of Education, China

Abstract—Comprehensive testing is of high importance to
ensure the reliability of software systems, especially for systems
with high stakes such as FinTech systems. In this paper, we
share our observations of the Ant Group’s status quo in testing
their financial services, specifically on the importance of properly
transforming relevant external environment settings and priori-
tizing input object fields for mutation during automated fuzzing.
Based on these observations, we propose FinFuzzer, an automated
fuzz testing framework that detects and transforms relevant
environmental settings into system inputs, prioritizes input object
fields, and mutates system inputs on both environment settings
and high-priority object fields. Our evaluation of FinFuzzer
against four FinTech systems developed by the Ant Group shows
that FinFuzzer can outperform a state-of-the-art approach in
terms of line coverage in much shorter time.

Index Terms—FinTech, Fuzzing, Software Testing

I. INTRODUCTION

Information technology is playing an increasingly important
role in financial services. The Ant Group (in short as Ant)
is one of the largest companies that specialize in automated
financial services. In 2020, the number of global users of
Alipay (the main application of Ant) exceeded 1.2 billion, and
its financial services supported 720 million consumers and 28
million small, medium, and micro enterprises. Because any
unexpected failure on such financial services could cause huge
losses, comprehensive testing [1], [2] is highly important within
Ant.

Unfortunately, although core financial services (i.e., those
directly related to core business) such as payments are compre-
hensively tested, peripheral services (still being highly critical
despite not directly related to core business) are tested with only
50% to 70% line coverage. One example of these peripheral
services provides risk information about loan business to partner
banks, and receives hundreds of thousands query requests every
minute. Another example provides important data for multiple
services involving more than 30 million end users.

To improve code coverage of these peripheral services,
recording and replaying real data from the field are a natural
option (given that many systems developed by Ant record
real input data when serving users live) but with limited
effectiveness because replaying recorded historical data usually
does not reproduce the same execution path. In particular, we
observe that external environment settings can impact program
behaviors, causing such non-reproducibility. For instance,
programs may access the underlying database to fetch crucial
data or invoke a remote procedure call (RPC) to attain global
configuration values. These environmental settings have a
significant impact on system control flow and execution results,

and their corresponding global configuration values may vary
every time when the historical data are replayed.

Thus, instead of recording and replaying real data, Ant adopts
a context-aware adaptive fuzzing approach [3] to apply object-
field-level mutations on existing input data (e.g., recorded
historical data) in the form of Java objects1 but still with
insufficient effectiveness. In particular, we observe that bluntly
fuzzing on all input object fields results in poor testing
effectiveness. According to our investigation, multiple services
share the same type of input data object, and each such service
reads/writes only some but not all object fields; hence, treating
all fields equally during the fuzzing process for a service under
test may result in substantial wasted efforts. Additionally, our
further in-depth investigation shows that some object fields
indeed have more impact on the program execution compared
to others.

To tackle the aforementioned issues, in this paper, we
propose FinFuzzer, a fuzz testing framework that treats external
environmental settings as normal program inputs, prioritizes
the input object fields, and mutates upon them. In particular,
FinFuzzer first detects external environment settings by inter-
cepting the corresponding methods and replace their return
values with values provided by the corresponding generated
test input. Thus the environmental settings are transformed as
system inputs, and can be treated as normal parameters of the
program. Furthermore, FinFuzzer prioritizes input object fields
by analyzing the historical input-output pairs and guides the
mutation process with the prioritized fields.

We apply FinFuzzer on four real systems developed by Ant.
The result shows that FinFuzzer is able to achieve higher line
coverage than the one achieved by merely replaying historical
data in a short period of time. We also compare the result with
a state-of-the-art approach named Zest [4], and the result shows
that FinFuzzer’s overall effectiveness outperforms Zest even
when the data generator used by Zest is specifically optimized
manually.

In summary, this paper makes the following main contribu-
tions:

• The first fuzz testing framework named FinFuzzer that
treats external environment settings as first-class input
parameters.

• A lightweight technique to prioritize object fields in test
inputs.

• Empirical results of applying FinFuzzer on four systems
developed by Ant.

