
Cooperative
Testing and Analysis:

Tao Xie
Peking University, China (2011-2012)
North Carolina State University, USA

Supported in part by NSF CAREER 0845272 and Microsoft Research SEIF 2011

 Software testing is important
 Software errors cost the U.S. economy about $59.5 billion each

year (0.6% of the GDP) [NIST 02]

 Improving testing infrastructure could save 1/3 cost [NIST 02]
 Software testing is costly
 Account for even half the total cost of software development

[Beizer 90]
 Automated testing reduces manual testing effort
 Test execution: Junit/xUnit framework

 Test generation: AgitarOne, Parasoft Jtest, etc.

 Test-behavior checking: AgitarOne, Parasoft Jtest, etc.

2

Code to generate inputs for:

Constraints to solve

a!=null

a!=null &&
a.Length>0

a!=null &&
a.Length>0 &&
a[0]==1234567890

void CoverMe(int[] a)
{
 if (a == null) return;
 if (a.Length > 0)
 if (a[0] == 1234567890)
 throw new Exception("bug");
}

Observed constraints

a==null

a!=null &&
!(a.Length>0)
a!=null &&
a.Length>0 &&
a[0]!=1234567890

a!=null &&
a.Length>0 &&
a[0]==1234567890

Data

null

{}

{0}

{123…}

a==null

a.Length>0

a[0]==123…
T

T F

T

F

F

Execute&Monitor Solve

Choose next path

Done: There is no path left.

Negated condition

[Godefroid et al. 05]

 Method sequences
 MSeqGen/Seeker [Thummalapenta et al. OOSPLA 11, ESEC/FSE 09],

Covana [Xiao et al. ICSE 2011], OCAT [Jaygarl et al. ISSTA 10],
Evacon [Inkumsah et al. ASE 08], Symclat [d'Amorim et al. ASE 06]

 Environments e.g., db, file systems, network, …

 DBApp Testing [Taneja et al. ESEC/FSE 11], [Pan et al. ASE 11]

 CloudApp Testing [Zhang et al. IEEE Soft 12]

 Loops
 Fitnex [Xie et al. DSN 09]

 Code evolution
 eXpress [Taneja et al. ISSTA 11]

@NCSU ASE

Download counts (20 months)
(Feb. 2008 - Oct. 2009)

 Academic: 17,366
 Devlabs: 13,022
 Total: 30,388

http://pexase.codeplex.com/
Publications: http://research.microsoft.com/en-us/projects/pex/community.aspx#publications

http://research.microsoft.com/en-us/projects/pex/community.aspx

 Machine is better at task set A
 Mechanical, tedious, repetitive tasks, …
 Ex. solving constraints along a long path

 Human is better at task set B
 Intelligence, human intention, abstraction, domain

knowledge, …
 Ex. local reasoning after a loop

= A U B?

Dagstuhl Seminar 10111

Practical Software Testing: Tool Automation and Human Factors

Dagstuhl Seminar 10111

Practical Software Testing: Tool Automation and Human Factors

Human Factors

 Human-Assisted Computing
 Driver: tool Helper: human
 Ex. Covana [Xiao et al. ICSE 2011]

 Human-Centric Computing
 Driver: human  Helper: tool
 Ex. Coding duels @Pex for Fun

 Interfaces are important. Contents are important too!

 Motivation
 Tools are often not powerful enough (at least for now)
 Human is good at some aspects that tools are not

 Task for Tool: What needs to automate?

 Tool  Human
 What difficulties does the tool face?
 How to communicate info to the user to get her help?

 Tool Human
 How does the user help the tool based on the info?

 Iterations to form feedback loop?

external-method call problems (EMCP)

object-creation problems (OCP)

12

 object-creation problems (OCP) - 64.79%
 external-method call problems (EMCP) - 26.76%
 boundary problems – 5.63%
 limitations of the used constraint solver – 2.82%

The total block coverage achieved is 49.87%, with the lowest
coverage being 15.54%.

