
Exposing Behavioral Differences in Cross-Language
API Mapping Relations

Hao Zhong1, Suresh Thummalapenta2, and Tao Xie3

1 Laboratory for Internet Software Technologies, Institute of Software, CAS, Beijing, China
2 IBM Research, Bangalore, India

3 Department of Computer Science, North Carolina State University, Raleigh, USA
zhonghao@itechs.iscas.ac.cn, surthumm@in.ibm.com,

xie@csc.ncsu.edu

Abstract. Due to various considerations, software vendors often translate their
applications from one programming language to another, either manually or with
the support of translation tools. Both these scenarios require translation of many
call sites of API elements (i.e., classes, methods, and fields of API libraries). API
mapping relations, either acquired by experienced programmers or already incor-
porated in translation tools, are much valuable in the translation process, since
they describe mapping relations between source API elements and their equiv-
alent target API elements. However, in an API mapping relation, a source API
element and its target API elements may have behavioral differences, and such
differences could lead to defects in the translated code. So far, to the best of our
knowledge, there exists no previous study for exposing or understanding such
differences. In this paper, we make the first attempt to expose and analyze be-
havioral differences in cross-language API mapping relations. From our result,
we summarize eight findings and their implications that can improve effective-
ness of translation tools, and also assist programmers in understanding the differ-
ences between mapped API elements of different languages during the translation
process. Some exposed behavioral differences can indicate defects in translation
tools, and four such new defects were confirmed by the developers of those tools.

1 Introduction
Since the inception of computer science, many programming languages (e.g., COBOL,
C#, and Java) have been introduced. To survive in competing markets and to address
various business requirements, software companies or open source organizations of-
ten release variants of their applications in different languages. In total, as stated by
Jones [12], nearly one third of the existing applications have versions in more than
one language. There are three major factors for such phenomenon of having appli-
cation variants in multiple languages. First, Application Programming Interface (API)
libraries or engines are often released in more than one language to attract programmer-
s in diverse backgrounds. Second, stand-alone applications are released in more than
one language to acquire specific features of different programming languages. Finally,
the market of mobile platforms is highly competitive, and different mobile platforms
typically support different programming languages (e.g., Andriod supports Java, iOS
supports Objective C, and Windows Mobile supports C#). To survive in the competitive

market, mobile application vendors tend to release variants of applications in different
languages for multiple platforms.

State of the art. To reduce development effort, a natural way to implement an ap-
plication in a different language is to translate from an existing application. During
the translation, programmers need to resolve many differences across two languages.
Comparing with limited keywords and code structures, two languages typically have
many API elements. As reported by El-Ramly et al. [7], it is critical to translate API
elements correctly during the translation process. To translate API elements, program-
mers need to replace call sites of source API elements in one programming language
systematically with their target API elements in another programming language, based
on their known mapping relations. In practice, many programmers rely on their own
understandings to translate API elements, but some experienced programmers also in-
corporate their understandings in translation tools. For example, programmers of db4o4

developed a translation tool, call Sharpen, for translating db4o from Java to C#. To re-
duce the effort of translating API elements, they incorporated hundreds of API mapping
relations inside Sharpen. Furthermore, to translate more API elements, researchers [27]
proposed various approaches that mine API mapping relations automatically.

Given an entity E1 (such as API classes, methods, and fields) in a language L1,
and another entity E2 in another other language L2, a mapping relation m is a triple
⟨E1, E2, f⟩ and describes that E1 and E2 have the same functionality f . API mapping
relations are valuable to translate call sites of API elements, but they can introduce de-
fects in the translated code silently. In an API mapping relation, E1 and E2 may have
behavioral differences, and such differences can lead to defects. For a mapping relation
m, a behavioral difference occurs, when translating between E1 and E2 leads to differ-
ent output values or exceptions given the same input values and method sequences. For
example, when translating Lucene.NET5 from its Java version, a programmer, named
Chrisopher Currens, expressed his concerns in an email:6

“It could, also, hide bugs, since it’s possible, however unlikely, something could port
perfectly, but not behave the same way. A class that has many calls to string.Substring
is a good example of this. If the name of the function is changed to the .Net version
(.substring to .Substring), it would compile no problems, but they are very different.”

The following code of Lucene.NET explains the behavioral difference.
Java code
01: protected String add_escapes(String str) {...
02: String s = "0000" + Integer.toString(ch, 16);
03: ret = s.substring(s.length() - 4, s.length());
Translated C# code
04: protected internal String Add_escapes(String str){...
05: String s = "0000" + System.Convert.ToString(ch, 16);
06: ret = s.Substring(s.Length - 4, 4);

In this example, the second parameter of the substring(int,int) method in
Line 03 denotes the end index of a return substring, whereas the second parameter of
the Substring(int,int) method in Line 06 denotes the number of characters in a
return substring. To resolve this difference, programmers of Lucene.NET changed the

4 http://www.db4o.com
5 https://cwiki.apache.org/LUCENENET/
6 http://tinyurl.com/88xnf26

arguments accordingly during the translation. Due to a large number of API mapping
relations, where some relations are quite complex [19], it is difficult for programmers
to know all such behavioral differences of API mapping relations in advance. If pro-
grammers translate applications without realizing such behavioral differences, they can
introduce defects in the translated code. If developers of translation tools are not aware
of such behavioral differences, they may introduce defects in translation tools, and these
defects could lead to further defects in the code translated by these tools.

