
PreInfer: Automatic Inference of Preconditions via Symbolic Analysis

Angello Astorga∗, Siwakorn Srisakaokul∗, Xusheng Xiao†, Tao Xie∗
∗University of Illinois at Urbana-Champaign

†Case Western Reserve University
{aastorg2, srisaka2, taoxie}@illinois.edu,{xusheng.xiao}@case.edu

Abstract—When tests fail (e.g., throwing uncaught excep-
tions), automatically inferred preconditions can bring various
debugging benefits to developers. If illegal inputs cause tests
to fail, developers can directly insert the preconditions in
the method under test to improve its robustness. If legal
inputs cause tests to fail, developers can use the preconditions
to infer failure-inducing conditions. To automatically infer
preconditions for better support of debugging, in this paper,
we propose PREINFER, a novel approach that aims to infer
accurate and concise preconditions based on symbolic analysis.
Specifically, PREINFER includes two novel techniques that
prune irrelevant predicates in path conditions collected from
failing tests, and that generalize predicates involving collection
elements (i.e., array elements) to infer desirable quantified
preconditions. Our evaluation on two benchmark suites and
two real-world open-source projects shows PREINFER’s high
effectiveness on precondition inference and its superiority over
related approaches.

Keywords-precondition inference; dynamic symbolic execu-
tion; symbolic analysis; path conditions;

I. INTRODUCTION

With recent research advances in automatic test generation
based on dynamic symbolic execution [1], [2], powerful test
generation tools are now at the fingertips of developers in
industry. For example, Pex [2], [3] has been shipped as
IntelliTest [4] in Visual Studio 2015 and 2017 Enterprise
Edition, benefiting numerous developers. These test gener-
ation tools allow developers to automatically generate tests
for the code under test, comprehensively covering various
program behaviors to achieve high code coverage. However,
even with these tools, developers still need to perform time-
consuming debugging tasks when unexpected failing tests
are generated. They must determine whether the inputs are
reasonably expected to be witnessed in real scenarios; if
so, the developers must isolate the causes of the failures,
possibly through more tests.

To assist such debugging tasks, automatically inferred
preconditions bring various benefits. When tests containing
illegal inputs fail, developers can directly insert the precon-
ditions in the method under test to improve its robustness.
When tests containing legal inputs fail, developers can use
the preconditions to further infer failure-inducing conditions.
Generally automatic inference of preconditions aims to infer

preconditions that are sufficient1 and necessary2. However,
to be conveniently usable by developers, preconditions
should also be succinct (e.g., including a minimal number
of predicates). More succinct preconditions typically incur
less runtime overhead during runtime monitoring, and also
incur less human effort during manual inspection.

To automatically infer preconditions, in this paper, we
present PREINFER, a novel approach based on symbolic
analysis that aims to guard against failures exposed by
the generated failing tests without blocking passing tests.
PREINFER leverages symbolic analysis to capture an ex-
ecution path with path condition ρ, which is a sequence
of conjuncted predicates (φ1, φ2, . . . , φ|ρ|) collected from
the executed branch conditions in the path. Note that the
variables appearing in each predicate in ρ are program
inputs, i.e., symbolic inputs, instead of local variables inside
the program body. In particular, PREINFER takes as input
a test suite containing both passing and failing tests. It
uses path conditions from failing tests (in short as failing
path conditions) to infer a succinct condition α that is a
generalization (i.e., summary) of the witnessed unsafe states.
To avoid overgeneralizing, PREINFER uses path conditions
from passing tests to identify states that should not satisfy
α. Naturally, PREINFER outputs ¬α as the inferred precon-
dition.

To infer the condition α, we choose the divide-and-
conquer strategy by disjuncting these failing path conditions
to form α. Unfortunately, such disjunction introduces an α
with a large number of predicates, compromising the goal of
obtaining a succinct precondition. Alternatively, to aim for
a sufficient and necessary precondition, we can always keep
only the last-branch predicate, i.e., φ|ρ|, for each failing
path condition and disjunct these reduced path conditions
to produce α. φ|ρ| in a failing path condition ρ for path
p corresponds to the p-assertion-violating condition (e.g.,
the assertion-violating condition in path p) at the assertion-

1Preconditions are sufficient if their satisfaction ensures that the pro-
gram’s execution does not produce runtime failures: sufficient preconditions
block all illegal inputs, but can possibly block legal inputs.

2Preconditions are necessary if their violation ensures that the program’s
execution produces runtime failures: necessary preconditions block only
illegal inputs but may not block all of them.

containing location3. In particular, φ|ρ| expresses the p-
assertion-violating condition at the assertion-containing lo-
cation in terms of the program inputs, i.e., symbolic inputs,
to form a symbolic expression.

However, keeping only the p-assertion-violating condition
(φ|ρ|) causes two main issues. (1) Location reachability.
Without keeping some other predicates in ρ to constrain
the test generation, some further generated tests do not
even reach the assertion-containing location, and thus cannot
violate the assertion. (2) Expression preservation. Without
keeping some other predicates in ρ to constrain the test
generation, even when a further generated test can reach
the assertion-containing location, the last-branch predicate
φ|ρ′| (corresponding to the p-assertion-violating condition)
of its path condition ρ′ : (φ1, φ2, . . . , φ|ρ′|) is different from
φ|ρ| in ρ (in terms of their symbolic expressions). Thus,
a generated test satisfying (φ1 ∧ φ2 ∧ · · · ∧ ¬φ|ρ′| ∧ φ|ρ|)
reaches the assertion-containing location but cannot violate
the assertion.

To address these two issues, PREINFER prunes irrelevant
predicates from each failing path condition (one failing
path condition at a time) to produce a reduced failing path
condition. Then, PREINFER computes the disjunctions of
these reduced failing path conditions to infer α. PREINFER
includes a technique of dynamic predicate pruning, which
keeps only the predicates (in a failing path condition ρ
for path p) that are necessary for helping achieve location
reachability and expression preservation with respect to the
p-assertion-violating condition. Specifically, we define two
relations to describe predicates in a failing path condition ρ:
predicates ensuring location reachability are in a c-depend
relation and predicates ensuring expression preservation are
in a d-impact relation. Naturally, based on these relations,
PREINFER prunes predicates not in either of these two
relations.

Furthermore, we observe that for those programs that loop
over a collection-based data structure such as an array, a
failing path condition can contain a lot of predicates on
multiple array elements. We name these predicates overly
specific predicates. They usually cannot be pruned by the
technique of dynamic predicate pruning since most of them
are in c-depend or d-impact relations, posing challenges for
inferring sufficient, necessary, and succinct preconditions.
To address such issue, PREINFER includes the technique
of collection-element generalization to deal with the cases
when a failure is dependent on the iterations of looping over
collection elements, and thus a quantified precondition is
needed.

In summary, this paper makes the following main contri-
butions:

3Such assertion can be of an implicit-check type such as NullReference
and DivideByZero (which can be automatically inserted by tools such
as Pex before test generation) or an explicit-check type, which is for an
explicitly written assertion statement.