1Most of the peripheral services developed by Ant take Java objects (an
inherently highly structured data format) as their inputs.



Fig. 1: An illustrative example that external environment
settings influence program execution path

II. OBSERVATIONS AND CHALLENGES

We next illustrate the observations and findings in Ant’s
status quo of the fuzz testing process.
External environment settings. External environment settings
are common in real-world programs, such as database access,
network requests, and RPC. Some of these environment settings
may have great impact on the program execution. For instance,
the program execution may follow different branches based on
the global configuration values fetched from a remote service
through an RPC invocation. However, these data are typically
neglected when the historical data are recorded. It is unlikely
to reproduce the program execution during replay, causing not
to cover code branches that can be triggered by only certain
environment settings.

Figure 1 shows an illustrative example for this problem. No
matter what value is assigned to the parameter “message”, the
configuration value stored in an external service is the crucial
factor in exploring different branches. If the configuration value
is fixed to “DEFAULT” during the testing process, the faulty
method in Line 11 can never be reached.
High-priority object fields vs. unused object fields. Another
common situation is also frequently observed when fuzz testing
is bluntly applied on the historical data. To illustrate the
problem, Table I shows a simplified example. Four input data
and possible corresponding outputs are listed in the table. PA,
PB, and PC are fields contained in the input data, and PD and
PE are fields contained in the output data. PA, PB, PC, and
PD each contain two different equivalent categories: a1 and a2,
b1 and b2, c1 and c2, and d1 and d2. PE contains four different
equivalent categories: e1, e2, e3, and e4. For example, for input
data <PA: a1, PB: b1, PC: c1>, PD in the corresponding
output data always belongs to d1, but PE can belong to either
e1 or e2 (the reason for PE to fall into two equivalent categories
is that there exists impact from environment settings).

As shown in Table I, different object fields indeed have
different levels of influence on the program execution. If we
compare the input data with IDs 1 and 2, the only difference
is the category of value assigned to PA, but values of both
fields in their corresponding output change to another category.
But PB affects only PE, if we compare the data with IDs 1
and 3. There are also fields that do not impact the output at
all: the category of value assigned to PC differs between data
with IDs 2 and 4, but the output does not change.

With in-depth analysis, we observe that there is a common
pattern in Ant development to use a big data object to carry all

TABLE I: An illustrative example that different fields have
different impacts on program execution

ID Input Fields Output Fields
1 PA: a1, PB: b1, PC: c1 {PD: d1, PE: e1}, {PD: d1, PE: e2}
2 PA: a2, PB: b1, PC: c1 {PD: d2, PE: e3}
3 PA: a1, PB: b2, PC: c1 {PD: d1, PE: e1}, {PD: d1, PE: e4}
4 PA: a2, PB: b1, PC: c2 {PD: d2, PE: e3}

Fig. 2: An overview of FinFuzzer
possible information. When the upstream sends a request, all
related information is serialized into the object and dispatched
to all components that may respond to that request. Since each
component has different responsibilities, not all information is
used by each component. Therefore, although the input object
may contain hundreds of different fields, the service under test
may be interested in only a small part of them and will not
access the others. Hence exploring different values for these
unused fields will not contribute to code coverage. Likewise, a
small portion of object fields will have greater impact on the
program execution.

III. OUR APPROACH

To tackle the observations and challenges described in
Section II, we propose FinFuzzer, a fuzz testing framework
that treats external environment settings as first-class input
parameters and mutates on prioritized input object fields.
Figure 2 provides an overview of FinFuzzer.

In a nutshell, the overall testing process of FinFuzzer can
be described as follows:

1) Analyzer recognizes important fields from the historical
data; Instrumentor detects possible external environment
settings inside the target program and transforms them
into normal program inputs. In the meantime, Evaluator
picks meaningful inputs from the historical data. These
inputs are saved in the Repository as the initial set of
seeds.

2) Scorer then calculates a score for every seed stored in
the Repository and selects one of them based on the
priority of the scores.

3) Mutator then produces a new test input based on the
selected seed, using the strategy described in Sec-
tion III-B2.

