
UnitPlus: Assisting Developer Testing in Eclipse

Yoonki Song1 Suresh Thummalapenta2 Tao Xie3

Department of Computer Science
North Carolina State University, Raleigh, USA

{1ysong2, 2sthumma}@ncsu.edu, 3xie@csc.ncsu.edu

ABSTRACT

In the software development life cycle, unit testing is an im-
portant phase that helps in early detection of bugs. A unit
test case consists of two parts: a test input, which is often
a sequence of method calls, and a test oracle, which is of-
ten in the form of assertions. The effectiveness of a unit
test case depends on its test input as well as its test oracle
because the test oracle helps in exposing bugs during the ex-
ecution of the test input. The task of writing effective test
oracles is not trivial as this task requires domain or appli-
cation knowledge and also needs knowledge of the intricate
details of the class under test. In addition, when developers
write new unit test cases, much test code (including code
in test inputs or oracles) such as method argument values
is the same as some previously written test code. To as-
sist developers in writing test code in unit test cases more
efficiently, we have developed an Eclipse plugin for JUnit
test cases, called UnitPlus, that runs in the background and
recommends test-code pieces for developers to choose (and
revise when needed) to put in test oracles or test inputs.
The recommendation is based on static analysis of the class
under test and already written unit test cases. We have con-
ducted a feasibility study for our UnitPlus plugin with four
Java libraries to demonstrate its potential utility.

Categories and Subject Descriptors: D.2.5 [Software
Engineering]: Testing and Debugging—Testing tools;

General Terms: Languages, Reliability, Experimentation.

Keywords: Developer testing, Test code reuse

1. INTRODUCTION
In the software development life cycle, unit testing is an

important phase that helps early detection of bugs and en-
sures the overall quality of the developed software. In gen-
eral, a unit test case consists of two parts: a test input and a
test oracle. A test input often includes methods that affect
fields of the class under test and a test oracle often verifies
the affected fields through the class’ methods whose return

This work is supported in part by NSF grant CNS-0720641 and ARO grant
W911NF-07-1-0431.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

type is non-void. Test inputs can either be written manually
or generated automatically. Although existing automated
approaches are effective in automatically generating test in-
puts, they often suffer from the problem of insufficient test
oracles [2], especially in the absence of specification.

Rompaey et al. [4] propose a metric-based heuristical ap-
proach for ranking test cases to identify poorly designed
test cases. Their approach suggests to refactor those test
cases that violate unit test criteria. Their approach helps
to minimize the maintenance cost for test code but may
not be effective in increasing the effectiveness of the exist-
ing test cases. Orstra developed by Xie [6] tries to increase
the effectiveness of the existing test cases by augmenting an
automatically generated unit-test suite with regression or-
acle checking. But as their approach is non-interactive, it
is not possible for developers to incorporate their domain
knowledge while generating test oracles.

In many situations, developers still manually write test
code for test inputs, because the developers’ domain or ap-
plication knowledge can be incorporated there. Even for test
oracles, developers still need to manually write test code in
assertions, e.g., invocations of methods whose return types
are non-void. On the other hand, writing effective test ora-
cles manually is often not a trivial task as developers need
to refer to the intricate details of the class under test. Often
manually written test code in test inputs or oracles is the
same as or similar to some previously written test code. It
is tedious for developers to repeatedly type in these pieces
of the same or similar test code.

To assist developers in writing test code more efficiently,
we have developed an Eclipse plugin, called UnitPlus, that
runs in the background and recommends test-code pieces for
developers to choose (and revise when needed) to put in test
oracles or test inputs. In particular, UnitPlus accepts a class
and related existing test suites (including the test suite that
developers are working on) as inputs. UnitPlus identifies all
public methods of the given class and classifies them into two
categories: state-modifying methods and observer methods.
A method is classified as a state-modifying method, if the
method affects (i.e., writes) the value of at least one field
(or its transitively reachable field) of the given class. A
method is classified as an observer, if the method’s return
type is non-void. Sometimes, a method can be both a state-
modifying and observer method, if the method affects some
field of the given class and its return type is not void.