13

 Example 1:
 File.Exists has data dependencies

on program input
 Subsequent branch at Line 1 using

the return value of File.Exists.

 Example 2:
 Path.GetFullPath has data

dependencies on program input
 Path.GetFullPath throws

exceptions.

 Example 3: Stirng.Format do
not cause any problem

14

1

2

3

 Motivation
 Tools are often not powerful enough (at least for

now)
▪ EMCPs and OCPs

 Human is good at some aspects that tools are not
▪ EMCPs: Instruct which external methods
▪ to instrument
▪ to write mock objects for

▪ OCPs: Write factory methods for generating objects

15

 Developers provide guidance to help tools
achieve higher structural coverage

 Apply tools to generate tests
 Tools report achieved coverage & problems
 Developers provide guidance
▪ EMCP: Instrumentation or Mock Objects
▪ OCP: Factory Methods

16

 Existing solution
 identify all executed external-method calls
 report all the non-primitive object types of program

inputs and their fields

 Limitations
 the number could be high
 some identified problem are irrelevant for achieving

higher structural coverage

17

Real EMCPs: 0
Real OCPs: 5

Reported EMCPs: 44
Reported OCPs: 18
 vs.

18

 Precisely identify problems faced by tools when
achieving structural coverage

 Insight
 Partially-Covered Statements (i.e., statements containing not-

covered branches) have data dependency on real problem
candidates

 Three main steps:
 Problem Candidate Identification
 Forward Symbolic Execution
 Data Dependence Analysis 19

[Xiao et al. ICSE 11]

Data
Dependence

Analysis

Forward
Symbolic
Execution

Problem
Candidates

Problem
Candidate

Identification

Runtime
Information

Identified
Problems

Coverage

Program /
PUT

Generated
Test Inputs

Runtime
Events

20

Symbolic Expression:
return(File.Exists) == true

Element of
EMCP Candidate:
return(File.Exists)

Branch Statement Line 1 has data
dependency on File.Exists at Line 1

21

 Subjects:
 xUnit: unit testing framework for .NET
▪ 223 classes and interfaces with 11.4 KLOC

 QuickGraph: C# graph library
▪ 165 classes and interfaces with 8.3 KLOC

 Evaluation setup:
 Pex (0.24.50222.1) with the implemented extension as

our DSE test-generation tool
 Apply Pex to generate tests for program under test
 Collect coverage and runtime information for

identifying EMCPs and OCPs

22

 RQ1: How effective is Covana in identifying
the two main types of problems, EMCPs and
OCPs?

 RQ2: How effective is Covana in pruning
irrelevant problem candidates of EMCPs and
OCPs?

23

Covana identifies
• 43 EMCPs with only 1 false positive and 2 false negatives
•155 OCPs with 20 false positives and 30 false negatives.

24

Branch Statement Line 1
has data dependency on
File.Exists at Line 1

False branch at Line 1
is not covered

File.Exists is reported

25

ParseCommandLine,
Pex achieved 44/154
(28.57%),

Path.GetFullPath throws
exceptions for all executions

Code after Line 6 is
not covered

Path.GetFullPath is
reported

26

Executor, Pex achieved
2/5 (40%)

Covana prunes
• 97.33% (1567 in 1610) EMCP candidates with 1 false positive and 2 false negatives
• 65.63% (296 in 451) OCP candidates with 20 false positives and 30 false negatives

27

 Human-Assisted Computing
 Driver: tool Helper: human
 Ex. Covana [Xiao et al. ICSE 2011]

 Human-Centric Computing
 Driver: human  Helper: tool
 Ex. Coding duels @Pex for Fun

 Interfaces are important. Contents are important too!

Secret Implementation

class Secret {
 public static int Puzzle(int x) {
 return x * 3 + 10;
 }
}

Player Implementation

class Player {
 public static int Puzzle(int x) {
 return x;
 }
}

class Test {
 public static void Driver(int x) {
 if (Secret.Puzzle(x) != Player.Puzzle(x))
 throw new Exception(“Found a Difference”);
 }
}

behavior
Secret Impl == Player Impl?

