
Evolving Testing and Analysis for
Evolving Software

Tao Xie
Peking University (2011-2012), China

North Carolina State University
Raleigh, NC, USA

In Collaboration with Microsoft Research Redmond/Asia, and Students@NCSU ASE Group

Dagstuhl Seminar 10111

Practical Software Testing: Tool Automation and Human Factors

ACM SIGSOFT International Symposium on Software Testing and Analysis

Source© Carlo Ghezzi

OSDI 2008 26% vs. xSE ?%
Developers, Programmers, Architects Among
All Attendees

ICSM 2011 Keynote ICSE 2009 Keynote

 50 years of automated debugging research
 N papers  only 5 evaluated with actual programmers

“

” [ISSTA11 Parnin&Orso]

 Likely most studied testing problems
 N papers

“

”

[STVR11 Yoo&Harman]

8

Successful cases/experiences
on tech transfer/adoption

Unsuccessful cases/experiences
on tech transfer/adoption

Learning by Negative Examples Learning by Positive Examples

Using Industrial Artifacts != Technology Adoption

 Play Around Industrial Tool
 Parasoft Jtest  Rostra [ASE 04]

 Play Within Industrial Tool
 Microsoft Research Pex  Fitnex [DSN 09]

 Advise Industrial Tool Developers
 Microsoft Research Pex For Fun  [CSEE&T 11 Tut]

 Engage Target Users
 Microsoft Research Asia Software Analytics Group

 Play Around Industrial Tool
 Parasoft Jtest  Rostra [ASE 04]

 Play Within Industrial Tool
 Microsoft Research Pex  Fitnex [DSN 09]

 Advise Industrial Tool Developers
 Microsoft Research Pex For Fun  [CSEE&T 11 Tut]

 Engage Target Users
 Microsoft Research Asia Software Analytics Group

public class BST implements Set {
 Node root;
 int size;
 static class Node {
 int value;
 Node left;
 Node right;
 }
 public void insert (int value) { … }
 public void remove (int value) { … }
 public bool contains (int value) { … }
 public int size () { … }
}

Test
generator

Test 1 (T1):
 BST t1 =
 new BST();
 t1.insert(2);
 t1.insert(1);
 t1.remove(1);
 t1.insert(3);
 t1.size();

Test 2 (T2):
 BST t2 =
 new BST ();
 t2.insert(2);
 t2.insert(3);

Test 3 (T3):
 BST t3 =
 new BST ();
 t3.insert(2);
 t3.insert(1);
 t3.size();

Each test has a method sequence on the objects of the class.

Outputs Program

+

Test
inputs

 Test T is redundant w.r.t. the existing tests if T
exercises no new program behavior (thus, no new
bug)

 Difficulties with redundant tests
 costly to generate, run, and inspect them
 may provide false confidence

 Rostra characterizes behavior using input values
 identify and remove redundant tests

Run Generate Inspect

Outputs Program

+

Test
inputs

Test
generator

 Behavior characterized using code coverage
(e.g., statements, branches)

 False positives: remove many non-redundant tests
 Reduced test suite can be dramatically worse w.r.t.

fault detection capability [Rothermel et al. 98, Jones&Harrold 03]

 Behavior characterized using method sequence
 False negatives: fail to remove many redundant tests
 Adopted by most existing test generation tools

Test 1:
BST t1 = new BST();
t1.size();

Test 2:
BST t2 = new BST();
t2.size();
t2.size();

Test 1 (T1):
 BST t1 =
 new BST();
 t1.insert(2);
 t1.insert(1);
 t1.remove(1);
 t1.insert(3);
 t1.size();

Test 2 (T2):
 BST t2 =
 new BST ();
 t2.insert(2);
 t2.insert(3);

Test 3 (T3):
 BST t3 =
 new BST ();
 t3.insert(2);
 t3.insert(1);
 t3.size();

Approach using method sequence removes
no tests

 Rostra removes T2 and T3 because
T2 and T3 are redundant w.r.t. T1

 Focus on each method execution individually

 Unnecessary to test a method with the same
inputs (same inputs ⇒ same behavior)
 deterministic method execution: no randomness,

no multithreading interaction
 method inputs: incoming program states

▪ receiver-object state: transitively-reachable-field values
▪ arguments
▪ accessed static fields

 Running a test produces a set of method
executions

 A test is redundant w.r.t. a test suite
 if the method executions produced by the test is a

subset of the method executions produced by the test
suite

Test1 … Testi

Method exec 1

 Testi+1

Method exec 1 is subset of

is redundant w.r.t.