UnitPlus parses the existing test suites and collects method
sequences used for producing non-primitive method argu-
ments and values used for primitive method arguments. The

01:public class Person {
02: private String fName;
03: private int fAge;
04: private Address faddr;
05: public Person() {
06: fName = ""; fAge = 0; }
07: public Person(String name, int age) {
08: fName = name; fAge = age; }
09: public String getName() { return fName; }
10: public void setName(String name) { fName = name; }
11: public int getAge() { return fAge; }
12: public void setAge(int age) { fAge = age; }
13: public void getAddress() { return faddr; }
14: public Address setAddress(Address addr) {
15: faddr = addr; }
16:}
17:public class Management {
18: private Person[] fPeople;
19: private int fCount;
20: public Management() {
21: fPeople = new Person[10]; fCount = 0; }
22: public void add(Person p) { fPeople[fCount++] = p; }
23: public int howmany() { return fCount; }
24: public boolean isEmpty() {
25: return fCount == 0 ? true : false; }
26: public boolean isFull() {
27: return fCount == 10 ? true : false; }
28: public boolean exists(Person p) {
29: for (int i = 0; i < fCount; i++)
30: if (fPeople[i].getName().equals(p.getName()) &&
31: fPeople[i].getAge() == p.getAge())
32: return true;
33: return false; }
34:}

Figure 1: Example classes Person and Management.

parsed information, referred as TestCodeDB, is loaded by
UnitPlus. Whenever developers add or change test cases
in the test suite, UnitPlus updates the TestCodeDB on the
fly to reflect the changed information. The TestCodeDB is
used to recommend test code for producing method argu-
ments in test inputs or oracles. The recommended values
for method arguments can be either method sequences or
primitive values based on the type of the argument.

UnitPlus runs in the background when developers write
new test cases or modify existing test cases. After writing
test code (e.g., a state-modifying method) in the test in-
put of the test case, the developers can request UnitPlus
to recommend relevant observer methods as relevant test
code to choose (and revise when needed) to put in test or-
acles. UnitPlus identifies an observer method to be rele-

vant for a state-modifying method if the intersection be-
tween the affected-field set of a state-modifying method and
the accessed-field set1 of the observer method is not empty.
The rationale is that the side effects (i.e., affected fields)
of the state-modifying method on the receiver object state
need to be observed and asserted (by the relevant observer
methods) to make sure these side effects are expected.

Sometimes, a state-modifying method in the test input or
a recommended observer method in the test oracle may need
method argument values. UnitPlus recommends test code
of relevant method sequences or values (from TestCodeDB)
for providing needed method arguments in the test input or
oracle. UnitPlus identifies a method sequence or value to be
relevant for a method argument if the object produced by

1The accessed-field set includes read fields (as well as written
fields if the observer method is a state-modifying method).

01: public class ManagementTest extends TestCase {
02: public void testAdd() throws Exception {
03: Management mgmt = new Management();
04: mgmt.add(new Person("Jane Doe", 20));
05: assertEquals(1, mgmt.howmany());
06: }
07: }

Figure 2: Sample JUnit test suite for Management

01:public class ManagementTest extends TestCase {
02: public void testAdd() throws Exception {
03: Management mgmt = new Management();
04: mgmt.add(new Person("Jane Doe", 20));
05: assertEquals(1, mgmt.howmany());
06: assertEquals(false, mgmt.isEmpty());
07: assertEquals(false, mgmt.isFull());
08: Person person1 = new Person();
09: person1.setName("Jane Doe");
10: person1.setAge(20);
11: Address addr = new Address();
12: addr.setCity("A");
13: addr.setZipcode("12345");
14: person1.setAddr(addr);
15: assertEquals(true, mgmt.exists(person1));
16:}

Figure 3: Sample JUnit test suite augmented with

recommended test code in the test oracle

the method sequence or the value is of the same type as the
method argument. The rationale is that the same or similar
test code to be written by developers may have already been
written by the developers in the past.

2. EXAMPLE
We next explain our UnitPlus approach through an exam-

ple shown in Figure 1 and illustrate how UnitPlus can help
developers in writing unit test cases efficiently. The sam-
ple code Figure 1 shows two classes Person and Management

along with their fields and methods. The Person class con-
tains two fields fName and fAge and a few state-modifying
and observer methods. For example, methods setName and
setAge are state-modifying methods as they affect values of
fields fName and fAge, respectively, and methods getName and
getAge are observer methods as their return types are not
void.

Figure 2 shows a sample test suite, either written manu-
ally or generated automatically, for the Management class in
the form of JUnit. In general, each JUnit test case con-
sists of two kinds of statements: non-assertion and assertion
statements. The non-assertion statements form the test in-
put and the assertion statements form the test oracle. For
example, in the testAdd test case shown in Figure 2, Lines 3
and 4 contain non-assertion statements followed by Line 5,
which contains an assertion statement for verifying values of
some affected field (fCount) through verifying the return of
the observer method (howmany).