4) The new input data is then used to test the target program.
During the execution, all external settings are replaced
by values provided in the test inputs by Instrumentor.



5) When the execution terminates, Evaluator decides
whether the current input should be saved as a new seed
according to runtime information collected by Monitor.

6) Repeat from the second step until the termination
condition is met.

A. Preparation Phase

Important data are collected and analyzed in this phase in
preparation for the testing phase. The following components
are involved in this phase and act in parallel.

1) Instrumentor: During this phase, Instrumentor is re-
sponsible for detecting possible external environment settings
existing in the target program. We learn from Ant developers
that we can make the following assumptions for almost all
systems developed by Ant:

• The only sources of external environment settings are
database access and RPC, which we refer to as “external
inputs” from now on.

• All external inputs are fetched through methods following
similar coding conventions. For example, all database
accesses are delegated to methods defined in interfaces
under a certain package, whose name should always end
up with “dao” (Data Access Object). All RPC methods
must be registered in the configuration.

Therefore, detecting external inputs can be simplified to find
packages and interfaces whose names match the identified pat-
terns and extract necessary information from the configuration
file. FinFuzzer then transforms the external inputs into normal
system inputs. More specifically. FinFuzzer uses a Java agent
to modify the loaded classes, and then replaces all invocations
to intercepted methods with a stub that returns a value provided
by the test inputs.

2) Analyzer: Analyzer prioritizes the object fields and iden-
tifies the high-priority fields to guide later mutation. We design
here a lightweight technique instead of traditional program
analysis techniques based on the following observations:

• Complex frameworks adopted by Ant systems cause
various runtime problems when we apply traditional
program analysis techniques such as taint analysis [5].

• Fields that have great impact on the execution path are
the ones that lead to different categories in output.

• Fields of enumeration type are most likely to be high-
priority fields across services.

• Fields of enumeration type, however, cannot be simply
distinguished from its data type, because the coding
convention in Ant is to use String or Integer to represent
an enumeration value for flexibility and extensibility.

Analyzer consists of two phases. The first phase classifies
data types of each object field. We design a machine-learning-
based technique, where the model is internally trained for all
Ant systems based on the following principles:

• The name of a field usually indicates some important
information, e.g., fields with a name that ends with “status”
or “type” are highly likely to represent enumeration values.

• Fields of enumeration types have a limited number of
meaningful values; thus, the value range of historical
values of these fields is usually small.

The second phase prioritizes and distinguishes high-priority
fields through the following four steps:

1) Identify input categories for each object field based on
their type. For example, for the enumeration type, each
possible value belongs to a different category. Numeric
types are divided into three categories: less than zero,
equal to zero, and greater than zero. Other types are
divided into two categories: empty and non-empty.

2) Map from an input category combination to its possible
corresponding output category combinations to produce
mappings. The resulting mappings are similar to the
example shown in Table I.

3) Prioritize fields using the following algorithm. First,
each field is deleted from input category combinations
one by one. After each deletion, if there are duplicated
input combinations, merge their corresponding output
sets. If the size of the merged output set is greater
than the max size of all the original output sets (before
being merged), this field is considered to have ability
to affect the execution result. Thus the field is restored
and the mappings are not updated. Otherwise update the
mappings and move on to delete the next field.

4) The remaining fields after iterating the previous step on
each field are considered to have high priorities.

3) Evaluator: An initial set of seed data from the historical
data is constructed, so FinFuzzer does not need to start from
scratch. Evaluator decides whether an input should be reserved
as a new seed in the Repository based on the recorded
information. The selection criteria are similar to existing tools
such as AFL [6]: any test input that results in a new state
transition (such as entering a new branch or executing a unique
path that has never been executed by previously selected seeds)
is saved.

Evaluator is also used in the testing phase. Once a new input
is generated and fed to the program under test, Evaluator also
decides whether it should be saved in the Repository using the
same criteria.

B. Testing Phase

The testing phase is where actual testing happens. During
this phase, FinFuzzer generates new test inputs, feeds them to
the program under test, monitors the execution, and collects
necessary information. The functionalities of the components
involved in this phase are described below.