Test 1 (T1):
 BST t1 =
 new BST();
 t1.insert(2);
 t1.insert(1);
 t1.remove(1);
 t1.insert(3);
 t1.size();

Test 2 (T2):
 BST t2 =
 new BST ();
 t2.insert(2);
 t2.insert(3);

 new BST()

exercised

receiver-obj state argument

Method Exec

Test 1 (T1):
 BST t1 =
 new BST();
 t1.insert(2);
 t1.insert(1);
 t1.remove(1);
 t1.insert(3);
 t1.size();

Test 2 (T2):
 BST t2 =
 new BST ();
 t2.insert(2);
 t2.insert(3);

 BST.insert

exercised

receiver-obj state argument

Method Exec

root = null
size = 0 2

Test 1 (T1):
 BST t1 =
 new BST();
 t1.insert(2);
 t1.insert(1);
 t1.remove(1);
 t1.insert(3);
 t1.size();

Test 2 (T2):
 BST t2 =
 new BST ();
 t2.insert(2);
 t2.insert(3);

exercised

receiver-obj state argument

Method Exec

3
root =

size = 1

2

 BST.insert

Test 1 (T1):
 BST t1 =
 new BST();
 t1.insert(2);
 t1.insert(1);
 t1.remove(1);
 t1.insert(3);
 t1.size();

Test 2 (T2):
 BST t2 =
 new BST ();
 t2.insert(2);
 t2.insert(3);

Test 2 is redundant w.r.t Test 1!

 Industry standard tool adopting previous
approach based on method sequences
 Parasoft Jtest 4.5 www.parasoft.com

▪ Generate tests with method-call lengths up to three

 Use Jtest to generate tests for 11 Java classes
from various sources (complex data structures)

 Apply Rostra on the generated tests

 90% of generated tests are redundant!
 Minimized tests preserve the same code (branch)

coverage and seeded-bug coverage

 People do use Jtest
 Recognized with numerous awards, including Jolt Product

Excellence Award and JDJ Editor's Choice Award in 2004; adopted by
thousands of development teams worldwide.
 ― businesswire.com

 But don’t love its test generation
 “I can't think of anyone telling me that they love Jtest's test-

generating feature.”
 ―Joe Rainsberger, JUnit book author, 02/05@junit user mailing list

 People do use Jtest
 Recognized with numerous awards, including Jolt Product

Excellence Award and JDJ Editor's Choice Award in 2004; adopted by
thousands of development teams worldwide.
 ― businesswire.com

 But don’t love its test generation
 “I can't think of anyone telling me that they love Jtest's test-

generating feature.”
 ―Joe Rainsberger, JUnit book author, 02/05@junit user mailing list

And do love

Parasoft VP later notified us that Parasoft Jtest 6.0 had fixed the
test redundancy issue identified by us

 Play Around Industrial Tool
 Parasoft Jtest  Rostra [ASE 04]

 Play Within Industrial Tool
 Microsoft Research Pex  Fitnex [DSN 09]

 Advise Industrial Tool Developers
 Microsoft Research Pex For Fun  [CSEE&T 11 Tut]

 Engage Target Users
 Microsoft Research Asia Software Analytics Group

 Play Around Industrial Tool
 Parasoft Jtest  Rostra [ASE 04]

 Play Within Industrial Tool
 Microsoft Research Pex  Fitnex [DSN 09]

 Advise Industrial Tool Developers
 Microsoft Research Pex For Fun  [CSEE&T 11 Tut]

 Engage Target Users
 Microsoft Research Asia Software Analytics Group

Code to generate inputs for:

Constraints to solve

a!=null

a!=null &&
a.Length>0

a!=null &&
a.Length>0 &&
a[0]==1234567890

void CoverMe(int[] a)
{
 if (a == null) return;
 if (a.Length > 0)
 if (a[0] == 1234567890)
 throw new Exception("bug");
}

Observed constraints

a==null

a!=null &&
!(a.Length>0)
a!=null &&
a.Length>0 &&
a[0]!=1234567890

a!=null &&
a.Length>0 &&
a[0]==1234567890

Data

null

{}

{0}

{123…}

a==null

a.Length>0

a[0]==123…
T

T F

T

F

F

Execute&Monitor Solve

Choose next path

Done: There is no path left.

