
11/7/2008

1

Computer Science

Fitness-Guided Path Exploration in
Automated Test Generation

Tao Xie

Department of Computer Science

North Carolina State University
http://ase.csc.ncsu.edu/

•Joint work with Nikolai Tillmann, Peli de Halleux, Wolfram Schulte from Microsoft Research

• Testing is tedious
• Too easy to miss cases

Motivation

y
• Old tests get stale
• Too much legacy code −

what does it do?

Computer Science

Automated Software Testing to help

11/7/2008

2

Outline
• Parameterized Unit Tests and Pex
• Dynamic Symbolic Execution
• Fitness-Guided Path Exploration
• Evaluation
• Conclusion

Computer Science

Unit Testing Today

A unit test is a small program with assertions.

void AddTest()

{

HashSet set = new HashSet();

set.Add(7);

set.Add(3);

Assert.IsTrue(set.Count == 2);

Computer Science 4

}

Many developers write such unit tests by hand.

11/7/2008

3

Parameterized Unit Testing
void AddSpec(int x, int y)

{

HashSet set = new HashSet();HashSet set new HashSet();

set.Add(x);

set.Add(y);

Assert.AreEqual(x == y, set.Count == 1);

Assert.AreEqual(x != y, set.Count == 2);

}

Computer Science

Parameterized Unit Tests separate two concerns:

(1) The specification of externally visible behavior (assertions)

(2) The selection of internally relevant test inputs (coverage)

Dynamic Symbolic Execution

Code to generate inputs for: Constraints to solve Observed constraintsInput

Execute&MonitorSolve

Choose next path

a!=null

a!=null &&

a.Length>0

a!=null &&

a.Length>0 &&

void CoverMe(int[] a)
{
if (a == null) return;
if (a.Length > 0)

if (a[0] == 1234567890)
throw new Exception("bug");

}

a==null

a!=null &&

!(a.Length>0)

a==null &&

a.Length>0 &&

a[0]!=1234567890

a==null &&

a.Length>0 &&

null

{}

{0}

{123…}

Negated conditionNegated condition

Computer Science

a[0]==123456890 a[0]==1234567890a==null

a.Length>0

a[0]==123…

T

TF

T

F

F
Done: There is no path left.

11/7/2008

4

Parameterized Unit Test in Pex

Write [Write [PexMethodPexMethod]]
with parameters, with parameters,
invoke Analysisinvoke Analysisinvoke Analysisinvoke Analysis

Computer Sciencehttp://research.microsoft.com/Pex

Pex Exploration Results

Computer Science

Table: dataTable: data
and resultsand results

11/7/2008

5

Generated Unit Tests

GeneratedGeneratedGenerated Generated
Test Inputs Test Inputs

are stored as are stored as
C# Unit TestsC# Unit Tests

Computer Science

Real World Example: ResourceReader
Actual code from .NET base class libraries

Takes stream of bytes, extracts ‘resource’ chunks

Computer Science 10

11/7/2008

6

ResourceReader

Computer Science 11

ResourceReader

Test input,
generated by Pex

Computer Science 12

11/7/2008

7

Division of Testing Labor

Parameterized Unit Tests (PUTs) separate
two concerns:

• The specification of external behavior
(i.e., assertions)

Computer Science

• The selection of internal test inputs
(i.e., coverage)

PUTs == Algebraic Specifications
• A PUT can be read as a universally

quantified, conditional axiom.
∀ int name, int data.

name ≠ null data ≠ null
equals(

ReadResource(name,
WriteResource(name, data)),

data)

Computer Science

data)
• Teaching/training of writing specs is

challenging but we do have success with
teaching PUT/Pex

http://sites.google.com/site/teachpex

11/7/2008

8

Dynamic Symbolic Execution
Dynamic symbolic execution (DSE) combines static

and dynamic analysis:

E t lti l ti ith diff t• Execute a program multiple times with different
inputs
– build path condition: input constraints for the execution

path on the side

– plug in concrete results of operations which cannot
reasoned about symbolically