1) Scorer: The functionality of Scorer is to accelerate the
fuzzing process by prioritizing the currently best seeds to be
mutated to produce new test inputs. The priority of each seed is
decided by their score, and seeds with higher scores are more
likely to be selected. The algorithm for calculating the score
uses a context-aware adaptive strategy inspired by previous
research [3], where the score of a seed is decided by the number
of branches that are not covered by any seed and are “close”
to the execution path of this seed.

2) Mutator: Mutator produces new test inputs that will
later be fed to the program under test. New test inputs are
generated by mutating the seed object selected by Scorer.
Mutator performs field-level mutations and will modify only
a single field every time, and according to a recent study [7],



TABLE II: Line coverage comparison

System Name Replay Historical Data Zest with Fuzzing External
Inputs FinFuzzer FinFuzzer without

Prioritizing Fields
Line Coverage Line Coverage Time Required Line Coverage Time Required Line Coverage Time Required

System1 77.84% 83.99% 900s 83.99% 80s 83.99% 120s
System2 86.71% 90.86% 1205s 91.80% 115s 91.80% 435s
System3 68.52% 84.27% 400s 84.67% 80s 84.67% 110s
System4 88.01% 96.65% 435s 97.88% 65s 97.88% 220s

TABLE III: Influence of external input

System
Name

Max Line
Coverage

Without Fuzzing External
Input

System1 83.99% 79.14%
System2 91.80% 83.90%
System3 84.67% 82.26%
System4 97.88% 97.88%

doing so can help detect most of faults in the program under
test.

The field to be modified is selected upon the information
provided by Analyzer. Important fields and enumeration type
fields will have higher priorities to be selected. The new value
that will be assigned to the selected field to produce a new
test input comes from the following sources of data:

• Historical values of the same field, to explore different
combinations of historical data.

• A set of predefined extreme values, such as empty
string, zero, NULL, and Integer.MAX VALUE to explore
exceptional situations.

• Constant values extracted from the bytecode, to explore
possible meaningful values that are not covered in the
historical data. Including these values is especially helpful
to find meaningful values for fields with enumeration
types.

• Random values.
3) Monitor: Monitor collects runtime information of the

target program when any test input is fed to it. Typically,
the code coverage achieved by each test input is recorded in
the database and is used by Evaluator. In addition, assertion
violations, unexpected exceptions, crashes, and execution time-
out are also monitored as they indicate faults detected during
testing.

IV. EVALUATION

In this section, we apply FinFuzzer to four real software
systems2 developed by Ant and intend to answer the following
two research questions:

• RQ1: How much influence do external inputs have on
program execution paths?

• RQ2: How effective and efficient is FinFuzzer compared
with a state-of-the-art approach?

To answer RQ1, three out of these four systems (System1
to System3) implement two different strategies for part of its
business logic. Only one of the two strategies is executed during
any system execution, and is controlled by the configuration
server. Multiple different machines are assigned to run different
strategies so that different branches of the system under test are
guaranteed to run separately without interference. The external
input in our evaluation is set in a method switchOld2New,

2Concrete information including system names involved in our evaluation
is anonymized in this paper, for confidentiality considerations.

whose return value depends on the data fetched from the
configuration server. Only one of the implemented strategies is
executed based upon the returned value. In our evaluation, we
collect and compare the results of line coverage (measured by
Jacoco [8]) for FinFuzzer with the ability of fuzzing external
inputs disabled, and find that the coverage for all three systems
is decreased, as shown in Table III. For comparison purposes,
System4 does not contain external inputs and the resulting
coverage remains the same.

To answer RQ2, we again use line coverage to evaluate
the effectiveness of different approaches. We compare the line
coverage and the minimum time to achieve this coverage from
four different approaches, namely, replaying the historical data,
Zest [4] with fuzzing external inputs, FinFuzzer, and FinFuzzer
without prioritizing fields.

Note that we use Zest [4] as a state-of-the-art fuzz testing
approach, and provide additional abilities to fuzz the external
inputs. For each of the systems used in the evaluation, we
manually write a Zest generator, so that a wrapper object
contains the mock data for the external inputs [9].