Negated condition

 Loops
 Fitnex [DSN 09]

 Method sequences
 MSeqGen [ESEC/FSE 09], Seeker [OOPSLA 11]

 Environments
 Database [ASE 09-sp, ASE 11], Cloud [IEEE Soft 12]

Opportunities
 Regression testing [ISSTA 11]
 Developer guidance (cooperative testing) [ICSE 11]

Download counts (20 months)
(Feb. 2008 - Oct. 2009)

 Academic: 17,366
 Devlabs: 13,022
 Total: 30,388

http://pexase.codeplex.com/
Publications: http://research.microsoft.com/en-us/projects/pex/community.aspx#publications

http://research.microsoft.com/en-us/projects/pex/community.aspx

 Play Around Industrial Tool
 Parasoft Jtest  Rostra [ASE 04]

 Play Within Industrial Tool
 Microsoft Research Pex  Fitnex [DSN 09]

 Advise Industrial Tool Developers
 Microsoft Research Pex For Fun  [CSEE&T 11 Tut]

 Engage Target Users
 Microsoft Research Asia Software Analytics Group

 When are Tools Worse Than Human?

"Completely Automated
Public Turing test to tell
Computers and Humans
Apart"

Dagstuhl Seminar 10111

Practical Software Testing: Tool Automation and Human Factors

ACM SIGSOFT International Symposium on Software Testing and Analysis

Human Factors

Dagstuhl Seminar 10111

Practical Software Testing: Tool Automation and Human Factors

Human Factors

The IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC)

 Machine is better at task set A
 Mechanical, tedious, repetitive tasks, …
 Ex. solving constraints along a long path

 Human is better at task set B
 Intelligence, human intention, abstraction, domain

knowledge, …
 Ex. local reasoning after a loop

 = A U B?

 Computing-Centric Human
 Driver: tool Helper: human
 Ex. Covana [Xiao et al. ICSE 2011]

 Human-Centric Computing
 Driver: human  Helper: tool
 Ex. Coding duels @Pex for Fun

 Interfaces are important. Contents are important too!

 Motivation
 Tools are often not powerful enough (at least for now)
 Human is good at some aspects that tools are not

 Task for Tool: What needs to automate?

 Tool  Human
 What difficulties does the tool face?
 How to communicate info to the user to get her help?

 Tool Human
 How does the user help the tool based on the info?

 Iterations to form feedback loop?

external-method call problems (EMCP)

object-creation problems (OCP)

40

 Task: What need to automate?
 Test-input generation

 What difficulties does the tool face?
 Doesn’t know which methods to instrument and explore
 Doesn’t know how to generate effective method sequences

 How to communicate info to the user to get her help?
 Report encountered problems

 How does the user help the tool based on the info?
 Instruct which external methods to instrument/write mock objects
 Write factory methods for generating objects

 Iterations to form feedback loop?
 Yes, till the user is happy with coverage or impatient

[Xiao et al. ICSE 2011]

 Computing-Centric Human
 Driver: computer  Helper: human
 Ex. Covana [Xiao et al. ICSE 2011]

 Human-Centric Computing
 Driver: human  Helper: computer
 Ex. Coding duels @Pex for Fun

 Interfaces are important. Contents are important too!

Secret Implementation

class Secret {
 public static int Puzzle(int x) {
 return x * 3 + 10;
 }
}

Player Implementation

class Player {
 public static int Puzzle(int x) {
 return x;
 }
}

class Test {
 public static void Driver(int x) {
 if (Secret.Puzzle(x) != Player.Puzzle(x))
 throw new Exception(“Found a Difference”);
 }
}

behavior
Secret Impl == Player Impl?

[ASE 08sp]

Try it at http://www.pexforfun.com/

722,908 clicked 'Ask Pex!'

 Coding duels at http://www.pexforfun.com/
 Task for Human: write behavior-equiv code

 Human  Tool
 Does my new code behave differently? How exactly?

 Human  Tool
 Could you fix your code to handle failed/passed tests?