[ASE 08sp]

Try it at http://www.pexforfun.com/

 884,676 clicked 'Ask Pex!'

 Coding duels at http://www.pexforfun.com/
 Task for Human: write behavior-equiv code

 Human  Tool
 Does my new code behave differently? How exactly?

 Human  Tool
 Could you fix your code to handle failed/passed tests?

 Iterations to form feedback loop?
 Yes, till tool generates no failed tests/player is impatient

http://www.pexforfun.com/

Formulation of Callstack Mining/Clustering Problem
• Unknown issue discovery
• Issue prioritization
• Scalable to large number of traces

OS Performance in The Real World
• One of top user complaints
• Impacting large number of users every day
• High impact on usability and productivity

[ICSE 12] in collaboration with MSR Asia

Challenges
• Large scale trace data
• Highly complex performance analysis in OS level
• Combination of machine learning and domain expertise

Internet

Pattern Matching

Trace Storage

Trace collection

File bugs

Problematic Pattern
Repository Bug Database Network

Manual investigation

How many issues are still
unknown?

Which trace should I
investigate first?

Not scalable

34

 Formulate as a callstack mining and clustering
problem

 Incorporate deep domain knowledge

Problematic program
execution patterns

Callstack patterns
Performance

Issues

Caused by

Discovered by mining & clustering statistically significant patterns

Mainly represented by

[ICSE 12] in collaboration with MSR Asia

“We believe that the MSRA tool is highly valuable and
much more efficient for mass trace (100+ traces)
analysis. For 1000 traces, we believe the tool saves us
4-6 weeks of time to create new signatures, which is
quite a significant productivity boost.”

 - Development Manager in Windows

Effective discovery of new issue on Windows mini-hang

Continuous impact on future Windows versions

 Static analysis + dynamic analysis
 Static Checker + Test Generation
 …

 Dynamic analysis + static analysis
 Fix generation + fix validation
 …

 Static analysis + static analysis
 …

 Dynamic analysis + dynamic analysis [ASE 08]
 …

 Human-Assisted Computing
 Tool  Human: expose more/less details?
 Tool Human: not reliable guidance?

 Human-Centric Computing
 Human  Tool: more input modalities?
 Human  Tool: tutoring hints?

 Human-Human
 Computing-Computing

Questions ?

https://sites.google.com/site/asergrp/

	Human-Tool, Tool-Tool, and Human-Human Cooperations to Get Work Done
	Why Automate Testing?
	Dynamic Symbolic Execution
	Automating Test Generation
	Pex on MSDN DevLabs�Incubation Project for Visual Studio
	Open Source Pex extensions
	Reality Check
	Automation in Software Testing
	Automation in Software Testing
	Cooperation Between �Human and Machine
	Human-Assisted Computing
	Problems Faced by Automated-Structural-Test-Generation Tools
	DSE Challenges - Preliminary Study
	External-Method Call Problems (EMCP) Example
	Cooperation Between Human and Test-Generation Tools
	Cooperative Developer Testing
	Existing Solution of Problem Identification
	DSE Challenges - Preliminary Study
	Proposed Approach: Covana
	Overview of Covana
	Data Dependence Analysis
	Evaluation – Subjects and Setup
	Evaluation – Research Questions
	Evaluations -� RQ1: Problem Identification
	Example Identified EMCPs - 1
	Example Identified EMCPs - 2
	Evaluations –�RQ2: Irrelevant-Problem-Candidate Pruning
	Cooperation Between �Human and Machine
	Behind the Scene of Pex for Fun
	Migrating Pex to the Web/Cloud
	HCC: Pex for Fun (Human-Human C)
	Human-Human/Tool Cooperation: StackMine
	Performance Related Trace Analysis Today
	StackMine Approach
	Slide Number 35
	Tool-Tool Cooperation
	Conclusion: �Cooperative Testing and Analysis
	Thank you!