1 public int example(string[] s, int a, int b,
int c, int d) {

2 /*ground-truth precondition for exception
at Lines 14-15*/

3 ¬(((c > 0 ∧ d+ 1 > 0) ∨ (c ≤ 0 ∧ d > 0)) ∧ s == null)
4 /*ground-truth precondition for exception

at Lines 16-17*/
5 ¬((((c > 0 ∧ d+ 1 > 0) ∨ (c ≤ 0 ∧ d > 0)) ∧ s! = null)∧

∃i, (i < s.length ∧ s[i] == null))
6 int sum = 0;
7 if (a > 0)
8 b++;
9 if (c > 0)

10 d++;
11 if (b > 0)
12 sum++;
13 if (d > 0) {
14 assert(s != null);/*implicit assert:

NullReference exception*/
15 for (var i = 0; i < s.Length; i++) {
16 assert(s[i] != null);/*implicit

assert: NullReference exception*/
17 sum += s[i].Length;
18 }
19 return sum;
20 }

Figure 1. Example method under test

• A technique of dynamic predicate pruning to effectively
prune path-condition predicates to infer preconditions.

• A technique of collection-element generalization to
effectively generalize path-condition predicates to infer
quantified preconditions.

• A tool implementation of PREINFER as an extension
of Pex and an evaluation of PREINFER on two sets of
benchmarks and two real-world open-source projects;
the evaluation results show PREINFER’s high effective-
ness on precondition inference and its superiority over
related approaches.

II. MOTIVATING EXAMPLE

This section illustrates how PREINFER infers a precon-
dition candidate for the example method under analysis
(shown in Figure 1). For illustration purposes, in Figure 1,
we show two implicit assertions (Lines 14 and 16) that are
dynamically inserted by the underlying test generation tool.
When such tool is applied on the example method, some
failing tests can be generated to cause runtime exceptions
(violating the implicit assertions). For example, running
the method on a generated test tf1 : (s: {null}, a:

1, b: 0, c: 1, d: 0) causes the method to throw the
NullReference exception (Lines 16-17). For this execu-
tion, the path condition is listed in Column 1 of Table I.
Note that all the predicates in Table I are collected from
the executed program branches (explicit branch conditions)
or the implicit branch conditions (resulted from implicit
assertions) by performing symbolic analysis on the test.
All the predicates consist of constraints involving symbolic

Table I
PATH CONDITION FOR THE FAILING TEST tf1 : (S: {NULL}, A: 1,

B: 0, C: 1, D: 0) WHERE D: D-IMPACT; C: C-DEPEND

PC predicates Line # Branch Kept? Justification
a > 0 Line 7 7 7d; 7c
c > 0 Line 9 3 3d; 7c
b+ 1 > 0 Line 11 7 7d; 7c
d+ 1 > 0 Line 13 3 7d; 3c
s! = null Line 14 (Implicit Branch) 3 7d; 3c
0 < s.length Line 15 3 7d; 3c
s[0] == null Line 16 (Implicit Last Branch) 3 assertion-v cond

Table II
PATH CONDITION FOR THE FAILING TEST tf3 : (S: {‘‘A’’,‘‘A’’,
NULL}, A: 1, B: 0, C: 1, D: 0)) WHERE D: D-IMPACT; C:

C-DEPEND

PC predicates Line # Branch Kept? Justification
a > 0 Line 7 7 7d; 7c
c > 0 Line 9 3 3d; 7c
b+ 1 > 0 Line 11 7 7d; 7c
d+ 1 > 0 Line 13 3 7d; 3c
s! = null Line 14 (Implicit Branch) 3 7d; 3c
0 < s.length Line 15 3 7d; 3c
s[0]! = null Line 16 (Implicit Branch) 3 7d; 3c
1 < s.length Line 15 3 7d; 3c
s[1]! = null Line 16 (Implicit Branch) 3 7d; 3c
2 < s.length Line 15 3 7d; 3c
s[2] == null Line 16 (Implicit Last Branch) 3 assertion-v cond

variables resulted from the method inputs, e.g., (s, a, b,

c, d); we name these constraints as symbolic expressions.
The predicate s[0] == null in the last row comes from the
implicit check on the array access at Line 16, referred to as
the last-branch predicate (φ|ρ|). The predicate d + 1 > 0
corresponds to the branch (d > 0) at Line 13 because
d gets increased at Line 10. To block this failing test
(s: {null}, a: 1, b: 0, c: 1, d: 0) (along with
all other possible failing tests reaching that same program
location such as tf3 : (s: {‘‘a’’,‘‘a’’, null}, a:

1, b: 0, c: 1, d: 0)), we can use the ground-truth
precondition (Line 5) to filter out the tests.

To infer the precondition candidate, PREINFER first ap-
plies our technique of dynamic predicate pruning to remove
predicates (from the path condition) that are irrelevant for
helping achieve location reachability and expression preser-
vation. Informally, the predicates that preserve location
reachability are in a c-depend relation w.r.t. the last-branch
predicate φ|ρ|, and the predicates that preserve expression
preservation are in a d-impact relation w.r.t. φ|ρ|(formally
defined in Section III-A). For each failing path condition
ρf1 , our technique employs a backward analysis starting
from φ|ρ|, to detect the predicates that belong in the reduced
path condition, ρf1 ′, which ultimately composes α. For ρf1
shown in Table I, our analysis determines that the last-
branch predicate s[0] == null should not be pruned since
it expresses the p-assertion-violating condition. Our analysis
proceeds by analyzing constraints 0 < s.length, s! = null
up to a > 0 in that order. The results of the analysis can be
seen in the last two columns of Table I.

For brevity, we illustrate only how our technique of
dynamic predicate pruning prunes a > 0, derived from a
conditional c. Note that b + 1 > 0 is pruned similarly. Our
technique prunes a > 0 if the analysis can establish a > 0
as irrelevant. A predicate is irrelevant if it is “7c-depend”
(i.e., not in a c-depend relation) and also is “7d-impact”
(i.e., not in a d-impact relation). To check whether a > 0
is 7c-depend, our analysis considers another prefix-sharing
path condition from an available passing test tp1 that also
reaches the same last-branch predicate (i.e., a passing path
that shares the same prefix as tf1 before c but takes c’s
the other branch not taken by tf1). In this case, the path
condition for tp1 is a < 1 ∧ c > 0 ∧ b > 0 ∧ d+ 1 > 0 ∧ s! =

null∧0 < s.length∧s[0]! = null∧2 > s.length. Our analysis
establishes that a > 0 is 7c-depend since a path from either
a > 0 or a < 1 can still reach the last-branch predicate
s[0] == null (e.g., s[0]! = null in tp1). To check whether
a > 0 is 7d-impact, our analysis considers another prefix-
sharing path condition from an available failing test tf2 that
also reaches the last-branch predicate. In this case, the path
condition for tf2 is a > 1 ∧ c > 0 ∧ b > 0 ∧ d+ 1 > 0 ∧ s! =

null ∧ 0 < s.length ∧ s[0] == null. Our analysis establishes
that a > 0 is 7d-impact since a path from either a > 0
or a > 1 does not change the symbolic expression at the
last-branch predicate. After our technique analyzes every
predicate in ρf1 , the newly reduced path condition is ρf1 ′ :=
c > 0∧d+1 > 0∧s! = null∧0 < s.length∧s[0] == null.

However, after we apply the technique of dynamic pred-
icate pruning, the reduced path conditions include overly
specific predicates that are in either c-depend or d-impact
relations across all failing tests. To illustrate these predicates,
consider the reduced path conditions for test tf1 , ρf1′ =
c > 0∧d+1 > 0∧s! = null∧0 < s.length∧s[0] == null
and for test tf3 , ρf3′ = c > 0∧ d+1 > 0∧ s! = null∧ 0 <
s.length∧ s[0]! = null∧ 1 < s.length∧ s[1]! = null∧ 2 <
s.length∧s[2] == null. The predicates involving a relation
over a constant and length of the array (e.g., 1 < s.length)
and a relation over an element of the array and some value
(e.g., s[1]! = null) are in c-depend relations and should not
be pruned.