In the given test case, verifying the number of persons (re-
flected by the fCount field) after adding a Person object may
not be sufficient to check the entire functionality provided
by the add method. The test case can be made more effective
by adding new test oracles. To recommend test code in aug-
menting the test oracle, UnitPlus initially classifies methods
of the given classes into state-modifying and observer meth-
ods. UnitPlus also identifies the affected fields and the ac-
cessed fields for each state-modifying and observer methods,
respectively. Tables 1 and 2 show the set of state-modifying
and observer methods along with their affected and accessed

Method Name Affected Fields

Management.add(Person) fCount, fPeople

Management.add(String, int) fCount, fPeople

Management.CONSTRUCTOR() fCount, fPeople

Person.CONSTRUCTOR() fAge, fName

Person.CONSTRUCTOR(String, int) fAge, fName

Person.setAge(int) fAge

Person.setName(String) fName

Table 1: Set of state-modifying methods of the

Management and Person classes.

Method Name Accessed Fields

Management.exists(Person) fCount, fPeople

Management.howmany() fCount

Management.isEmpty() fCount

Management.isFull() fCount

Person.getAge() fAge

Person.getName() fName

Table 2: Set of observer methods of Management and

Person classes.

fields, respectively. Column “Method Name” gives the sig-
nature of the method and Columns “Affected Fields” and
“Accessed Fields” give the set of affected fields and accessed
fields, respectively, by the corresponding method.

UnitPlus uses the information shown in Tables 1 and 2 to
compute a relation between the observer and state-modifying
methods. The relation is computed by calculating the inter-
section between the accessed-field set of the observer method
and the affected-field set of the state-modifying method.
The computed relation describes which observer methods
are associated with a given state-modifying method. For ex-
ample, UnitPlus identifies that the Management.add method,
which affects fields fPeople and fCount, is associated with
the observer methods howMany, isEmpty, isFull, and exists.
Whenever UnitPlus identifies the Management.add method in
a test case, UnitPlus recommends the associated observer
methods as test code in augmenting the test oracle. Figure 3
shows the sample test suite with the augmented test oracle
including the recommended test code. The augmented test
oracle can verify more behaviors of the the Management.add

method and thereby can provide better fault-detection ca-
pability.

Sometimes, the recommended observer methods may need
method arguments including non-primitive arguments. To
reduce developers’ effort, UnitPlus learns from existing test
cases and recommends method sequences or primitive val-
ues for producing the required argument type. For exam-
ple, consider the test oracle shown in Line 15 of Figure 3.
The observer method exists requires an argument of the
Person class type. UnitPlus learns the method sequence that
produces an object of Person class from existing test cases
and recommends the method sequence to the developers. In
the current example, the recommended method sequence for
producing the object of the Person class is shown between
Lines 8 and 14. The suggested method sequence includes
method calls for creating an object of the Address class as
the method setAddr of the Person class has a non-primitive
argument of the type Address.

3. APPROACH
Our UnitPlus approach consists of three major compo-

nents: the side-effect analyzer, observer-method recommender

TestCodeDB

Java
Files

Written
/Read
Fields

Side-Effect
Analyzer

(Harpoon)

Observer-
Method

Recommender

Test Code
Miner

Figure 4: Overview of our approach

(OMR), and test code miner (TCM). Figure 4 shows an
overview of the major components of our approach.

The side-effect analyzer accepts the given class as input
and classifies the public methods of the given class into
two categories: state-modifying and observer methods. A
method is classified as state-modifying if the method af-
fects at least one field (or its transitively reachable field)
of the given class. A method is classified as an observer
method if the return type of the method is non-void. Along
with the classification of the methods, the side-effect ana-
lyzer also identifies the affected and accessed fields for each
state-modifying and observer methods, respectively. In our
current implementation, we used Harpoon [3] as a side-effect
analyzer.