Existing approaches [2, 3, 19, 21] cannot expose behavioral differences in cross-
language API mapping relations effectively. For example, our previous work [19] com-
pared API documents for behavioral differences when the APIs evolve, and cannot
analyze behavioral differences for cross-language API mapping relations since their
documents are fundamentally different. Srivastava et al. [21] compared API implemen-
tations for their behavioral differences, and their approach cannot analyze many API
libraries whose code is not available. Bartolomei et al. [2, 3] list challenges to fix be-
havioral differences between Swing and SWT in the same programming language, but
do not handle source code in different languages. To the best of our knowledge, many
questions are still open. For example, are such behavioral differences pervasive? What
types of behavioral differences are there? Which types of behavioral differences are
more common than others? Are behavioral differences easy to be resolved?

Challenges. To answer the preceding questions, we need many API mapping rela-
tions for analysis, but it could take much effort for programmers to write them down
manually. Instead, we choose to extract mapping relations that are already incorporated
in translation tools. To achieve this goal, we have to overcome the following challenges.

Challenge 1. It is challenging to extract API mapping relations from translation
tools, since developers of translation tools either use different formats for specifying
API mapping relations, or hardcode API mapping relations in their tools’ source code.

To address this challenge, instead of extracting API mapping relations directly from
translation tools, we analyze translated results for extracting API mapping relations.

Challenge 2. Collected applications under translation may not cover some interest-
ing API elements. In addition, it is difficult to align source API elements and their target
API elements for complex mapping relations in collected applications.

To address the challenge, we synthesize the code under translation as test cases
generated for all API elements of an API library. To generate test cases, we leverage
two state-of-the-art techniques: random testing [17] and dynamic-symbolic-execution-
based testing [9, 14, 24]. We generate test cases with simple code structures and mini-
mum API elements, so that if a translated test case fails, it is easy to locate the behavioral
difference of the API mapping relation in the failed test case.

Challenge 3. Translated code typically has compilation errors (e.g., due to the API
elements that do not fall into the scope of translatable API elements for the translation
tool), so it is not feasible to expose behavioral differences via testing directly.

To address the challenge, we extract translatable API elements for a translation
tool, and try to generate test cases that use only translatable API elements. For those
generated test cases with compilation errors, we filter them out automatically.

Our contribution. This paper makes the following major contributions:

– A tool chain, called TeMAPI, that detects behavioral differences among API map-
ping relations. With its support, we conduct the first empirical study on behavioral
differences of mapped API elements between the J2SE and the .NET frameworks.

– Empirical results showing that behavioral differences are pervasive. We summarize
exposed behavioral differences into eight findings, and discuss their implications
that are valuable to vendors of translation tools for improving their tools, program-
mers who use these translation tools, and developers of API libraries for imple-
menting more translatable APIs.

– Empirical results showing that some behavioral differences indicate defects in trans-
lation tools, and four defects were confirmed by the developers of translation tools.
Although we focus on cross-language API mapping relations in this paper, our pro-

cess is general and can be applied to other software engineering problems where an
API needs to be replaced with another API without changing the behavior of an appli-
cation (e.g., upgrading client code with the latest library [10], migrating to alternative
APIs [16], or migrating to efficient APIs [13]).

2 Study Setup
Our process has three steps, and is not symmetry across the two languages under transla-
tion, since capabilities of translation tools are not symmetry and existing test-generation
tools typically work for a single language rather than both languages under translation.

Step 1: Synthesizing and analyzing wrappers. For a translation tool that translates
one language (L1) to the other language (L2), TeMAPI generates wrappers for API
elements in L1. In the synthesized code below, “|f.name|” denotes the name of a field
f; “|m.name|” denotes the name of a method m; and “|no|” denotes the id of the
synthesized wrapper method.

Static fields. TeMAPI synthesizes a getter for a public static field T f of a class C:
public T testGet|f.name||no|sfg(){ return C.f; }

If f is not a constant, TeMAPI synthesizes a setter wrapper as well for that field:
public void testSet|f.name||no|sfs(T p){ C.f = p; }

Static methods. Given a public static method Tr m(T1 p1,..., Tn pn) of a
class C, TeMAPI synthesizes a wrapper method as follows:
public Tr test|m.name||no|sm(T1 p1,..., Tn pn){return C.m(p1,..., pn);}

When synthesizing wrapper methods for non-static fields or methods, TeMAPI
takes constructors into considerations.