 Iterations to form feedback loop?
 Yes, till tool generates no failed tests/player is impatient

http://www.pexforfun.com/

 Coding duels at http://www.pexforfun.com/
 Brain exercising/learning while having fun
 Fun: iterative, adaptive/personalized, w/ win criterion
 Abstraction/generalization, debugging, problem solving

Brain exercising

http://www.pexforfun.com/

Data-Driven Software Engineering in the Large AND Small

 Play Around Industrial Tool
 Parasoft Jtest  Rostra [ASE 04]

 Play Within Industrial Tool
 Microsoft Research Pex  Fitnex [DSN 09]

 Advise Industrial Tool Developers
 Microsoft Research Pex For Fun  [CSEE&T 11 Tut]

 Engage Target Users
 Microsoft Research Asia Software Analytics Group

 Play Around Industrial Tool
 Parasoft Jtest  Rostra [ASE 04]

 Play Within Industrial Tool
 Microsoft Research Pex  Fitnex [DSN 09]

 Advise Industrial Tool Developers
 Microsoft Research Pex For Fun  [CSEE&T 11 Tut]

 Engage Target Users
 Microsoft Research Asia Software Analytics Group

MALETS 2011

Utilize data-driven approach to help create highly performing, user
friendly, and efficiently developed and operated software and
services.

http://research.microsoft.com/groups/sa/
[MALETS’11 Zhang et al.]

Software
Developme
nt Process

Software
Systems

Software
Users

http://research.microsoft.com/groups/sa/

MALETS 2011

 Motivation
 Copy-and-paste is a common developer behavior
 A real tool widely adopted at Microsoft

 XIAO enables code clone analysis with
 High tunability
 High scalability
 High compatibility
 High explorability

[IWSC’11 Dang et.al.]

 Engagement of practitioners
 Combination of expertise

What Shall Academia Do?

 Get research problems from real practice
 Get feedback from real practice
 Collaborate across disciplines
 Collaborate with industry

 Play Around Industrial Tool
 Parasoft Jtest  Rostra [ASE 04]

 Play Within Industrial Tool
 Microsoft Research Pex  Fitnex [DSN 09]

 Advise Industrial Tool Developers
 Microsoft Research Pex For Fun  [CSEE&T 11 Tut]

 Engage Target Users
 Microsoft Research Asia Software Analytics Group

 Computing-Centric Human: Test/Analysis Tools

 Tool  Human
 Tool Human

 Human-Centric Computing: Educational Tools

 Human  Tool
 Human  Tool

 Computing-Computing (synergetic analysis)
 Human-Human (crowdsourcing)

Questions ?

https://sites.google.com/site/asergrp/

 Developers provide guidance to help tools
achieve higher structural coverage

 Apply tools to generate tests
 Tools report achieved coverage & problems
 Developers provide guidance
▪ EMCP: Instrumentation or Mock Objects
▪ OCP: Factory Methods

56

	From Ivory Tower to Real World
	Slide Number 2
	Automation in Software Engineering
	Automation in Software Testing
	ICSE Papers: Industry vs. Academia�
	"Are Automated Debugging [Research] Techniques Actually Helping Programmers?"
	Are Regression Testing [Research] Techniques Actually Helping Industry?
	From Ivory Tower to Real World
	Outline
	Outline
	Binary Search Tree Example
	Example Generated Tests
	Defining Redundant Tests
	Previous Approaches
	Example Generated Tests
	Rostra’s Rationale �for Defining Redundant Tests
	Redundant Test Defined
	Detecting Redundant Tests
	Detecting Redundant Tests
	Detecting Redundant Tests
	Detecting Redundant Tests
	Evaluation Results [ASE 04]
	Industry Impact ― Parasoft Jtest
	Industry Impact ― Parasoft Jtest
	Outline
	Outline
	Dynamic Symbolic Execution
	Challenges of DSE
	Pex on MSDN DevLabs�Incubation Project for Visual Studio
	Open Source Pex extensions
	Outline
	Tools Help Human So Far
	CAPTCHA
	Automation in Software Testing
	Automation in Software Testing
	Human-Centric Computing�in Software Engineering
	Reality Check
	Cooperation Between Human and Machine: Cooperative Testing/Analysis
	Computing-Centric Human
	Problems Faced by Automated-Test-Generation Tool
	Cooperation Between �Human and Machine – Covana
	Cooperation Between Human and Machine: Cooperative Testing/Analysis
	Behind the Scene of Pex for Fun
	Migrating Pex to the Web/Cloud
	HCC: Pex for Fun
	Human-Centric Computing
	Coding Duels Go �Wild @ICSE 11
	Outline
	Outline
	Software Analytics Group @ MSRA
	XIAO: Code Clone Analysis
	Successful Tech-Transfer Tips
	Summary
	Vision: Cooperative Testing/Analysis
	Thank you!
	Cooperative Developer Testing