To address overly specific predicates introduced by
collection-based data structures, PREINFER further includes
our technique of collection-element generalization on all the
failing path conditions to generalize these predicates with
a quantified condition. Our technique matches each path
condition against pre-defined generalization templates such
as ∃x, (A(x) ∧ B(x)) where A and B are a set of predi-
cates. Predicates in A constrain the domain of the formula
(typically the integer domain used to iterate over collection
structures) and predicates in B are those expressing the
violated property that causes the assertion violation. For
this example, the quantified constraint resulted from the
generalization is ∃i, (i < s.length ∧ s[i] == null), where
i < s.length instantiates a predicate in A(i), and s[i] ==

null instantiates a predicate in B(i), since every failing path
condition contains predicate i < s.length∧s[i] == null for
some value of i.

Overall, PREINFER first applies our technique of dynamic
predicate pruning to remove some predicates and then ap-
plies our technique of collection-element generalization for
deriving α := ((c ≤ 0 ∧ d > 0 ∧ s! = null) ∧ ∃i, (i <
s.length ∧ s[i] == null)) ∨ ((c > 0 ∧ d + 1 > 0 ∧ s! =
null) ∧ ∃i, (i < s.length ∧ s[i] == null)). In the end,
PREINFER infers the ground-truth precondition (¬α) at Line
5 of Figure 1.

III. PRELIMINARIES AND PROBLEM DEFINITION

In this section, we formally define the terms used in the
paper and the problem that PREINFER intends to address.

Definition 1. A method-entry state s for the method under
test m is a concrete-value assignment over the method input
— the variables being used in m (e.g., the parameters of m,
the receiver object’s fields) before invocation.

A method execution of method m with its method-entry
state s is denoted as m[[s]].

Definition 2. An assertion-containing location e denotes a
program location containing an assertion check4. When a
method execution reaches an assertion-containing location
and violates the assertion check, the execution aborts with
an exception.

The exception can be (1) implicit such as DivideByZe-
roException or (2) explicit, from explicitly written assertion
checks, such as Assert.IsTrue().

We assume that the method under test m is deterministic
and sequential. A method execution m[[s]] is failing if it
reaches an assertion-containing location and aborts due to an
assertion violation; otherwise, m[[s]] is passing. Therefore,
the set of all possible method executions Iall of m can be
partitioned into two disjoint subsets Iall = Ifail ∪ Ipass
where Ifail is the set of all the failing method executions
and Ipass is the set of all the passing method executions.
Next we define a precondition candidate and its relationship
with method executions.

Definition 3. A precondition candidate ψ of method m is a
predicate over the parameters of method m. The complexity
of ψ, denoted as |ψ|, is the number of logical connectives
and quantifiers in ψ. The evaluation of ψ under the assign-
ment from method-entry state s is denoted as s(ψ).
Definition 4. A precondition candidate ψ validates method
execution m[[s]] if s(ψ) is true. Let Iψ be the set of
all possible method executions validated by precondition
candidate ψ, i.e., Iψ = {m[[s]] | s(ψ)}.

4In our work, we consider both explicit assertion checks written by
developers in production code or test code and implicit assertion checks
automatically inserted by the language runtime or the underlying Pex test
generation tool [5].

A precondition ψ prevents a failing test (method inputs)
if its method execution is not in Iψ . We denote ideal pre-
condition candidates as sufficient, necessary, and succinct.
A sufficient precondition candidate is a precondition that
invalidates all method executions in Ifail, but may also
invalidate some method executions in Ipass. That is, a
sufficient precondition prevents all failing tests and possibly
some passing tests. Dually, a necessary precondition can-
didate validates all method executions in Ipass, but may
also validate some method executions in Ifail. That is,
a necessary precondition prevents only failing tests but
possibly not all of them. Formally, ψ is sufficient if and
only if Iψ ∩ Ifail = ∅; ψ is necessary if and only if
Ipass ⊂ Iψ ≡ Iψ ∩ Ipass = ∅ (Iψ denotes the complement
of Iψ). It is also desirable for ψ to have the relatively low
complexity |ψ| with respect to the ideal complexity (the
complexity of the ground-truth precondition ψ∗). The reason
is that more succinct precondition candidates generally incur
lower runtime-checking cost and lower human efforts for
inspection and understanding.

We next define path conditions used to infer precondition
candidates. Given method execution m[[s]], the execution
path p can be captured by path condition, ρ. The path con-
dition is a conjunction of predicates ρ = φ1∧φ2∧ · · ·∧φ|ρ|
collected from the executed branch conditions in m and its
(direct and indirect) callee methods along the executed path
p. Note that φ1 is from the predicate in the first branch
appearing in the executed path and φ|ρ| is the last-branch
predicate. This predicate is derived from the last branch in
the executed path and is also an assertion-check predicate
when p is a failing. A path condition ρ can also be viewed as
a list of predicates [φ1, φ2, . . . , φ|ρ|]. More precisely, ρ is a
logic formula that characterizes the inputs for which method
m executes along execution path p. Each variable appearing
in ρ is from the method input (defined in its method-entry
state s), while each predicate appearing in ρ is over some
first-order theory. A path condition ρ for execution path p is
sound if every variable assignment satisfying ρ defines an
execution of m that follows p [6]. In this work, we assume
that a path condition is sound.

Given path p that reaches assertion-containing location e

(without considering the path executed after e) in a method
m, a p-assertion-violating condition is a predicate over the
method input defined in method-entry state s such that if
any p-following inputs (i.e., those inputs whose execution
follows p) satisfy the predicate, then the assertion check
in e fails and the corresponding method execution m[[s]] is
failing; otherwise, the assertion in e is not violated and thus
m[[s]] is a passing one.

A. Problem Outline and Overview

In this section, we first elaborate on our target problem
for clarity purposes. Then, we formally define two key
components of our dynamic predicate pruning technique as

relations namely c-depend and d-impact. We conclude by
illustrating the abstraction of our collection-element gener-
alization technique to summarize overly specific predicates.
Overly specific predicates are those derived from conditions
in branches located in loops including the loop header. In
this work, we focus on those overly specific predicates
that contain collection elements and integer values that
change during each iteration of loops [7]. Given a failing
path condition, ρfk , all inputs satisfying ρfk will induce
executions that reach an assertion-containing location, e, and
satisfy its p-assertion-violating condition. Given a passing
path condition, ρpi , all inputs satisfying ρpi will induce
executions that do not reach e or reach e but do not
satisfy the p-assertion-violating condition. Thus, ρfk ∧ ρpi
is unsatisfiable. Based on such observation, the goal of
PREINFER is to infer a condition that is a generalization
from the initial failing runs (by pruning irrelevant predicates)
but is precise enough to avoid capturing behavior from
passing runs. Formally, PREINFER aims to infer a condition
α with the lowest complexity (i.e., with the minimum |α|)
that satisfies the following criteria:
• ∀ρfk ∈ Pfail, ρfk =⇒ α
• ∀ρpi ∈ Ppass, ρn =⇒ ¬α
Note that the given set Pfail typically includes only a

subset of all possible failing path conditions due to the
limited resources allocated to the used test generation tool.
A program with loops can also contain infinitely many
paths. Intuitively, in the best case of being able to generalize
perfectly, α captures all failing path conditions in the given
Pfail and even all other failing path conditions not in
Pfail. In the worse case of not being able to generalize, α
captures only failing path conditions in the given set Pfail.
To produce α, given an input set of failing path condi-
tions {ρf1 , ..., ρfk}, our algorithm removes the predicates
from each ρfi to produce a reduced set of path conditions
Pfail

′ = {ρf1 ′, ..., ρfk ′} such that
• |ρfi ′| ≤ |ρfi |
• ∀ρpi ∈ Ppass∀ρfk ′ ∈ Pfail

′,¬(ρpi ∧ ρfk ′), i.e., ρpi ∧
ρfk
′ is unsatisfiable.