Non-static fields. Given a public non-static field T f of a class C, TeMAPI synthe-
sizes a getter using each constructor C(C1 c1,..., Cn cn) of C as follows:
public T testGet|f.name||no|nfg(C1 c1,..., Cn cn){

C obj = new C(c1,..., cn);
return obj.f; }

If f is not a constant, TeMAPI synthesizes a setter wrapper as well for that field.
public void testSet|f.name||no|nfs(T p, C1 c1,...,Cn cn){

C obj = new C(c1,..., cn);
obj.f = p; }

Non-static methods. Given a public non-static method Tr m(T1 p1,...,Tn pn)

of a class C, TeMAPI synthesizes a wrapper method using each constructor C(C1 c1,

..., Cn cn) of C as follows:

public Tr test|m.name||no|nm(T1 p1,...,Tn pn,C1 c1,...,Cn cn){
C obj = new C(c1,..., cn);
return obj.m(p1,..., pn); }

For example, for JLCA, TeMAPI synthesizes a wrapper method in Java for the
ByteArrayInputStream.skip(long) method in Java as follows:
public long testskip24nm(byte c1[], long p1){

ByteArrayInputStream obj = new ByteArrayInputStream(c1);
return obj.skip(p1);}

TeMAPI groups all synthesized wrapper methods for one API class C to one syn-
thesized class. After TeMAPI synthesizes wrapper methods, we use the translation tool
under analysis to translate wrapper methods to the other language. For example, JLCA
translates the preceding testskip24nm method into C# as follows:
public virtual long testskip24nm(sbyte[] c1, long p1){

MemoryStream obj = new MemoryStream(SupportClass.ToByteArray(c1));
MemoryStream temp_BufferedStream = obj;
Int64 temp_Int64 = temp_BufferedStream.Position;
temp_Int64=temp_BufferedStream.Seek(p1,System.IO.SeekOrigin.Current)-temp_Int64;
return temp_Int64;}

TeMAPI extends existing compilers to find wrappers that are translated into the
other language without compilation errors (referred to as safe wrappers in this paper).
In particular, TeMAPI extends Visual Studio for C# code and Eclipse’s Java compiler
for Java code. From our experiences, translation tools are typically able to translate the
simple code structures of synthesized wrappers, and all compilation errors are caused by
untranslatable API elements in synthesized wrappers. TeMAPI compares safe wrappers
with synthesized wrappers to extract the following two facts:

(1) The one-to-one mapping relations of API elements for the translation tool under
analysis. For example, by comparing the first statements of the two testskip24nm

methods in Java and in C#, TeMAPI extracts the mapping relation between the Byte-
ArrayInputStream class in Java and the MemoryStream class in C# defined by JL-
CA, since the two methods declare two local variables with the same name, obj. Since
translation tools typically do not modify names of variables, TeMAPI extracts such re-
lations by using names. In Step 2, TeMAPI uses such relations to generate test cases in
Java when leveraging Pex.

(2) The list of translatable API elements for the translation tool under analysis. For
example, by comparing the first statements of the two testskip24nm methods in Java
and in C#, TeMAPI adds the ByteArrayInputStream(InputStream) constructor
and the skip(long) method in Java to translatable API methods of JLCA, since their
corresponding wrapper methods are translated without compilation errors. In Step 3,
we use the list to limit the search scope of Randoop.

Step 2: Generating test cases with Pex. Pex [24] uses dynamic symbolic exe-
cution [9, 14] for generating test cases that exercise various paths in the code under
test. Pex requires adding annotations (e.g., [TestClass()]) to code under test for test
generation. We use Pex to generate test cases for wrapper methods. In particular, for
C#-to-Java translation tools, we use Pex to generate test cases in C# for synthesized
wrapper methods in C# that are translated to Java without compilation errors, and for
Java-to-C# translation tools, we use Pex to generate test cases in C# for translated wrap-
per methods in C# without compilation errors. When Pex generates test cases in C#, we
set its parameters to allow it to exercise paths in API libraries.

TeMAPI uses the extracted mapping relations of API elements to translate generat-
ed test cases from C# into Java. Since test cases generated by Pex typically have limited
API elements, extracted one-to-one mapping relations are adequate to translate test cas-
es generated by Pex. Here, an alternative way is to use C#-to-Java translation tools to
translate generated test cases. We do not choose this way, since we find that existing
C#-to-Java translation tools cannot translate many API elements, and these tools do not
support user-defined API mapping relations. Java and C# have different bounds for their
literals. For example, the long m0 = 2147483648 statement compiles well in C#, but
it causes a compilation error: “The literal 2147483648 of type int is out of range”. To
resolve this difference, TeMAPI considers literals in C# as strings, and gets their values
by corresponding API methods in Java.

To expose behavioral differences, TeMAPI uses two mechanisms for generating
test oracles. First, TeMAPI inserts assert statements based on values of public fields
or return values of public methods. For example, TeMAPI records that given an empty
object, the testappend175nm wrapper method in C# returns a StringBuilder ob-
ject whose Capacity is 16 and Length is 13, so TeMAPI derives a test case for the
corresponding wrapper method in Java:

public void testappend175nm122(){
Test_java_lang_StringBuffer obj = new Test_java_lang_StringBuffer();
Object m0 = new Object();
StringBuffer out = obj.testappend175nm(m0);
Assert.assertEquals(16, out.capacity());
Assert.assertEquals(13, out.length());}

This test case fails, since the capacity() method returns 34 and the length()

method returns 24, so TeMAPI detects two behavioral differences. Here, TeMAPI ig-
nores non-primitive or non-public fields of return objects, and thus may miss some
behavioral differences that are not easy to be observed.