The OMR component assists developers by recommend-
ing test code in augmenting the test oracle in the form of
assert statements. This component accepts the sets of state-
modifying and observer methods as input and computes re-
lationships among state-modifying and observer methods.
An observer method is identified as relevant to a state-
modifying method if the intersection between the accessed-
field set of the observer method and the affected-field set
of the state-modifying method is not empty. For example,
consider that an observer method, say OM1, accesses fields
F1 and F2 of the class ExClass, and the state-modifying
method, say SMM1, affects fields F2 and F3. The OMR
component calculates the intersection between sets {F1, F2}
of OM1 and {F2, F3} of SMM1. As the intersection results
in set {F2}, which is not empty, the OMR component iden-
tifies that OM1 is relevant to SMM1. The component uses
the computed relationships while recommending test code
in augmenting the test oracle. For example, if developers
add a state-modifying method to the test case, the OMR
component identifies the relevant observer methods and rec-
ommends them to the developers as test code in augmenting
the test oracle.

The TCM component helps developers in writing test code
by suggesting method sequences or argument values for the
recommended observer methods. Initially, TCM gathers
method sequences or primitive values used by the existing
test cases along with the locations where these method se-
quences or primitive values are written. The gathered infor-
mation is stored in memory, and is referred as TestCodeDB.
When OMR requests TCM for the values of a method ar-
gument, TCM checks for the available method sequences or
primitive values, and recommends them as a list ranked by
the distance from the working location to their respective
locations, with a higher preference to a nearer one. The ra-
tionale behind this nearness heuristic is that the developers
often tend to reuse the nearest available method sequences
or primitive values among all available method sequences

Figure 5: Screen snapshot of the UnitPlus Eclipse plugin showing the list of recommended observer methods

or primitive values. We plan to incorporate other ranking
heuristics in future work.

In our current implementation, the OMR and TCM com-
ponents use Eclipse JDT [1] for parsing Java source files.
The whole UnitPlus plugin was built upon an existing Eclipse
plugin, called moreUnit [5], which assists developers while
they are writing unit test cases. moreUnit provides several
basic functionalities such as switching between the test case
and the class under test, test case creation, and refactoring.
UnitPlus can be invoked from the Eclipse by selecting the
desired state-modifying method and by pressing Ctrl+1. A
snapshot of the UnitPlus plugin is shown in Figure 5. The
snapshot shows a set of recommended observer methods for
the state-modifying method add. The developers can choose
any of the recommended observer methods and UnitPlus
automatically adds the selected observer method to the test
case.

4. FEASIBILITY STUDY
We next describe our feasibility study conducted with four

different subjects. Our study results show that the existing
test suites of these libraries can be augmented with our rec-
ommended test code in additional test oracles to make these
test suites more effective.

4.1 Subjects
The four subjects used in our study are open source li-

braries with existing test suites. The JSort2 library pro-
vides sorting algorithms. The JBell3 is a Java library that
enables developers to perform operations such as collection
filtering and/or sorting. The JAutomata4 is a library used
for creating, manipulating, and displaying finite-state au-
tomata within the Java platform. StringTree5 is a library
for text transformation and processing package.

Table 3 shows the characteristics of all four subjects that
are used in our study. In particular, the columns show the
subject name, number of classes, number of test suites, and
the total number of test cases in all test suites. Column
“SMM” gives the number of state-modifying methods in
each subject library. For each SMM, we present the total
number, and the number of SMMs invoked and not invoked
by the test code. Column “OM” gives the number of ob-
server methods in each subject library.

4.2 Study Results
Figure 6 shows the study results of UnitPlus with all four

subject libraries. The figure consists of a chart for each

2http://sourceforge.net/projects/jsort
3http://sourceforge.net/projects/jbel
4http://sourceforge.net/projects/jautomata
5http://sourceforge.net/projects/stringtree

subject library used in our study. The x axis represents
state modifying methods of the subject (labelled with ID
numbers) and the y axis represents the number of observer
methods associated with each state-modifying method. For
each state-modifying method, we show both the number of
recommended observer methods (black bar) and the num-
ber of observer methods that are actually invoked (white
bar) in the test suites of each subject library. We observed
that some libraries have a few state-modifying methods for
which there are neither recommended observer methods nor
invoked observer methods in the existing test suite. We ig-
nored such state-modifying methods from the charts shown
in Figure 6.

For subject libraries JAuto, JBel, and StringTree, our re-
sults show that the test oracles of the existing test suites
can be further augmented, because in the existing test cases
not all relevant observer methods are used to verify behav-
ior for many state-modifying methods. For example, for the
first state-modifying method (denoted by 1 in the x axis)
of the JAuto library, the number of recommended observer
methods is 17. However, none of these observer methods
are verified after the state-modifying method in the exist-
ing test suite of the JAuto library. Our results indicate that
for the JSort library, the developers invoke all recommended
observer methods for each state-modifying method.