Computer Science

y y

• Use a constraint solver to obtain new inputs
– solve a constraint system that represents an execution

path not seen before

Run Test and

Dynamic Symbolic Execution

Initially, choose Arbitrary

TestTest
InputsInputs

Constraint Constraint
SystemSystem

Execution PathExecution Path

KnownKnown

Monitor
Solve

Computer Science

KnownKnown
PathsPaths Record

Path Condition
Choose an
Uncovered Path

11/7/2008

9

Run Test and
Initially, choose Arbitrary

a[0] = 0;
a[1] = 0;
a[2] = 0;
a[3] = 0;
…

Dynamic Symbolic Execution

TestTest
InputsInputs

Constraint Constraint
SystemSystem

Execution PathExecution Path

KnownKnown

Monitor
Solve

Computer Science

KnownKnown
PathsPaths Record

Path Condition
Choose an
Uncovered Path

Run Test and
Initially, choose Arbitrary

Dynamic Symbolic Execution

TestTest
InputsInputs

Constraint Constraint
SystemSystem

Execution PathExecution Path

KnownKnown

Monitor
Solve Path Condition:

… ⋀ magicNum != 0x95673948

Computer Science

KnownKnown
PathsPaths Record

Path Condition
Choose an
Uncovered Path

11/7/2008

10

Run Test and

Dynamic Symbolic Execution

Initially, choose Arbitrary

TestTest
InputsInputs

Constraint Constraint
SystemSystem

Execution PathExecution Path

KnownKnown

Monitor
Solve

… ⋀ magicNum != 0x95673948
… ⋀ magicNum == 0x95673948

Computer Science

KnownKnown
PathsPaths Record

Path Condition
Choose an
Uncovered Path

Run Test and

Dynamic Symbolic Execution

a[0] = 206;
a[1] = 202;
a[2] = 239;
a[3] = 190;

Initially, choose Arbitrary

TestTest
InputsInputs

Constraint Constraint
SystemSystem

Execution PathExecution Path

KnownKnown

Monitor
Solve

Computer Science

KnownKnown
PathsPaths Record

Path Condition
Choose an
Uncovered Path

11/7/2008

11

Run Test and

Dynamic Symbolic Execution

Initially, choose Arbitrary

TestTest
InputsInputs

Constraint Constraint
SystemSystem

Execution PathExecution Path

KnownKnown

Monitor
Solve

Computer Science

KnownKnown
PathsPaths Record

Path Condition
Choose an
Uncovered Path

DSE Example - Loop

public bool TestLoop(int x, int[] y) {
if (x == 90) {

for (int i 0; i < y Length; i++)

TestLoop(0, {0})

for (int i = 0; i < y.Length; i++)
if (y[i] == 15)

x++;
if (x == 110)

return true;
}

Path condition:
!(x == 90)

Computer Science

}
return false;

}

↓
New path condition:
(x == 90)

↓
New test input:
TestLoop(90, {0})

11/7/2008

12

DSE Example - Loop

public bool TestLoop(int x, int[] y) {
if (x == 90) {

for (int i 0; i < y Length; i++)

TestLoop(90, {0})

for (int i = 0; i < y.Length; i++)
if (y[i] == 15)

x++;
if (x == 110)

return true;
}

Path condition:
(x == 90) && !(y[0] ==15)

Computer Science

}
return false;

}

↓
New path condition:
(x == 90) && (y[0] ==15)

↓
New test input:
TestLoop(90, {15})

Challenge in DSE - Loop

public bool TestLoop(int x, int[] y) {
if (x == 90) {

for (int i 0; i < y Length; i++)

TestLoop(90, {15})

for (int i = 0; i < y.Length; i++)
if (y[i] == 15)

x++;
if (x == 110)

return true;
}

Path condition:
(x == 90) && (y[0] ==15)
&& !(x+1 == 110)

↓

Computer Science

}
return false;

}

↓
New path condition:
(x == 90) && (y[0] ==15)
&& (x+1 == 110)

↓
New test input:
No solution!?