Second, TeMAPI uses expected assertions as test oracles. For example, when Pex
explores a path, the method under exploration could throw exceptions. TeMAPI gener-
ates the following test case in Java based on inputs generated by Pex for one feasible
path (in the C# wrapper method) that throws exceptions.

public void testskip24nm36(){
try{

Test_java_io_ByteArrayInputStream obj = new Test_java_io_ByteArrayInputStream();
long m0 = java.lang.Long.valueOf("2147483648").longValue();
byte[] c0 = new byte[0];
obj.testskip24nm(m0,c0);
Assert.assertTrue(false);

}catch(java.lang.Exception e){Assert.assertTrue(true);}}

This test case in Java fails, since given the preceding inputs, the skip(long)

method in Java does not throw any exceptions, whereas the translated C# code does.
Thus, TeMAPI detects a behavioral difference between the skip(long) method in
Java and its translated C# code by JLCA.

Step 3: Generating test cases with Randoop. Randoop [17] randomly generates
test cases based on already generated test cases in a feedback-directed manner. A wrap-
per method cannot help effectively generate method sequences in generated test cases,
since it has fixed method sequences. To detect behavioral differences with method se-
quences of a translation tool, instead of generating test cases for wrapper methods, we

use Randoop for API elements directly. Randoop generates test cases for arbitrary meth-
ods by default. To generate useful test cases for our purpose, we configure Randoop so
that it generates method sequences only for the translatable API methods of the transla-
tion tool. Here, in Step 1, TeMAPI extracts translatable API methods of the translation
tool with the support of synthesized wrappers.

Passing test cases are much useful to detect behavioral differences. If a passing test
case fails after it is translated, it is easy to identify a behavioral difference, since the
translated code should have the same behavior. If a translated failing test case fails, it
is difficult to infer informative results, since the translation may and may not introduce
more defects for causing the failure. Our preliminary study shows that Java-to-C# tools
can translate many API elements. After TeMAPI removes all failing test cases, we use
the translation tool under analysis to translate generated test cases from Java to C#. For
example, TeMAPI generates a test case in Java as follows:
public void test413() throws Throwable {

ByteArrayInputStream var2 = new ByteArrayInputStream(...);
var2.close();
int var5 = var2.available();
assertTrue(var5 == 1);}

JLCA translates the generated test case from Java to C# as follows:
public void test413() throws Throwable{

MemoryStream var2 = new MemoryStream(...);
var2.close();
long available = var2.Length - var2.Position;
int var5 = (int) available;
AssertTrue(var5 == 1);}

The preceding test case in Java passes, but the test case in C# fails. We thus detect
a behavioral difference with method sequences.

In our tool chain, wrapper methods play an important role. First, some test genera-
tion tools need to instrument code under test. For example, Pex needs to add annotations
to code under test. For those API libraries whose code is not available, our tool chain
allows test generation tools to instrument wrapper methods for test generation. Second,
by comparing translated wrappers with original wrappers, we implement a single tech-
nique to extract useful facts by comparing translated code, while different techniques
are needed to extract such facts from different translation tools directly. Finally, wrap-
per methods expose a common interface for all the API elements, and thus help expose
behavioral differences of API elements.

3 Empirical Results
In this section, we address the following research questions:

– Are behavioral differences pervasive in cross-language API mapping relations?
– What are the characteristics of behavioral differences concerning inputs and out-

puts?
– What are the characteristics of behavioral differences concerning method sequences?

In our study, we choose the translation tools in Table 1 as our subjects, since they
are popular and many programmers recommend these tools in various forums. For Java-
to-C# tools, TeMAPI synthesizes wrapper methods for J2SE 6.07, and ignores methods

7 http://java.sun.com/javase/6/docs/api/

Table 1. Subject tools
Name Version Provider Description

Java2CSharp 1.3.4 IBM (ILOG) Java-to-C#
JLCA 3.0 Microsoft Java-to-C#
Sharpen 1.4.6 db4o Java-to-C#
Net2Java 1.0 NetBean C#-to-Java
Converter 1.6 Tangible C#-to-Java

that include generics, since many translation tools cannot handle generics. For C#-to-
Java tools, TeMAPI synthesizes wrapper methods for the .NET 4.0 framework clients8,
and ignores unsafe, delegate, and generic methods, and also the methods whose pa-
rameters are marked as out or ref. Java does not have these corresponding keywords,
so existing translation tools typically do not translate the preceding methods. More de-
tails of our empirical results are available at http://sites.google.com/site/
asergrp/projects/temapi.

Pervasiveness of behavioral differences. Table 2 shows the overall result. For Pex,
column “Name” lists the names of translation tools, and column “Number” lists the
number of generated test cases in Java. These number largely reflect how many API
elements can be translated by corresponding tools. Columns “E-Tests” and “A-Tests”
list the number of exception-causing and assertion-failing test cases, respectively. For
the two columns, sub-columns “M” and “%” list the number and percentage of these
test cases, respectively. For Randoop, column “Method” lists the number of translat-
able API methods; column “Java” lists the number of passing test cases in Java; and
column “C#” lists the number of translated test cases in C# without compilation errors.
Here, many test cases are translated with compilation errors for two factors, which are
not general or not related with API translation: (1) to prepare input values of translat-
able API methods, Randoop introduces API elements that are not translatable; (2) the
number of compilation errors increases since Randoop produces many redundant code
portions. We did not use Randoop to generate test cases for Net2Java and Converter, s-
ince the two tools translate too few API elements in C# to generate meaningful method
sequences. In total, about half of the generated test cases fail, and the result shows that
behavioral differences are pervasive in API mapping relations between Java and C#.
The pervasive behavioral differences highlight the importance of our study.