We also found some interesting results on the test suites
of each library. In our study, we found that the existing test
suites are not covering all state-modifying methods. These
results are shown in the column “Not Invoked” of Table 3.
We are currently inspecting these cases in details for expla-
nations.

5. DISCUSSION
UnitPlus classifies methods of the class under test into

state-modifying methods and observer methods. Based on
our criteria used for classification, a method can be both a
state-modifying and observer one. When this type of ob-
server methods is used as test oracles, the recommended
relevant observer methods for a state-modifying method can
modify the state of the underlying object. Therefore, Unit-
Plus expects developers to decide whether to use a recom-
mended observer method as there can be side-effects when
the recommended observer method is also a state-modifying
method.

UnitPlus currently needs developers to manually write ex-
pected return values for the recommended observer meth-
ods. In future work, we plan to automatically capture the
actual return values of the recommended observer methods
and then the developers need only confirm the captured re-
turn values. We expect that automatic capturing of the

Subject Classes Test Suites Test Cases SMM OM
Total Invoked Not Invoked

JSort 11 7 24 6 6 0 3

JBel 55 26 80 46 41 5 30

JAutomata 84 17 48 93 36 57 96

StringTree 58 30 169 169 104 65 131

Table 3: Characteristics of the subject libraries used in the study

JAuto

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

State modifying methods

O
b

s
e
rv

e
r

m
e
th

o
d

s

JBel

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

State modifying methods

StringTree

0

2

4

6

8

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67

State modifying methods

JSort

0

1

2

1 2 3 4 5

State Modifying

methods

Figure 6: Study results

Legend: Black:Recommended observer methods, White:Existing observer methods

actual values can help to further reduce the efforts of devel-
opers while writing unit test cases.

So far we have conducted a feasibility study to show that
UnitPlus can recommend additional test oracles that can be
added to make the existing test cases more effective. Al-
though the benefits of test oracle augmentation was demon-
strated by an experiment conducted previously in assessing
the Orstra approach [6], in future work, we plan to conduct
a more comprehensive evaluation to validate whether the
augmented test oracles indeed improve the fault-detection
capability of those test cases.

In general, there can be more than one method sequence
available in the existing test cases for instantiating a re-
quired non-primitive type. The current implementation sorts
the available method sequences based on the distance from
the working location to locations of method sequences to
be recommended. In future work, we plan to investigate
and include several other ranking heuristics for prioritizing
those identified method sequences. One such ranking crite-
rion is to sort the identified method sequences based on the
frequency of each identified method sequence.

6. CONCLUSION
Manual test case creation in creating test inputs and or-

acles is a tedious process. We have developed an Eclipse
plugin, called UnitPlus, that can assist developers in writing
unit test cases more efficiently. UnitPlus runs in the back-
ground and recommends relevant test code in test oracles
whenever the developers enter a test input in the test case.
The recommended test code in test oracles can increase the
effectiveness of the test case and thereby can help in finding
more bugs. UnitPlus also tries to reduce developers’ effort

while they are writing test cases by automatically recom-
mending method sequences or values that can instantiate a
given method argument type. We conducted a feasibility
study on UnitPlus with four different subjects and showed
that existing test suites can be augmented with our recom-
mended test code in additional test oracles to make these
test suites more effective.

7. REFERENCES
[1] M. Aeschlimann, D. Baumer, and J. Lanneluc. Java

tool smithing extending the Eclipse Java development
tools. In Proc. EclipseCon, Tutorial, 2005.

[2] M. Amorim, C. Pacheco, T. Xie, D. Marinov, and
M. Ernst. An empirical comparison of automated
generation and classification techniques for
object-oriented unit testing. In Proc. 21st International

Conference on Automated Software Engineering, pages
59–68, 2006.

[3] S. Ananian. FLEX compiler infrastructure for Java,
2003. http://cycleserv2.csail.mit.edu/Harpoon.

[4] B. Rompaey, B. Bois, and S. Demeyer. Characterizing
the relative significance of a test smell. In Proc. 22nd

International Conference on Software Maintenance,
pages 391–400, 2006.

[5] V. Wahler, C. Walton, P. Ombredanne, and C. Jones.
moreUnit, 2007. http://moreunit.sourceforge.net.

[6] T. Xie. Augmenting automatically generated unit-test
suites with regression oracle checking. In Proc. 20th

European Conference on Object-Oriented Programming,
pages 380–403, 2006.

