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ABSTRACT
Computing systems that make security decisions often fail
to take into account human expectations. This failure oc-
curs because human expectations are typically drawn from
in textual sources (e.g., mobile application description and
requirements documents) and are hard to extract and cod-
ify. Recently, researchers in security and software engineer-
ing have begun using text analytics to create initial models
of human expectation. In this tutorial, we will provide an
introduction to popular techniques and tools of natural lan-
guage processing (NLP) and text mining, and share our ex-
periences in applying text analytics to security problems.
We will also highlight the current challenges of applying
these techniques and tools for addressing security problems.
We conclude with discussion of future research directions.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—In-
vasive software; D.2.1 [Software Engineering]: Require-
ments/Specifications; I.2.7 [Artificial Intelligence]: Nat-
ural Language Processing—Text analysis
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1. TEXT ANALYTICS FOR SECURITY
Context is critical for making security decisions. Security

policies often base access decisions on temporal context (e.g.,
time of day) and environmental context (e.g., geographic lo-
cation). An OS access control policy frequently considers
execution context (e.g., user ID, program arguments, previ-
ous inputs). Security analysis for programs often uses con-
texts of control flow and data flow. Indeed there are many
forms of context considered in security.

One form of context is frequently overlooked: human ex-
pectations, e.g., did a human expect a certain functionality
to occur? This omission may seem odd given that computer
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security is sometimes defined with respect to expectation:
“A computer is secure if you can depend on it and its soft-
ware to behave as you expect” [2, p. 5]. The di�culty (and
the deficiency in this definition) is that human expectations
are often di�cult to formally (and even informally) define.
Without a concrete definition of “expectation,” the security
of a system cannot be verified.

Humans draw expectations from many sources. One com-
mon source is textual information. For example, developers
derive security expectations from API documentation, com-
ments in code, and requirements documents. Users derive
security expectations from textual descriptions of program
functionality (e.g., mobile application description), as well
as text (e.g., UI texts) displayed during runtime. Hence,
textual information sources have become inputs from which
researchers can derive context.

Our prior work is amongst several that have considered
text analytics for security. In our Whyper work [3], we used
natural language processing (NLP) to bridge the gap be-
tween permission requested by an Android application and
the expectations of a user who has read the application de-
scription, i.e., textual description of the application in the
Google Play Store. The key insight is that existing program
analysis tools identify malicious and privacy infringing be-
havior by comparing program execution to a list of rules cre-
ated by some expert. However, those rules must be placed
within the context of user expectations. For example, if an
application is designed to record a user’s phone calls, then
recording audio in the background during a phone call is ex-
pected, and therefore should be allowed. While Whyper is
currently limited to the functional semantics of permissions,
the concepts can be extended to other notions of functional
semantics (e.g., data flows).

We have also used NLP to automatically extract access
control policies (ACPs) from textual requirements documen-
tation [11]. In general, like other types of textual doc-
uments, textual requirements written in English are typi-
cally unstructured, ambiguous, and include implicit infor-
mation, posing challenges for NLP. However, in textual re-
quirements, ACP sentences (i.e., textual requirements sen-
tences for describing ACP rules) tend to follow specific styles
such as: [subject] [can/cannot/is allowed to] [action] [re-
source] for role-based ACPs. To leverage such insight, we de-
veloped the Text2Policy approach, which includes adapted
NLP techniques designed around a model (such as the ACP
model) to automatically extract model instances from tex-
tual requirements documents. Our Text2Policy approach
consists of three main steps: (1) apply linguistic analysis to



parse textual requirements documents and annotate words
and phrases in sentences from the textual requirements doc-
uments with semantic meanings, (2) construct model in-
stances using annotated words and phrases in the sentences,
and (3) transform these model instances into formal speci-
fications. More recently, without requiring predefined pat-
terns in the ACP model, Slankas et al. [6] combined tech-
niques from information extraction and machine learning to
discover patterns that represent ACPs in sentences, no mat-
ter whether or not these ACPs follow one of Text2Policy’s
predefined patterns in the ACP model.

This work on applying text analytics to security is mo-
tivated by text analytics for software engineering (SE). SE
data contains a rich amount of natural language text: re-
quirements, code comments, program identifier names, doc-
uments, commit messages, release notes, mailing list dis-
cussions, etc. The natural language text is essential in the
software engineering process to help software developers and
software engineering researchers understand and maintain
software better. While applying NLP and text mining to SE
dates back over a decade [1], it has recently re-emerged as a
hot topic [12]. Many recent studies showed that automated
analysis of natural language text can improve software re-
liability, programming productivity, software maintenance,
and software quality in general. For example, Shepherd et
al. [5] applied NLP techniques such as part-of-speech (POS)
tagging to find word paraphrases to expand code search; Tan
et al. [8] leveraged NLP techniques such as POS tagging,
chunking, and semantic labeling to automatically extract
specifications from code comments, and checked source code
against these specifications to detect software faults and bad
comments; our previous work [13] automatically extracted
resource specifications from API documents by leveraging
the named entity recognition NLP technique; and our pre-
vious work [4] automatically extracted and validated code
contracts from API documents by developing new NLP tech-
niques such as noun boosting and equivalence analysis.

In this tutorial, we will use our combined expertise in
security and software engineering to present how text ana-
lytics can be applied to security. The tutorial will provide
an introduction of popular techniques and tools of NLP and
text mining such as WordNet [10], Stanford Parser [7], and
Weka [9]. It will describe several success stores of apply-
ing NLP to security. Finally, we will discuss the current
challenges of applying NLP and text mining techniques and
tools for security problems, concluding with future research
directions.
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