Behavioral differences concerning inputs and outputs. TeMAPI leverages Pex to
detect behavioral differences concerning inputs and outputs. As shown in Table 2, when
leveraging Pex, more than 20,000 test cases failed. Given this large number of failures,
we inspected 3,759 failing test cases selected as follows. For Net2Java and Converter,
we inspected all the failing test cases, and for Java2CSharp, JLCA, and Sharpen, we
inspected test cases of the java.lang package. We selected this package, since it is
widely used in Java applications. Our findings are as follows:

Finding 1. 36.8% test cases show behavioral differences with respect to the han-
dling of null inputs.

We found that many API methods in Java and their translated API methods in C#
have behavioral differences when null values are passed as inputs. For example, JLCA
translates the java.lang.Integer.parseInt(String,int) method in Java to the

8 http://msdn.microsoft.com/en-us/library/ff462634.aspx

Table 2. Overall testing result
Pex Randoop

Name Number
E-Tests A-Tests

Method Java C#
A-Tests

M % M % M %
Java2CSharp 15,458 5,248 34.0% 3,261 21.1% 1,996 15,385 2,971 2,151 72.4%
JLCA 33,034 8,901 26.9% 6,944 21.0% 7,060 16,630 1,067 295 27.6%
Sharpen 2,730 662 24.2% 451 16.5% 586 13,532 936 456 48.7%
Net2Java 352 40 11.4% 261 74.1% n/a n/a n/a n/a n/a
Converter 762 302 39.6% 182 23.9% n/a n/a n/a n/a n/a

Total 52,336 15,153 29.0% 11,099 21.2% 9,642 45,547 4,974 2,902 58.3%

System.Convert.ToInt32(string,int) in C#. Given null and 10 as inputs, the
method in Java throws NumberFormatException, but the method in C# returns 0. We
notice that translation tools resolve some of these behavioral differences by providing
custom functions. For example, java.lang.String.valueOf(Object) method in
Java and the System.Object.ToString() in C# behave differently when a null

value is passed as input. To resolve this difference, Sharpen translates the method in
Java to its own implemented method in C#.

Implication 1. For implementers of API libraries, behaviors for null inputs are
largely controversial. We suggest that implementers clearly define behaviors of null
inputs. Our result shows that many such differences are left to programmers. When
programmers translate API methods, they should handle null inputs carefully.

Finding 2. 22.3% test cases show differences among returned string values.
We found that two mapped methods typically return different string values. For

example, each class in Java has a toString() method, and each class in C# has a
ToString() method. Many translation tools map the two API methods, but the return
values of the two methods are different in most cases. Besides the preceding two meth-
ods, many API classes declare methods such as getName or getMessage, and these
methods also return string values that are quite different. Overall, we found that none
of the five tools resolves this category of behavioral differences.

Implication 2. Although a method in Java and a method in C# have the same func-
tionality, the two methods can return different string values. Programmers should be
cautious while using these values, since they are typically different across languages.

Finding 3. 11.5% test cases show the behavioral differences of input domains.
We found that API methods in Java and their mapped API methods in C# can

have different input domains. For example, the java.lang.Double.shortValue()
method in Java accepts values that are larger than 32,767. JLCA translates the Java
method to the Convert.ToInt16(double) method in C#. The C# method throws
OverflowException when values are larger than 32,767 since it checks whether in-
puts are too large. As another example, the java.lang.Boolean.parseBoolean

(String) method in Java does not check for illegal inputs, and returns false giv-
en an illegal input such as “test”. Java2CSharp translates the method in Java to the
System.Boolean.Parse(String) method in C#. The C# method throws Format-
Exception given the same input since it checks for illegal inputs.

Implication 3. Programmers should be cautious while dealing with methods whose
arguments are close to minimum or maximum values of respective data types, since the

ranges of these values can be different between different languages. Cook and Dage [5]
pointed out that an updated API method in a single programming language can also
have different input domains. Adopting their approach may help deal with different
input domains across languages.

Finding 4. 10.7% test cases show behavioral differences with respect to implemen-
tations.

We found that API libraries in different languages may have different implementa-
tions of the same functionalities. For example, we found that, unlike C#, Java considers
“\” as an existing directory. Such differences can also indicate defects in translation
tools. For example, Java2CSharp translates the Character.isJavaIdentifierPart
(char) method in Java to the ILOG.J2CsMapping.Util.Character.IsCSharp-

IdentifierPart(char) method in C#. Given an input “\0”, the Java method returns
true, but the C# method returns false. As another example, Java2CSharp translates
the java.lang.Integer.toHexString(int)method in Java to the ILOG.J2CsMap-
ping.Util.IlNumber.ToString(int,16) method in C#. Given -2147483648 as
input, the method in Java returns “80000000”, but the method in C# returns “\0800000-
00”. Four behavioral differences including the preceding two were confirmed as defects
by developers of Java2CSharp9.

Implication 4. Implementers of API libraries can have different understandings on
functionalities of specific methods. Some of such differences reflect different natures
of different languages, and some other differences indicate defects in translation tools.
Programmers should learn the natures of different programming languages (e.g., differ-
ent definitions of paths and files) to figure out such differences.

Finding 5. 7.9% test cases show behavioral differences with respect to handling of
exceptions.