11/7/2008

13

A Closer Look

public bool TestLoop(int x, int[] y) {
if (x == 90) {

for (int i 0; i < y Length; i++)

TestLoop(90, {15})

for (int i = 0; i < y.Length; i++)
if (y[i] == 15)

x++;
if (x == 110)

return true;
}

Path condition:
(x == 90) && (y[0] ==15)
&& (0 < y.Length)
&& !(1 < y.Length)
&& !(x+1 == 110)

Computer Science

}
return false;

}

()
↓

New path condition:
(x == 90) && (y[0] ==15)
&& (0 < y.Length)
&& (1 < y.Length)

Expand array size

A Closer Look

public bool TestLoop(int x, int[] y) {
if (x == 90) {

for (int i 0; i < y Length; i++)

TestLoop(90, {15})

for (int i = 0; i < y.Length; i++)
if (y[i] == 15)

x++;
if (x == 110)

return true;
}

We can have infinite paths!

Manual analysis need at
least 20 loop iterations to

Computer Science

}
return false;

}

p
cover the target branch

Exploring all paths up to 20
loop iterations is infeasible:

220 paths

11/7/2008

14

Fitnex: Fitness-Guided Exploration
public bool TestLoop(int x, int[] y) {
if (x == 90) {

for (int i = 0; i < y.Length; i++)
if ([i] 15)

TestLoop(90, {15, 0})
TestLoop(90, {15, 15})

if (y[i] == 15)
x++;

if (x == 110)
return true;

}
return false;
}

Key observations: with respect to the
coverage target

– not all paths are equally promising for
branch-node flipping

– not all branch nodes are equally
promising to flip

Computer Science

p g p
• Our solution:

– Prefer to flip branch nodes on the most promising paths

– Prefer to flip the most promising branch nodes on paths

– Fitness function to measure “promising” extents

Fitness Function
• Compute fitness value (distance between the

current state and the goal state)
• Search tries to minimize fitness valueSearch tries to minimize fitness value

Computer Science [Tracey et al. 98, Liu at al. 05, …]

11/7/2008

15

Fitness Function for (x == 110)
public bool TestLoop(int x, int[] y) {
if (x == 90) {

for (int i = 0; i < y.Length; i++)
if (y[i] == 15)

x++;
if (x == 110)

return true;
}

Fitness function: |110 – x |

Computer Science

}
return false;
}

Compute Fitness Values for Paths

public bool TestLoop(int x, int[] y) {
if (x == 90) {

for (int i = 0; i < y.Length; i++) (90 {0}) 20

Fitness Value(x, y)

if (y[i] == 15)
x++;

if (x == 110)
return true;

}
return false;
}

(90, {0}) 20
(90, {15}) 19
(90, {15, 0}) 19
(90, {15, 15}) 18
(90, {15, 15, 0}) 18
(90, {15, 15, 15}) 17
(90, {15, 15, 15, 0}) 17
(90, {15, 15, 15, 15}) 16

Fit f ti |110 |

Computer Science

(90, {15, 15, 15, 15, 0}) 16
(90, {15, 15, 15, 15, 15}) 15
…

Fitness function: |110 – x |

Give preference to flip paths with better fitness values
We still need to address which branch node to flip on paths …

11/7/2008

16

Compute Fitness Gains for Branches

public bool TestLoop(int x, int[] y) {
if (x == 90) {

for (int i = 0; i < y.Length; i++) (90 {0}) 20

Fitness Value(x, y)

if (y[i] == 15)
x++;

if (x == 110)
return true;

}
return false;
}

(90, {0}) 20
(90, {15}) flip b4 19
(90, {15, 0}) flip b2 19
(90, {15, 15}) flip b4 18
(90, {15, 15, 0}) flip b2 18
(90, {15, 15, 15}) flip b4 17
(90, {15, 15, 15, 0}) flip b2 17
(90, {15, 15, 15, 15}) flip b4 16

Fit f ti |110 |

Computer Science

(90, {15, 15, 15, 15, 0}) flip b2 16
(90, {15, 15, 15, 15, 15}) flip b4 15
…

Fitness function: |110 – x |

Branch b1: i < y.Length
Branch b2: i >= y.Length
Branch b3: y[i] == 15
Branch b4: y[i] != 15

•Flipping Branch b4 (b3) gives us average 1 (-1)
fitness gain (loss)
•Flipping branch b2 (b1) gives us average 0
fitness gain (loss)

Compute Fitness Gain for Branches cont.