The algorithm then computes a condition α = ρf1
′ ∨ · · · ∨

ρfk
′. By removing predicates from each ρfi to form ρfi

′,
the resulting set of ρfi

′ can include duplicate predicates,
and these duplicates are removed, further simplifying α. It
is obvious to see that ∀ρpi ∈ Ppass,¬(ρpi ∧α), so the result
condition α is a generalization from all the failing runs and
does not capture behavior from all the passing runs. Next,
we define two binary relations to determine the predicates
that can be removed. Predicates in path conditions can be
in a c-depend or a d-impact relation w.r.t. the last-branch
predicate.

Definition 5. A predicate φi in a failing path ρfi =
[φ1, φ2, . . . ,∧φi−1,∧φi, . . . , φ|ρ|] is in a c-depend relation
w.r.t. the last-branch predicate (φ|ρ|) if the concrete execu-

tions of all inputs that satisfy φ1 ∧φ2 ∧ · · · ∧φi−1 ∧¬φi do
not reach the assertion-containing location.

To decide whether predicate φi is in c-depend, we con-
sider only the executions that reach the branch condition of
φi. Those executions can be partitioned into two sets: the
executions whose evaluation of φi is true and the executions
whose evaluation of φi is false. Now we can conclude that
predicate φi is in c-depend if and only if only one set
contains a path reaching the assertion-containing location.

Definition 6. A predicate φi in a failing path ρfi =
[φ1, φ2, . . . ,∧φi−1,∧φi, . . . , φ|ρ|] is in a d-impact relation
w.r.t. the last-branch predicate (φ|ρ|) if there exists an input
that satisfies φ1 ∧ φ2 ∧ · · · ∧ φi−1 ∧ ¬φi, and whose
concrete execution reaches the assertion-containing location
but whose symbolic expression of the p-assertion-violating
condition (from the assertion-containing location) is differ-
ent than the symbolic expression of φ|ρ|.

These two relations define membership of predicates in
the reduced path conditions. The reduced path conditions,
composed of only predicates in c-depend or d-impact re-
lations, ensure location reachability and expression preser-
vation. In other words, predicate φi ∈ ρfi

′ if and only
if φi is in a c-depend or d-impact relation. Intuitively,
the aim is to identify and remove those predicates whose
valuation (true, false) is irrelevant to whether or not the paths
containing those predicates reach the assertion-containing
location (location reachability) and the symbolic expressions
of the predicates from the assertion-containing location of
those paths are the same (expression preservation).

After pruning, each predicate φ in each reduced path
condition ρf1

′ from the set {ρf1 ′, ..., ρfk ′} is either in
a c-depend or d-impact relation. However, a subset of
these predicates may be repetitive only differing by a
factor of the iteration count of some loop. We denote
these predicates as overly specific. These overly specific
predicates provide an opportunity to infer more succinct
preconditions while retaining precision. Our approach in-
cludes one additional generalization step to summarize
these predicates into more concise representations. To con-
duct generalization, we want to construct formulas of the
form (1) ∃x1, . . . , xn(̇A(x1, . . . , xn) ∧ B(x1, . . . , xn)) or
(2) ∀x1, . . . , xn(̇A(x1, . . . , xn) → B(x1, . . . , xn)) where
A and B are sets of predicates in terms of the bounded
variables. In particular, predicates in A restrict the domain
of the bounded variables, x1, . . . , xn, while predicates in B
express the violated property(ies) in terms of the bounded
variables. Then, for each ρfi

′, we instantiate formulas of
the preceding form 1 or 2, based on the predicates in ρfi

′,
to create candidate formulas. Then, we choose a candi-
date C based on the number of subsumed overly specific
predicates in ρfi

′. Finally, our generalization step uses C
to construct ρfi

′′ = [φ1,∃i.φA(i) ∧ φB(i), . . . , φ|ρ|] or

Algorithm 1 Dynamic Predicate Pruning
1: function PREDICATEPRUNING(pf , Ppass, Pfail)
2: SP ←Map from a path to its slice
3: for each path p ∈ Ppass ∪ Pfail ∪ {pf} do
4: SP [p]← Last(p)
5: p← p \Last(p)
6: end for
7: while pf 6= ∅ do
8: b← Last(pf)
9: if IsC-Depend(SP, b, pf , Ppass)∨

10: IsD-Impact(SP, b, pf , Pfail) then
11: Add b to SP [pf]
12: for each path p ∈ Ppass ∪ Pfail ∧ b ∈ p do
13: Add b to SP [p]
14: end for
15: else
16: for each path p ∈ Ppass∪Pfail∪{pf}∧b ∈ p

do
17: p← p \ b
18: end for
19: end if
20: end while
21: return SP [pf]
22: end function

ρfi
′′ = [φ1,∀i.φA(i)→ φB(i), . . . , φ|ρ|] such that:
• |ρfi ′′| ≤ |ρfi ′| ≤ |ρfi |
• αgen = ρf1

′′ ∨ · · · ∨ ρfk ′′
• ∀ρpi ∈ Ppass,¬(ρpi ∧ αgen), i.e., each (ρpi ∧ αgen) is

unsatisfiable.
Finally, our approach produces ¬αgen as a precondition

candidate.

IV. APPROACH

PREINFER takes as input a method m, an assertion-
containing location e, and a test suite containing pass-
ing tests and failing tests (e.g., satisfying the p-assertion-
violating condition at e). PREINFER executes the tests and
collects the path conditions of the tests. Then, PREINFER ap-
plies the technique of dynamic predicate pruning to remove
irrelevant predicates and the technique of collection-element
generalization to generalize overly specific predicates to
infer a precondition candidate for each assertion-containing
location e in m.

A. Dynamic Predicate Pruning

Algorithm 1 shows the technique of dynamic predicate
pruning, which detects irrelevant predicates in all the failing
path conditions. For each failing path condition ρf =
[φ1, φ2, . . . , φj , . . . , φ|ρf |], the algorithm checks the predi-
cates one by one in a backward manner, starting from the last
predicate φ|ρf | (Lines 3-6). To determine whether a predicate
φj is not in a c-depend relation, we first assume that φj is in

a c-depend relation, and then try to find a contradiction. Our
technique searches for a passing path condition ρp such that
ρp shares the same prefix as ρf up to φj , but ρp deviates
at φj and still reaches the assertion-containing location e.
That is, ρp := [φ1, φ2, . . . ,¬φj , . . . , φe, . . . , φ|ρp|] where φe
is the predicate derived from e. If there exists such a path, φj
is not in a c-depend relation. Next our technique determines
whether the predicate φj is in a d-impact relation. First, we
assume that the predicate φj is not in a d-impact relation.
Our technique searches for a failing path condition ρf ′ such
that ρf ′ shares the same prefix as ρf up to φj , but ρf ′ de-
viates at φj and eventually reaches the assertion-containing
location e to cause assertion violation, and the symbolic
expression at the last-branch predicate in ρf ′ is not the same
as in ρf . That is, ρf ′ = [φ1, φ2, . . . ,¬φj , . . . , φ|ρf ′|] and
φ|ρf ′| 6≡ φ|ρf |. If there exists such a path, φj is in a d-impact
relation. If a predicate is neither in a c-depend relation nor a
d-impact relation, our technique removes the predicate from
its path condition.