We found that some mapped API methods throw unmapped exceptions. For ex-
ample, the java.lang.StringBuffer.insert(int,char) method in Java throws
ArrayIndexOutofBoundsException, when indexes are out of bounds. Java2CSharp
translates the method in Java to the System.Text.StringBuilder.Insert(int,

char) method that throws ArgumentOutOfRangeException when indexes are out
of bounds. Java2CSharp translates ArrayIndexOutofBoundsException in Java to
IndexOutOfRangeException in C#. As Java and C# both allow unchecked excep-
tions, translated code can fail to catch corresponding exceptions.

Implication 5. Implementers of API libraries may design different exception han-
dling mechanisms. This category of differences is quite challenging to be resolved for
translation tools. When programmers translate try-catch statements, they should be
aware of these differences. Otherwise, exception handling code may not be invoked in
the translated version or may even become a dead code.

Finding 6. 2.9% test cases show the behavioral differences caused by constants.
We found that mapped constants may have different values. For example, the java.

lang.reflect.Modifier class in Java has many constants to represent modifiers
(e.g., FINAL, PRIVATE, and PROTECTED). Java2CSharp translates these constants to the
constants of the ILOG.J2CsMapping.Reflect class in C#. Between the two classes,
constants such as VOLATILE and TRANSIENT are of different values. Sometimes dif-

9 http://tinyurl.com/3z45c5c

ferent values reflect different settings of two languages. For example, translation tools
often translate the java.lang.Double.MAX VALUE field in Java to System.Double.
MaxValue field in C#. The value of the former is 1.7976931348623157E+308, and the
value of the latter is 1.79769313486232E+308.

Implication 6. Implementers of API libraries may store different values in con-
stants, even if two constants have the same name. The different values sometimes re-
flect different settings such as different bounds of data types between two languages.
Programmers should be aware of these differences while using constants.

The remaining 7.9% failing test cases are related to the API methods that return
random values or values that depend on time. For example, the java.util.Random.
nextInt() method returns random values, and the java.util.Date.getTime()

method returns the number of milliseconds since Jan. 1st, 1970, 00:00:00 GMT. As
another example, each Java class has a hashCode() method, and each C# class has also
a GetHashCode() method. Translation tools often map the two methods. Since each
object has a unique hash code, the two methods of two receiver objects return different
values. Since these exposed behavioral differences are false, they can be considered as
false positives or limitations of our work.

Behavioral differences concerning method sequences. TeMAPI leverages Ran-
doop to detect behavioral differences concerning method sequences. After browsing
translated test cases, we notice that some translated test cases have compilation errors,
even if these test cases use only translatable API elements.

Finding 7. API classes in Java and API classes in C# can have different inheritance
hierarchies, and the difference can lead to compilation errors.

We found that API classes in Java can have different inheritance hierarchies with
API classes in C#, and thus introduce compilation errors. For example, many compila-
tion errors are introduced by type-cast statements, and one such example is as follows:
public void test87() throws Throwable{

...
StringBufferInputStream var4 = ...;
InputStreamReader var10 = new InputStreamReader((InputStream)var4, var8);}

Since the preceding two API classes in Java are related through inheritance, the test
case has no compilation errors. JLCA translates the test case from Java to C# as follows:
public void test87() throws Throwable{

...
StringReader var4 = ...;
StreamReader var10 = new StreamReader((Stream)var4, var8);}

Since the two translated C# classes do not have the inheritance relation, the trans-
lated test case in C# has compilation errors.

Implication 7. A source API library and its target API library can design different
inheritance hierarchies of classes. It is quite difficult for translation tools to resolve this
category of behavioral differences. When programmers translate code, they should be
aware of such differences. For example, when they translate cast statements, they should
double check whether the target API elements have a similar inheritance hierarchy.

TeMAPI removed those translated test cases with compilation errors. Among re-
maining test cases, for each translation tool, we investigated only the first 100 failing
test cases. The percentages are as follows:

Finding 8. 3.4% test cases fail for method sequences.

We found that random method sequences can violate specifications of API libraries.
One category of such specification is described in our previous work [28]: closed re-
sources should not be manipulated. Java sometimes allows programmers to violate such
specifications although return values can be meaningless. Besides method sequences
that are related to specifications, we found that field accessibility also leads to failures
of test cases. For example, a generated test case in Java is as follows:

public void test423() throws Throwable{
...
DateFormatSymbols var0 = new DateFormatSymbols();
String[] var16 = new String[]...;
var0.setShortMonths(var16);}

JLCA translates it to C# as follows:

public void test423() throws Throwable{
...
DateTimeFormatInfo var0 = System.Globalization.DateTimeFormatInfo.CurrentInfo;
String[] var16 = new String[]...;
var0.AbbreviatedMonthNames = var16;}

In the translated test case, the last statement throws InvalidOperationException
since a constant value is already assigned to var0 in the previous line.

Implication 8. Legal method sequences can become illegal after translation, since
the target language may be more strict to check method sequences, and other factors
such as field accessibility can also cause behavioral differences. In most of such cases,
programmers should deal with these differences themselves.