• For a flipped node leading to Fnew, find out
the old fitness value Fold before flipping
• Assign Fitness Gain (Fold – Fnew) for the branch of the

flipped node
• Assign Fitness Gain (Fnew – Fold) for the other branch

of the branch of the flipped node

• Compute the average fitness gain for each

Computer Science

p g g
branch over time

11/7/2008

17

Search Frontier

• Each branch node candidate for being
flipped is prioritized based on its composite
fitness value:fitness value:
• (Fitness value of node – Fitness gain of its

branch)

• Select first the one with the best composite
fitness value

Computer Science

• To avoid local optimal or biases, the fitness-
guided strategy is integrated with Pex’s
previous search strategies

Evaluation Subjects

• A collection of micro-benchmark programs
routinely used by the Pex developers to

l t P ’ f t t d fevaluate Pex’s performance, extracted from
real, complex C# programs

Ranging from string matching like
if (value.StartsWith("Hello") &&
value.EndsWith("World!") &&

l C t i (" "))

Computer Science

value.Contains(" "))
to a small parser for a Pascal-like
language where the target is to
create a legal program

11/7/2008

18

Techniques under Comparison

• Pex with the Fitnex strategy

• Pex without the Fitnex strategy
– Pex’s previous default strategy

• Random
– a strategy where branch nodes to flip are chosen

randomly in the already explored execution tree

• Iterative Deepening

Computer Science

• Iterative Deepening
– a strategy where breadth-first search is

performed over the execution tree

Evaluation Results
#runs/iterations required to cover the target

Computer Science

Pex w/o Fitnex on average by a factor of 1.9 improvement over Random
Pex w/ Fitnex on average by a factor of 5.2 improvement over Random

11/7/2008

19

Impact

• Since Sept 17, 2008, Pex releases’ default exploration
strategy integrates Fitnex

– http://research microsoft com/Pex– http://research.microsoft.com/Pex

• Fitnex is released as open source

– http://www.codeplex.com/Pex

• Download counts of Pex in early Nov 2008

– About 4000 after available for about half a year.

Computer Science

y

– About 1000 of Pex for Visual Studio 2010 Community
Technology Preview (Microsoft Incubation Software)

after available for about two weeks

Case Study on Pex
• A previous version of Pex was applied on a core

.NET component
– Already extensively tested for several years

[TAP 2008]

Already extensively tested for several years

– Assertions written by developers

– >10,000 public methods

– >100,000 basic blocks

• Found a significant number of benign bugs, e.g.
NullReferenceException, IndexOutOfRangeException, …

Computer Science

p , g p ,

• 17 unique bugs involving
– violation of developer-written assertions,

– exhaustion of memory,

– other serious issues.

11/7/2008

20

Ongoing/Future Work

• Method sequence generation
• Regression test generation
• String generation (e.g., regular expressions)
• Environment mocking
• Test generalization
• Guidance from tool users
• …

Computer Science

Conclusion

• Parameterized Unit Tests separate
– Manual specification of external behavior

P ’ l i f i l i– Pex’s selection of internal test inputs

• Dynamic Symbolic Execution enables Pex to deal
with various complications

• Real-world challenges of path explosion call for
guided path exploration
– Fitness values of explored paths

Computer Science

Fitness values of explored paths
– Fitness gains of branches’ past flipping

• Evaluation results show the effectiveness of the
new Fitnex strategy

• Fitnex has been integrated in Pex’ default strategy

11/7/2008

21

Computer Science

Questions?

http://ase.csc.ncsu.edu/

http://research.microsoft.com/Pex

http://www.codeplex.com/Pex

Constraint Solving: Z3

• SMT-Solver (“Satisfiability Modulo Theories”)
– Decides logical first order formulas with respect to theories
– SAT solver for Boolean structure

– Decision procedures for relevant theories:
uninterpreted functions with equalities,
linear integer arithmetic, bitvector arithmetic,
arrays, tuples

Computer Science

• Model generation for satisfiable formulas
– Models used as test inputs

• Incremental solving
– Enables efficient model minimization