B. Collection-Element Generalization

The presence of input-dependent loops and collection
structures in the execution causes path conditions to contain
many overly specific predicates over the indices of collection
structures (e.g., loop variables). Since these predicates are
in either c-depend or d-impact relations, our technique of
dynamic predicate pruning cannot prune these predicates,
and thus the generated precondition can contain a lot of
these overly specific predicates. Based on our empirical
observations, the overly specific predicates over the indices
of collection structures often follow certain patterns, pre-
senting opportunities to summarize these predicates using
a quantified constraint over the indices of collection struc-
tures. Based on this insight, we describe how to produce
preconditions with a quantified condition for the failing path
conditions.

For each individual predicate pred from the precondition
candidate generated by the technique of dynamic predicate
pruning, the technique of collection-element generalization
chooses which predicates can be generalized with a quanti-
fied constraint over array index. The quantified constraint is
of the form ∀x.(A(x)→ B(x)) or ∃x.(A(x)∧B(x)) where
A and B are sets of predicates. Predicates in A constrain the
domain of the constraint (typically the integer domain used
to iterate over collection structures), and predicates in B
are those expressing the violation of a property for causing
failures.

Our technique breaks down the problem of inferring
a quantified constraint into two general steps. First, our
technique selects predicates that express the violation of a
property (belonging to set B). Then, our technique selects a
quantifier based on whether all eligible collection elements
witness the violation of the property expressed by the
predicates in set B. Finally, our technique selects predicates

that restrict the domain of the constraint denoting the eligible
collection elements. Next we describe in detail the technique
of collection-element generalization.

Identifying the violation of a property. Similar to the
technique of dynamic predicate pruning, the last-branch
predicate is the pivot point for our generalization. As
mentioned earlier, typically an assertion-violation failure is
control-dependent on the branch condition represented as the
last-branch predicate. Thus, in the cases where an assertion-
violation failure is dependent on collection structures, the
last-branch predicate likely expresses the violation of the
property.

For example, the path condition of the failing test tf3
(Table II) includes s[2] == null as the last-branch predicate.
This predicate indicates that the program execution accesses
s[2] and results in an exception. Thus, s[2] == null
expresses the violation of the property: collection element
should not be null. Consider another example program where
each element of a collection arr (starting from the first
element) is used as a denominator in division. When the
first three elements are not 0 and the fourth element is 0,
the last-branch predicate would be arr[3] == 0, expressing
the violation of the property: no collection element should
be zero.

Inferring the range of collection index. Based on our
empirical observations, our technique currently focuses on
two common types of generalization templates, Existential
Template and Universal Template, to infer the range of
collection index. But new types of templates can be easily
added as long as they operate over the predicates from
failing path conditions. For a path condition ρ, our technique
first generalizes the identified violation of the property as a
predicate φ, and then try to instantiate the generalization
templates.
• Existential Template. For a path condition ρ over

a visited collection a in the program under test, if
only the last visited collection element a[i] satisfies a
predicate φ, represented as φ(a[i]), while all the previ-
ously visited collection elements a[j] do not satisfy φ,
represented as ¬φ(a[j]), then the following generalized
property-violation condition can be inferred:

ϕρ = ∃i, (0 ≤ i < a.length) ∧ φ(a[i])

• Universal Template. For a visited collection a in the
program under test, if all visited elements of a satisfy a
predicate φ, represented as φ(a[i]), the following gen-
eralized property-violation condition can be inferred:

ϕρ = ∀i, (0 ≤ i < a.length)→ φ(a[i])

In the Existential Template, an exception (i.e., an assertion
violation) from an assertion-containing location within a
loop is triggered by the value of a collection element.
The collection element is always the last-visited one since
the program aborts with an exception. Thus, the inferred

property-violation condition is that there exists an collection
element that satisfies the predicate. Dually, in the Universal
Template, an exception from an assertion-containing location
within a loop is triggered because all elements satisfy the
predicate, although the given path may not visit all elements
in the collection.

Example. Consider the method under test example in
Figure 1. In Lines 15-17, a loop iterates over the array
elements to compute the sum of the elements’ lengths.
One failing path condition caused by the implicit assertion
violation on Line 16 can contain predicates s 6= null ∧ 0 <
s.length ∧ s[0] 6= null ∧ 1 < s.length ∧ s[1] 6= null ∧
2 < s.length ∧ s[2] == null. Note that s[2] == null
causes the NullReference exception. These predicates can
be summarized using the Existential Template with pred-
icate s[i] == null (i.e., the violation of the property) as
∃i, (i < s.length ∧ s[i] == null).

Our technique can be easily extended with more templates
on the predicates over a collection index. Consider a program
that iterates over the even-numbered elements of an array,
a, to check that φ(a[i]) holds for every even i. We can sum-
marize these predicates by adding the following template:

ϕρ = ∀i, (0 ≤ i < a.length ∧ i%2 == 0)→ φ(a[i])

To instantiate this template for a path condition ρ, our
technique can check that for every even index i, φ(a[i])
must hold.

V. EVALUATION

We implement our PREINFER approach as a prototype
on top of Pex [2], [3], an industrial test generation tool.
To assess PREINFER’s effectiveness, we compare PREINFER
with two related state-of-the-art approaches for precondition
inference (DySy [8] and FixIt [9]). In particular, we conduct
an evaluation of PREINFER and the related approaches
on two benchmark suites and two real-world open-source
projects. This comparison helps characterize the strengths
of PREINFER compared with the previous related work. We
intend to answer the following two research questions:
• RQ1: How effective is PREINFER in inferring pre-

conditions compared to the related state-of-the-art ap-
proaches (DySy [8] and FixIt [9])?

• RQ2: How complex are the preconditions inferred by
PREINFER compared to those inferred by DySy and
FixIt?

A. Evaluation Subjects

We select four evaluation subjects (written in C#) from
GitHub [10]. Table III shows the characteristics of each
evaluation subject. Additionally, these four subjects are
classified into three categories: open-source projects, well-
studied benchmarks, and manually-constructed benchmarks.

Table III
CHARACTERISTICS OF EVALUATION SUBJECTS

Subject #Classes #Methods #Lines #Files
Algorithmia 91 525 18249 95
CodeContracts 4 150 1965 7
DSA 48 457 9468 61
SVComp 4 11 1219 14

Table IV
AVERAGE BLOCK COVERAGE ACHIEVED BY PEX FOR ALL THE

METHODS IN EACH EVALUATION SUBJECT

Subject Average Block Coverage
Algorithmia 65.41%
CodeContracts 99.20%
DSA 100.00%
SVComp 95.61%

1) Open-Source Projects: We select two open-source
projects, Data Structures and Algorithms (DSA) [11] and
Algorithmia [12], used in previous studies. DSA is used in
previous empirical studies of specifications [13], while Al-
gorithmia is used in previous empirical studies of structural
test generation [14].