Remaining test cases failed for the following reasons: 45.0% for input domain-
s, 34.0% for string values, 5.3% for different implementations, 4.0% for excep-
tion handling, 3.0% for null inputs, 2.0% for values of constants, and 0.3% for ran-
dom values. The remaining 3.0% test cases fail, due to that translation tools translate
API elements in Java to C# API elements that are not implemented yet. For exam-
ple, Java2CSharp translates the java.io.ObjectOutputStream class in Java to the
ILOG.J2CsMapping.IO.IlObjectOutputStream class in C# that is not yet imple-
mented, and such translations lead to NotImplementException.

When generating test cases, Pex generates one test case for each feasible path,
whereas Randoop uses a feedback-guided random strategy. As a result, the category
distribution revealed by Pex more reflects the category distribution of unique behav-
ioral differences than the category distribution revealed by Randoop, since each test
case generated by Pex typically reflects a unique behavior.

Threats to validity. The threats to internal validity include human factors for in-
specting behavioral differences. To reduce these threats, we re-ran those failing test
cases, and inspected those test cases carefully. This threat could be further reduced by
involving more third-party members for inspecting the detected differences.

The threats to external validity of our evaluation include the representativeness of
the subject translation tools, selected programming languages (Java and C#), and the
selected package for inspection. In future work, this threat could be reduced by includ-
ing more translation tools and inspecting test cases that are related to other packages.
The threats to external validity of our evaluation also include unexplored behaviors of
APIs. Taneja et al. [22] proposed an approach that generates test cases for database
applications via mock objects. Thummalapenta et al. [23] proposed an approach that

mines method sequences from real code for test generation. In future work, we plan to
leverage their approaches and to integrate more testing tools (e.g., JPF [25]), so that our
work can detect more behavioral differences.

4 Discussion and Future Work
Improving translation tools and detecting related defects. Our previous work [27]
mines unknown mapping relations from existing projects with variants in different lan-
guages. In future work, we plan to extend our previous work [27] to resolve some detect-
ed behavioral differences. In addition, when programmers write code in an unfamiliar
language, they may follow idioms of their familiar languages. This practice can lead to
defects, since our findings show that differences between two programming languages
can be subtle. In future work, we plan to propose approaches that leverage our findings
to detect such defects as well.

Surveying programmers with language-migration experiences. When migrat-
ing legacy systems, many programmers choose to translate applications manually from
scratch. Although they know many API mapping relations, they may not develop any
translation tools, and our process cannot detect behavioral differences in their known
mapping relations residing in their minds. In future work, we plan to conduct a survey
to collect API mapping relations from those experienced programmers. In addition, we
plan to conduct a survey to investigate whether these programmers are aware of behav-
ioral differences exposed by us, and if they are, how they deal with such differences.

Analyzing translation of more programming languages. To improve the potential
impact of our work, we could analyze translation of more programming languages.
Ravitch et al. [18] proposed an approach that generates bindings to expose low-level
languages to high-level languages. In future work, we plan to adapt their wrappers,
so that we can analyze translation of more programming languages, even if the two
languages under analysis are fundamentally different.

5 Related Work
API translation. API translation is an important aspect of language migration. (1)
Language-to-language migration. Song and Tilevich [20] proposed an enhanced spec-
ification to improve source-to-source translation approaches. Zhong et al. [27] mined
API mapping relations from existing applications in different languages to improve API
translation. (2) Library update migration. Henkel and Diwan [10] proposed an approach
that captures API refactoring actions to update client code with the latest APIs. Xing
and Stroulia [26] proposed an approach that recognizes the changes of APIs by com-
paring the differences between two versions of libraries. Meng et al. [15] proposed an
approach that mines API mapping relations from revision histories of API libraries.
Balaban et al. [1] proposed an approach to migrate code when mapping relations of
libraries are available. (3) Migrating from one API library to alternative libraries. Dig
et al. [6] proposed CONCURRENCER that translates sequential API elements to con-
current API elements in Java. Nita and Notkin [16] proposed twinning to automate
the process given that API mapping is specified. (4) Migrating to more efficient APIs.
Kawrykow et al. [13] proposed an approach that compares client code with API imple-
mentation code, and thus allows programmers to choose more efficient APIs. Our work

detects behavioral differences between mapped API elements, and the results can also
help the preceding approaches translate applications resulting in fewer defects.

API comparison. Shi et al. [19] compared API documents for behavioral differ-
ences when APIs evolve. Their approach is not suitable to compare API libraries in
different languages, where API documents are typically fundamentally different. Hou
and Yao [11] analyzed such behavioral differences for the intents behind API evolu-
tion. Srivastava et al. [21] proposed an approach that compares API implementations
for their behavioral differences, and cannot analyze the .NET frameworks whose code
is not available. Bartolomei et al. [2, 3] reported their experiences on implementing
wrappers between SWT and Swing. The preceding approaches compare APIs in a sin-
gle language. Our work complements the preceding approaches by exposing behavioral
differences of API elements in different languages.

Language comparison. Researchers conducted various empirical comparisons on
languages. Garcia et al. [8] presented a comparison study on six languages to reveal
differences with respect to generics. Cabral and Marques [4] compared exception han-
dling mechanisms between Java and .NET programs. To the best of our knowledge, no
previous work systematically compares behavioral differences of API elements from
different languages. Our work enables us to produce such a comparison study, comple-
menting the preceding empirical comparisons.