As shown in Table II, both FinFuzzer and Zest (with fuzzing
external inputs) are able to cover more lines compared to
merely replaying historical data. We do not collect time required
for replaying historical data because every replaying involves
tremendous man power to manually screen through all the
recorded data and pick the useful ones by experiences.

Moreover, FinFuzzer is able to achieve similar or slightly
higher line coverage than Zest (with fuzzing external inputs),
but in a much shorter time, with two main reasons. (1) There is
no easy way to “deserialize” an existing input data into the bit
sequence used by Zest; thus, we cannot construct an initial set
of seeds, and Zest has to generate all input data from scratch.
(2) Zest does not have any information about the high-priority
fields, and hence has to conduct analysis during the fuzzing
process. If we take the ability of prioritizing object fields out
of FinFuzzer, the time required for achieving the same line
coverage increases by 37.5% to even 278.3%.

V. CONCLUSION

In this paper, we have shared our observations on automated
testing practices at Ant. We have proposed a new fuzz testing
framework named FinFuzzer that can automatically detect and
intercept external inputs, as well as prioritizing important object
fields that may have impact on program execution to guide the
fuzzing process. The evaluation results show that FinFuzzer can
efficiently achieve better line coverage than previous approaches
adopted by Ant and a state-of-the-art approach.

VI. ACKNOWLEDGMENTS

This work was supported by the Science and Technology Commis-
sion of Shanghai Municipality Grant (No. 20511102502). Liang Dou
and Liang He are corresponding authors.



REFERENCES

[1] Q. Wang, L. Gu, M. Xue, L. Xu, W. Niu, L. Dou, L. He, and T. Xie,
“FACTS: Automated black-box testing of FinTech systems,” in Proceedings
of the 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE), 2018, p. 839–844.

[2] T. Jin, Q. Wang, L. Xu, C. Pan, L. Dou, H. Qian, L. He, and T. Xie,
“FinExpert: Domain-specific test generation for FinTech systems,” in
Proceedings of the 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE), 2019, p. 853–862.

[3] Y. Li, Y. Xue, H. Chen, X. Wu, C. Zhang, X. Xie, H. Wang, and
Y. Liu, “Cerebro: context-aware adaptive fuzzing for effective vulnerability
detection,” in Proceedings of the 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE), 2019, pp. 533–544.

[4] R. Padhye, C. Lemieux, K. Sen, M. Papadakis, and Y. Le Traon, “Semantic
fuzzing with Zest,” in Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2019, pp. 329–340.

[5] J. Clause, W. Li, and A. Orso, “Dytan: A generic dynamic taint analysis
framework,” in Proceedings of International Symposium on Software
Testing and Analysis (ISSTA), 2007, p. 196–206.

[6] M. Zalewski. (2020) American Fuzzy Lop. [Online]. Available:
https://lcamtuf.coredump.cx/afl/

[7] C. Hutchison, M. Zizyte, P. E. Lanigan, D. Guttendorf, M. Wagner, C. L.
Goues, and P. Koopman, “Robustness testing of autonomy software,” in
Proceedings of 40th IEEE/ACM International Conference on Software
Engineering: Software Engineering in Practice Track (ICSE-SEIP), 2018,
pp. 276–285.

[8] “JaCoCo Java Code Coverage Library,” https://www.eclemma.org/jacoco/,
accessed in 2021.

[9] L. Zhang, X. Ma, J. Lu, T. Xie, N. Tillmann, and P. de Halleux,
“Environmental modeling for automated cloud application testing,” IEEE
Software, vol. 29, no. 2, pp. 30–35, 2012.

https://lcamtuf.coredump.cx/afl/
https://www.eclemma.org/jacoco/

	Introduction
	Observations and Challenges
	Our Approach
	Preparation Phase
	Instrumentor
	Analyzer
	Evaluator

	Testing Phase
	Scorer
	Mutator
	Monitor


	Evaluation
	Conclusion
	Acknowledgments
	References