2) Well-Studied Benchmarks: We select array-examples,
loop-acceleration, and array-industry-pattern benchmark
suites from SV-COMP [15]. We choose SV-COMP because
its benchmarks are well studied, often used in evaluating
software verification tools [16], [17], and contain non-
trivial quantified preconditions. From the selected bench-
mark suites, we further exclude programs that do not have
preconditions or that we are not able to translate to C#.

3) Manually-Constructed Benchmarks: We extract re-
gression tests for the static analyzer cccheck [18] to con-
struct a benchmark suite. The static analyzer infers precon-
ditions for .NET programs. For the suite, we include only
tests that stress-test the precondition inference algorithms in
cccheck, without including other tests that stress-test other
components (e.g., abstract domains).

B. Evaluation Setup

For each evaluation subject, we use Pex to generate tests
for each public method in the subject. If there exists a
generated test that triggers an uncaught runtime exception
at an assertion-containing location, we denote the test as
failing and the method as an exception-throwing method.
Note that multiple assertion-containing locations can be
triggered in a method. The final set of methods used in our
evaluation contains all the exception-throwing methods in
each evaluation subject. Furthermore, the total number of
exception-throwing locations used in our evaluation is the
number of triggered assertion-containing locations across all
methods in the final set. Column #ACL in Table V shows
the total number of exception-throwing locations evaluated
per subject. In total, our evaluation subjects include 188
exception-throwing locations, among which 33 are from
collection-element cases, as shown in Column #ACL in
Table VI.

To ensure fair comparison between different inferred
preconditions for an assertion-containing location, we use
the same set of Pex-generated tests for different approaches
under comparison to check whether an inferred precondition
blocks all the failing tests in the set and allows all the passing
tests in the set. In particular, we use Pex to produce a set
of tests T for the method under test m. Given an assertion-
containing location e in m, we partition T into Tpass and
Tfail: (1) we assign a test t to Tpass if t’s execution does
not reach the assertion-containing location e, or reaches e
but does not violate the assertion in e, and (2) we assign t
to Tfail if t’s execution does reach the assertion-containing
location e and violate the assertion in e. Table IV shows the
average block coverage achieved by the tests generated by
Pex for all the methods in each evaluation subject.

To assess the quality of an inferred precondition for each
assertion-containing location, we use two metrics.

Correctness. We manually inspect an inferred precon-
dition against a ground-truth precondition. In other words,
we check whether the inferred precondition is semantically
equivalent to the ground-truth precondition. To obtain a
ground-truth precondition for each assertion-containing lo-
cation, we employ the following steps. Initially, an author of
this paper inspects the source code of the method containing
the assertion-containing location and derives a precondition,
pred. For difficult cases, where the author is unsure of
the correctness of pred, another author is engaged. If both
authors cannot reach a consensus, then we test the strength
of pred and ¬pred using Pex. If pred is ‘likely’ perfect,
then inserting pred at the entry point of the method should
invalidate all failing runs, while inserting ¬pred should
validate only failing runs. We can only be certain pred is
‘likely’ perfect because Pex may not explore all execution
paths.

Complexity. Unlike our methodology for manually judg-
ing correctness of an inferred precondition, we rely on
tool automation that parses a string representation of the
inferred precondition to compute complexity. In particular,
we measure the complexity of an inferred precondition ψ
of a method by calculating a relative complexity, which
represents the percentage difference between its complex-
ity (|ψ|) and the complexity of the method’s ground-truth
precondition (|ψ∗|) generated manually. In other words, the
relative complexity of ψ is

| |ψ| − |ψ
∗|

|ψ∗|
|

The lower the relative complexity is, the more succinct the
precondition is, i.e., a perfect inferred precondition has the
relative complexity equal to zero.

Table V
COMPARISON OF PRECONDITIONS GENERATED BY THE THREE APPROACHES ON ALL THE SUBJECTS

Namespace Exception Location #ACL PREINFER FixIt DySy
Suff # Nece # Both # Suff # Nece # Both # Suff # Nece # Both

Algorithmia.Sorting

Before loop 3 0 0 3 0 0 1 2 0 0
Inside loop 0 0 0 0 0 0 0 0 0 0
After loop 0 0 0 0 0 0 0 0 0 0
Total 3 0 0 3 0 0 1 2 0 0

Algorithmia.GeneralDataStr

Before loop 13 0 0 12 5 0 7 4 0 8
Inside loop 5 0 1 4 0 0 4 1 1 3
After loop 0 0 0 0 0 0 0 0 0 0
Total 18 0 1 16 5 0 11 5 1 11

DSA.Algorithm

Before loop 11 0 0 11 0 2 7 4 0 5
Inside loop 17 0 7 9 3 1 8 11 1 5
After loop 5 0 0 3 0 2 0 4 1 0
Total 33 0 7 23 3 5 15 19 2 10

CodeContracts.ExamplesPuri

Before loop 14 0 1 13 6 0 5 2 4 8
Inside loop 18 0 1 17 5 0 6 5 1 9
After loop 0 0 0 0 0 0 0 0 0 0
Total 32 0 2 30 11 0 11 7 5 17

CodeContracts.PreInference

Before loop 58 0 0 58 27 0 18 3 4 33
Inside loop 21 0 1 18 8 0 7 12 0 6
After loop 7 0 1 6 5 0 1 4 1 0
Total 86 0 2 82 40 0 26 19 5 39

CodeContracts.ArrayPurityI

Before loop 2 0 0 2 0 0 2 0 0 2
Inside loop 3 0 2 1 2 0 0 1 0 1
After loop 0 0 0 0 0 0 0 0 0 0
Total 5 0 2 3 2 0 2 1 0 3

SVComp.SVCompCSharp

Before loop 0 0 0 0 0 0 0 0 0 0
Inside loop 9 0 3 2 0 0 0 9 0 0
After loop 2 0 1 1 1 0 1 1 0 0
Total 11 0 4 3 1 0 1 10 0 0

Total 188 0 18 160 62 5 67 63 13 80

Table VI
COMPARISON OF PRECONDITIONS GENERATED BY THE THREE APPROACHES FOR THE COLLECTION-ELEMENT CASES ON ALL THE SUBJECTS

Subject #ACL PREINFER FixIt DySy
Suff # Nece # Both # Suff # Nece # Both # Suff # Nece # Both

Algorithmia 2 0 1 0 0 0 0 0 1 0
CodeContracts 19 0 3 14 7 0 0 12 1 0
DSA 4 0 3 1 0 0 0 2 2 0
SVComp 8 0 3 2 0 0 0 7 0 0
Total 33 0 10 17 7 0 0 21 4 0

C. RQ1: How effective is PREINFER in inferring precon-
ditions compared to the related state-of-the-art approaches
(DySy and FixIt)?

The motivation behind RQ1 is to investigate the correct-
ness of the preconditions generated by PREINFER compared
to DySy and FixIt in the context of open-source projects and
benchmark suites. Furthermore, we break down each case by
the location of the assertion-containing location relative to a
loop. Table V contains the results of our evaluation. Column
#ACL shows the number of exception-throwing locations
being evaluated. For each approach, Columns #Suff, #Nece,
and #Both indicate the number of the preconditions that
are only sufficient, only necessary, and both sufficient and
necessary, respectively.