6 Concluding Remarks
Behavioral differences among API elements of different languages are pervasive and
could introduce defects in the translated code. Often, programmers are not aware of
these differences either due to a large number of mapping relations or due to the fact
that differences happen only for specific input values. In this paper, we presented the
first empirical study that exposes behavioral differences among API elements between
Java and C#. Our results can help improve existing translation tools and also assist pro-
grammers to better understand API behavioral differences between different languages.

Acknowledgments

Hao Zhong’s work is supported by the National Natural Science Foundation of China
No. 61100071. Tao Xie’s work is supported in part by NSF grants CCF-0845272, CCF-
0915400, CNF-0958235, CNS-1160603, and an NSA Science of Security Lablet Grant,
as well as the National Science Foundation of China No. 61228203.

References

1. I. Balaban, F. Tip, and R. Fuhrer. Refactoring support for class library migration. In Proc.
20th OOPSLA, pages 265–279, 2005.

2. T. Bartolomei, K. Czarnecki, and R. Lammel. Swing to SWT and back: Patterns for API
migration by wrapping. In Proc. ICSM, pages 1–10, 2010.

3. T. Bartolomei, K. Czarnecki, R. Lämmel, and T. van der Storm. Study of an API migration
for two XML APIs. In Proc. 2nd SLE, pages 42–61, 2009.

4. B. Cabral and P. Marques. Exception handling: A field study in Java and. NET. Proc. 21st
ECOOP, pages 151–175, 2007.

5. J. Cook and J. Dage. Highly reliable upgrading of components. In Proc. 21st ICSE, pages
203–212, 1999.

6. D. Dig, J. Marrero, and M. Ernst. Refactoring sequential Java code for concurrency via
concurrent libraries. In Proc 31st ICSE, pages 397–407, 2009.

7. M. El-Ramly, R. Eltayeb, and H. Alla. An experiment in automatic conversion of legacy
Java programs to C#. In Proc. AICCSA, pages 1037–1045, 2006.

8. R. Garcia, J. Jarvi, A. Lumsdaine, J. G. Siek, and J. Willcock. A comparative study of
language support for generic programming. In Proc. 18th OOPSLA, pages 115–134, 2003.

9. P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random testing. In Proc.
PLDI, pages 213–223, 2005.

10. J. Henkel and A. Diwan. CatchUp!: capturing and replaying refactorings to support API
evolution. In Proce. 27th ICSE, pages 274–283, 2005.

11. D. Hou and X. Yao. Exploring the intent behind API evolution: A case study. In Proc.
WCRE, pages 131–140, 2011.

12. T. Jones. Estimating software costs. McGraw-Hill, Inc. Hightstown, NJ, USA, 1998.
13. D. Kawrykow and M. P. Robillard. Improving API usage through automatic detection of

redundant code. In Proc. ASE, pages 111–122, 2009.
14. S. Koushik, M. Darko, and A. Gul. CUTE: a concolic unit testing engine for C. In Proc.

ESEC/FSE, pages 263–272, 2005.
15. S. Meng, X. Wang, L. Zhang, and H. Mei. A history-based matching approach to identifica-

tion of framework evolution. In Proc. 34th ICSE, pages 353–363, 2012.
16. M. Nita and D. Notkin. Using twinning to adapt programs to alternative APIs. In Proc. 32nd

ICSE, pages 205–214, 2010.
17. C. Pacheco, S. Lahiri, M. Ernst, and T. Ball. Feedback-directed random test generation. In

Proc. 29th ICSE, pages 75–84, 2007.
18. T. Ravitch, S. Jackson, E. Aderhold, and B. Liblit. Automatic generation of library bindings

using static analysis. In Proc. PLDI, pages 352–362, 2009.
19. L. Shi, H. Zhong, T. Xie, and M. Li. An empirical study on evolution of API documentation.

In Proc. FASE, pages 416–431, 2011.
20. M. Song and E. Tilevich. Enhancing source-level programming tools with an awareness of

transparent program transformations. In Proc. 24th OOPSLA, pages 301–320, 2009.
21. V. Srivastava, M. Bond, K. McKinley, and V. Shmatikov. A security policy oracle: Detecting

security holes using multiple API implementations. In Proc. 32nd PLDI, pages 343–354,
2011.

22. K. Taneja, Y. Zhang, and T. Xie. MODA: Automated test generation for database applications
via mock objects. In Proc. 26th ASE, pages 289–292, 2010.

23. S. Thummalapenta, T. Xie, N. Tillmann, P. de Halleux, and W. Schulte. MSeqGen: Object-
oriented unit-test generation via mining source code. In Proc. ESEC/FSE, pages 193–202,
2009.

24. N. Tillmann and J. De Halleux. Pex: white box test generation for. NET. In Proc. 2nd TAP,
pages 134–153, 2008.

25. W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model checking programs. Automated
Software Engineering, 10(2):203–232, 2003.

26. Z. Xing and E. Stroulia. API-evolution support with Diff-CatchUp. IEEE Transactions on
Software Engineering, 33(12):818–836, 2007.

27. H. Zhong, S. Thummalapenta, T. Xie, L. Zhang, and Q. Wang. Mining API mapping for
language migration. In Proc. 32nd ICSE, pages 195–204, 2010.

28. H. Zhong, L. Zhang, T. Xie, and H. Mei. Inferring resource specifications from natural
language API documentation. In Proc. 24th ASE, pages 307–318, 2009.