Across both open-source projects, PREINFER is more
effective than DySy and FixIt. For Algorithmia, PREINFER
can infer preconditions that are both sufficient and necessary
in over 90% of the cases compared to 57% of the cases
for Fix-It and 56% of the cases for DySy. Table VI shows
the comparison of preconditions generated by the three
approaches for cases where target preconditions must con-
tain existential or universal quantifiers (i.e., the collection-
element cases). As shown in Table VI, FixIt cannot handle
any single case, since FixIt uses only the last-branch predi-
cate to form a precondition. FixIt does not infer a precondi-
tion from multiple branch conditions and has no notion of a
quantifier. Our PREINFER approach can handle 17 out of the
33 cases. Figure 2 shows a code example (from DSA), which

1 public static string ReverseWords(this
string value)

2 {
3 int last = value.Length - 1;
4 int start = last;
5 StringBuilder sb = new StringBuilder();
6 while (last >= 0) {
7 while (start >= 0 &&

char.IsWhiteSpace(value[start])) {
8 start--;
9 }

10 last = start;
11 while (start >= 0 &&

!char.IsWhiteSpace(value[start])) {
12 start--;
13 }
14 for (int i = start + 1; i < last + 1;

i++) {
15 sb.Append(value[i]);
16 }
17 if (start > 0) {
18 sb.Append(’ ’);
19 }
20 last = start - 1;
21 start = last;
22 }
23 if (char.IsWhiteSpace(sb[sb.Length - 1]))

{
24 sb.Length = sb.Length - 1;
25 }
26 return sb.ToString();
27 }

Figure 2. An example of a method under study from DSA

PREINFER can handle. The method ReverseWords takes
an input string representing a sequence of words separated
by some whitespaces. The method returns a new string
representing the reverse of the sequence and removes some
whitespaces. If we pass an empty string as part of the input
to the method, the method throws an exception IndexOut-
OfRangeException on Line 23 as sb.Length - 1 being
negative. A ground-truth precondition to prevent this excep-
tion is value == null || ∃i,(i < value.Length ∧
char.IsWhiteSpace(value[i]) == false). Each fail-
ing path condition for this exception contains some predi-
cates indicating that all the characters in value must be
whitespaces. Our technique of collection-element general-
ization is able to generalize all the failing paths by us-
ing the quantified predicate, ∀i,(i < value.Length =⇒
char.IsWhiteSpace(value[i]) == true). Thus, the
resulting precondition matches the ground-truth precondi-
tion.

One limitation of PREINFER is that if a path condition
does not contain all the predicates that are needed to
infer an existential or universal template, PREINFER cannot
generalize anything, so the collection-element generalization
technique cannot work for such cases. For example, to infer a
template, ∀i,(i + 1 < 3) =⇒ s[i + 1] == ‘a’, each
failing path condition must contain predicate s[j + 1] ==

all all-correct some-correct all-wrong

50

100

150

200

250

10.02
0.82 3.67

51.83

94.03

60.22
72.06

238.84

C
om

pl
ex

ity

PREINFER (left bar)
DySy (right bar)

Figure 3. Average relative complexity of preconditions inferred by
PREINFER and DySy in four categories across all the subjects.

‘a’ if it contains predicate j + 1 < 3. However, the failing
path condition may contain predicate s[1 + j] == ‘a’

instead, which is semantically the same, but syntactically
different. One way to improve our technique is to use a
constraint solver to help determine predicate equivalence in-
stead of using the raw string representations of the predicates
appearing in path conditions. In almost all cases, PREINFER
can outperform both DySy and FixIt; however, for some
cases that contain complex loops that PREINFER cannot
handle but the correct precondition is just the negation of
the last-branch predicate, PREINFER fails to resolve and
simplify the long path conditions for the loops, since our
technique of collection-element generalization works for
only some specific kinds of loops matching the two tem-
plates. When the technique fails to generalize some failing
paths related to loops, the failing paths are too specific. Thus,
the precondition generated from those failing paths is not
sufficient (i.e., does not block all failing paths). FixIt, which
directly infers a precondition from the last-branch predicate,
can address such cases. Moreover, for some cases where
Pex cannot generate any passing path, PREINFER cannot
infer anything, whereas DySy can infer correct preconditions
for such cases. To address such cases, we can improve
PREINFER by slightly modifying our technique to skip all
the steps that require passing paths.

D. RQ2: How complex are the preconditions inferred by
PREINFER compared to those inferred by DySy and FixIt?

One may be interested to see how complex the precondi-
tions inferred by each approach under study are. For FixIt,
the average relative complexity of correct preconditions
inferred by FixIt is 0.19, and the average relative complexity
of incorrect preconditions inferred by FixIt is 0.76. Thus, the

relative complexity of preconditions inferred by FixIt is very
low, regardless of their correctness. By design, preconditions
inferred by FixIt are not complex because they do not
capture potential control or data dependencies with the
assertion-containing location. Preconditions inferred by FixIt
are generated directly from last-branch predicates. Thus,
the average relative complexity of preconditions inferred
by FixIt is close to zero. However, the consequences of
FixIt’s design significantly compromise the accuracy of the
preconditions as shown in Table V.

Figure 3 shows that the average relative complexity of
preconditions inferred by PREINFER and DySy in four
categories. The category “all” consists of all the ACLs. The
category “all-correct” consists of all the ACLs that both
approaches can infer correct preconditions (sufficient and
necessary). The category “some-correct” consists of all the
ACLs that at least one approach infers correct preconditions,
and the category “all-wrong” consists of all the ACLs that
none of the approaches can infer correct preconditions.
In all four categories, the average relative complexity of
preconditions inferred by PREINFER is a lot lower than that
of preconditions inferred by DySy. On average across the
four categories, the average relative complexity of precon-
ditions inferred by PREINFER is about 9.70% of that of
preconditions inferred by DySy. Thus, preconditions inferred
by PREINFER are less complex than the ones inferred by
DySy. One possible reason is that failing path conditions
tend to have a fewer number of predicates than passing
path conditions, since the execution stops early when it
throws an exception. Thus, using failing path conditions
instead of passing path conditions (used by DySy) to infer
preconditions can reduce the complexity of the precon-
ditions. Moreover, PREINFER also has some heuristic to
prune unnecessary predicates from each failing path, helping
reduce the complexity of the inferred preconditions. As
shown in Figure 3, the average relative complexity of the
preconditions inferred by both approaches is getting higher
for a harder case. In the category “all-wrong”, the average
relative complexity of the preconditions inferred by both
approaches is much higher than that in the category “all-
correct”, since the category “all-wrong” usually contains
loop cases, which have long path conditions.

VI. RELATED WORK

Dynamic Invariant Detection. Ernst et al. [19] propose the
Daikon approach for dynamically detecting likely program
invariants through the execution of tests. Daikon infers
invariants based on patterns of variable values matching
predefined templates. DySy [8] and Vigilante [20] infer
preconditions using the disjunction of the path conditions
from a set of passing and failing tests, respectively. In
the presence of loops, these approaches produce very long
and complex preconditions. Unlike their approaches that
leverage only passing or only failing tests, our approach

leverages both passing and failing tests, along with white-
box information (e.g., path conditions), allowing for more
pruning opportunities. Additionally, our approach summa-
rizes overly specific predicates introduced by loops.
Static Inference of Preconditions or Input Filters. The
approach of precondition inference in cccheck [18], [21] is
based on abstract interpretation. Its underlying static analysis
is undesirably more conservative and less precise than dy-
namic analysis (being used in our approach). Bouncer [22]
generates input filters to block exploit inputs. It combines
both static and dynamic analyses to perform precondition
slicing for pruning irrelevant predicates in path conditions.
SIFT [23] is a sound approach for input-filter generation
to block integer overflow vulnerabilities. SIFT uses static
analysis to derive symbolic constraints on how the sizes of
memory blocks are allocated to generate input filters that
block integer-overflow-causing inputs. Seghir et al. [24] pro-
pose an approach to infer preconditions by iteratively refin-
ing an over-approximation of the set of safe and unsafe states
until they become disjoint. The refinement process is to add
predicates such that a safe state and an unsafe state cannot
share their initial state. Unlike these approaches based on
static analysis, our approach leverages only the dynamically
collected path conditions to infer preconditions and requires
no static analysis (which often faces significant challenges
in analyzing real-world code bases). Moreover, our approach
includes a technique to infer quantified preconditions for
summarizing overly specific predicates introduced by loops,
while these approaches do not handle loops specially.
Black-box Learning of Specifications. Among black-box
learning approaches for inferring specifications, Gehr et
al. [25] use random sampling to generate a fixed set of tests
and use heuristics to extract diverse samples from their initial
set to learn commutativity specifications. Similarly, Padhi
et al. [26] learn preconditions, but also include techniques
to expand the initial features needed for learning. Sankara-
narayanan et al. [27] use an initial set of predicates to obtain
a partial truth table and then use a decision-tree-learning
algorithm to learn preconditions. Our approach differs from
these black-box approaches in that our approach is a white-
box one and can infer rich properties related to collection
elements.

VII. CONCLUSION

In this paper, we have presented PREINFER, a novel
approach of path-condition analysis for automatic precon-
dition inference. PREINFER infers preconditions that guard
against failures exposed by the generated failing tests with-
out blocking passing tests. In particular, PREINFER prunes
predicates that are irrelevant for helping achieve location
reachability and expression preservation, and generalizes
overly specific predicates involving collection elements as
quantified formulas over the indices of collection structures.

Our evaluation on a set of benchmarks from CodeCon-
tracts and SVComp along with two real-world open-source
projects (DSA and Algorithmia) shows PREINFER’s high
effectiveness on precondition inference and its superiority
over two related state-of-the-art approaches.

ACKNOWLEDGMENT

This work was supported in part by National Science
Foundation under grants no. CCF-1409423, CNS-1513939,
CNS1564274, and the GEM fellowship.

REFERENCES

[1] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed
automated random testing,” in Proc. PLDI, 2015, pp. 213–
223.

[2] N. Tillmann and J. De Halleux, “Pex: White box test gener-
ation for .NET,” in Proc. TAP, 2018, pp. 134–153.

[3] N. Tillmann, J. de Halleux, and T. Xie, “Transferring an
automated test generation tool to practice: from Pex to Fakes
and Code Digger,” in Proc. ASE, 2014, pp. 385–396.

[4] Microsoft. (2015) Generate smart unit tests for your
code. [Online]. Available: https://msdn.microsoft.com/library/
dn823749

[5] Microsoft. (2009) Exploring implicit branches. [Online].
Available: https://social.msdn.microsoft.com/Forums/en-
US/c92907eb-3b2d-4c30-abcd-93ec1c120b00/exploring-
implicit-branches?forum=pex

[6] P. Godefroid, “Higher-order test generation,” in Proc. PLDI,
2011, pp. 258–269.

[7] P. Godefroid and D. Luchaup, “Automatic partial loop sum-
marization in dynamic test generation,” in Proc. ISSTA, 2011,
pp. 23–33.

[8] C. Csallner, N. Tillmann, and Y. Smaragdakis, “DySy: Dy-
namic symbolic execution for invariant inference,” in Proc.
ICSE, 2018, pp. 281–290.

[9] N. Tillmann and J. D. Halleux, “Parameterized unit testing
with Microsoft Pex (Long Tutorial),” 2010. [Online].
Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.159.4711

[10] GitHub, “GitHub,” https://github.com.

[11] lukadt, “Data Structures and Algorithms (DSA).” [On-
line]. Available: https://github.com/lukadt/Data-Structures-
and-Algorithms-DSA

[12] SolutionsDesign, “Algorithmia.” [Online]. Available: https:
//github.com/SolutionsDesign/Algorithmia/tree/master

[13] N. Polikarpova, C. A. Furia, Y. Pei, Y. Wei, and B. Meyer,
“What good are strong specifications?” in Proc. ICSE, 2013,
pp. 262–271.

[14] X. Xiao, S. Li, T. Xie, and N. Tillmann, “Characteristic
studies of loop problems for structural test generation via
symbolic execution,” in Proc. ASE, 2013, pp. 246–256.

[15] Software and Computational Systems Lab, “Collection of
verification tasks.” [Online]. Available: https://github.com/
sosy-lab/sv-benchmarks

[16] J. Jaffar, V. Murali, J. A. Navas, and A. E. Santosa,
“TRACER: A symbolic execution tool for verification,” in
Proc. CAV, 2012, pp. 758–766.

[17] X. Xie, B. Chen, Y. Liu, W. Le, and X. Li, “Proteus:
Computing disjunctive loop summary via path dependency
analysis,” in Proc. FSE, 2016, pp. 61–72.

[18] P. Cousot, R. Cousot, M. Fähndrich, and F. Logozzo, “Auto-
matic inference of necessary preconditions,” in Proc. VMCAI,
2013, pp. 128–148.

[19] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin,
“Dynamically discovering likely program invariants to sup-
port program evolution,” in Proc. ICSE, 2001, pp. 99–123.

[20] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou,
L. Zhang, and P. Barham, “Vigilante: End-to-end containment
of Internet Worms,” in Proc. SOSP, 2015, pp. 133–147.

[21] P. Cousot, R. Cousot, and F. Logozzo, “Precondition inference
from intermittent assertions and application to contracts on
collections,” in Proc. VMCAI, 2011, pp. 150–168.

[22] M. Costa, M. Castro, L. Zhou, L. Zhang, and M. Peinado,
“Bouncer: Securing software by blocking bad input,” in Proc.
SOSP, 2007, pp. 117–130.

[23] F. Long, S. Sidiroglou-Douskos, D. Kim, and M. Rinard,
“Sound input filter generation for integer overflow errors,”
in Proc. POPL, 2014, pp. 439–452.

[24] M. N. Seghir and D. Kroening, “Counterexample-guided
precondition inference,” in Proc. ESOP, 2013, pp. 451–471.

[25] T. Gehr, D. Dimitrov, and M. T. Vechev, “Learning commu-
tativity specifications,” in Proc. CAV, 2015, pp. 307–323.

[26] S. Padhi, R. Sharma, and T. Millstein, “Data-driven precon-
dition inference with learned features,” in Proc. PLDI, 2016,
pp. 42–56.

[27] S. Sankaranarayanan, S. Chaudhuri, F. Ivančić, and A. Gupta,
“Dynamic inference of likely data preconditions over predi-
cates by tree learning,” in Proc. ISSTA, 2008, pp. 295–306.

