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ABSTRACT

Although much progress has been made in software verification,
software testing remains by far the most widely used technique for
improving software reliability. Among various types of testing, de-
veloper testing is a type of testing where developers test their code
as they write it, as opposed to testing done by a separate quality
assurance organization. Developer testing has been widely recog-
nized as an important and valuable means of improving software
reliability, partly due to its capabilities of exposing faults early in
the development life cycle. In this position paper, we present our
positions on future directions of developer testing along four di-
mensions (which of course we do not claim to be complete): cor-
rectness confidence, specifications, (dis)integration testing, and hu-
man factors. Our positions are originated from two recent promis-
ing technologies in developer testing: parameterized unit testing
and dynamic symbolic execution, also called concolic testing.

Categories and Subject Descriptors: D.2.5 [Software Engineer-

ing]: Testing and Debugging
General Terms: Experimentation, Human Factors, Measurement,
Reliability, Theory, Verification.
Keywords: Software testing, developer testing, specifications, hu-
man factors

1. INTRODUCTION
Software reliability plays a critical role in today’s businesses,

governments, and society. Although much progress has been made
in software verification, software testing remains by far the most
widely used technique for improving software reliability. Among
various types of testing, developer testing [3, 46] is a type of test-
ing where developers test their code as they write it, as opposed
to testing done by a separate quality assurance organization. De-
veloper testing has been widely recognized as an important and
valuable means of improving software reliability, partly due to its
capabilities of exposing faults early in the development life cycle.
The recent emerging methodology of test-driven development [10]
(where unit tests are incrementally written even before the imple-
mentation code is written) further boosts the popularity of devel-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FoSER 2010, November 7–8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11 ...$10.00.

oper testing in industry. In general, developer testing helps devel-
opers to (1) gain high confidence in the code while they are writing
it and (2) reduce fault-fixing cost by detecting faults early when
they are freshly introduced in the code.

The popularity and benefits of developer testing have been well
witnessed in industry [44]; however, manual developer testing is
known to be labor intensive. In addition, manual developer testing
is often insufficient in comprehensively exercising behavior of the
code under test to expose its hidden faults. To address the issue,
one of the common ways is to use testing tools to reduce or com-
plement manual testing effort to achieve higher software reliability.
To meet such needs, tool vendors and research labs are providing
developer testing tools such as Microsoft Research Pex [40, 6] for
.NET programs, Agitar AgitarOne [13, 1], Parasoft Jtest [8], and
CodePro AnalytiX [2] for Java programs.

In this position paper, we present our positions on future di-
rections of developer testing together with discussion on current
research progress along four dimensions (which of course we do
not claim to be complete): correctness confidence, specifications,
(dis)integration testing, and human factors. We next present back-
ground information (dynamic symbolic execution and parameter-
ized unit testing) and then discuss our positions along these four
dimensions.

2. BACKGROUND
Our positions are originated from (but not limited to) two re-

cent promising technologies in developer testing: parameterized
unit testing [42, 41] and dynamic symbolic execution (DSE) [19]
(also called concolic testing [36]), which combines concrete and
symbolic executions to explore feasible paths in code. Note that
the discussion on DSE in Sections 3-6 is also applicable on sym-
bolic execution [27, 14] in general.

DSE is a variation of symbolic execution [27, 14] and leverages
observations from concrete executions. It executes the program un-
der test, while performing symbolic execution in parallel to collect
symbolic constraints on inputs obtained from predicates in branch
statements along the execution. The conjunction of all symbolic
constraints along a path is called the path condition. DSE is typ-
ically performed iteratively to systematically increase code cover-
age. In each iteration, for an already explored path, DSE flips a
branching node in the path to construct a new path that shares the
prefix to the node with the old path, but then deviates and takes
a different branch. DSE uses a constraint solver to check whether
such a flipped path is feasible and if so, compute a satisfying assign-
ment, which forms a new test input that executes along the flipped
path.

In the methodology of parameterized unit testing [42, 41], devel-
opers write a parameterized unit test (PUT), which is simply a test



method that takes parameters, calls the code under test, and states
assertions, in contrast to a conventional test method without tak-
ing any parameter. Then a test-generation tool such as Pex [40, 6]
(which is based on DSE) and AgitarOne [13, 1] automatically gen-
erates test-input values for the parameters of the PUT, attempting
to violate its specified assertions and achieve high code coverage of
the code under test.

3. CORRECTNESS CONFIDENCE
One open question in software testing is how high confidence

testers would have on program correctness after a certain amount
of testing is conducted. It has been commonly believed that testing
cannot provide high confidence on program correctness. A popu-
larly quoted sentence from Dijkstra is “Program testing can be used

to show the presence of bugs, but never to show their absence!”,
which is much more well known than its surrounding sentences:
“The number of different inputs, i.e. the number of different com-

putations for which the assertions claim to hold is so fantastically

high that demonstration of correctness by sampling is completely

out of the question. Program testing can be used to show the pres-

ence of bugs, but never to show their absence! Therefore, proof of

program correctness should depend only upon the program text.”1.
Developers could write a PUT, which includes assertions for as-

serting correctness for the program under test, which could also
embed assertions. After DSE is used to generate test inputs for
the PUT, high correctness confidence with respect to the assertions
could likely be established. We next discuss a simplified case for
illustrating this point. Let us assume that (1) the PUT (together
with the invoked program under test) has a finite number of fea-
sible paths, (2) DSE explores all these feasible paths, and (3) the
constraints collected in the path condition from each iteration are
within the capability of the underlying constraint solver. Then if
DSE finds no violations of an assertion in the PUT, there is in fact
100% correctness confidence with respect to the assertion, i.e., the
assertion is proved to be satisfied by all test inputs of the PUT.

We next give an informal sketch of the proof on the claim of
100% correctness confidence. First, we know that, for all test inputs
(of the PUT) whose execution follows a path (before the assertion)
explored by DSE, the assertion is proved to be satisfied; otherwise,
the constraint solver would have produced test inputs whose execu-
tion follows the path and violates the assertion. Second, the whole
test-input space of the PUT could be divided into disjoined parti-
tions: the execution of the test inputs from each partition follows
the same path. Finally, since DSE explores all paths and establish
100% correctness confidence for test inputs following each path,
and each test input from the whole test-input space of the PUT has
to follow a path, we conclude that 100% correctness confidence is
established for all test inputs of the PUT.

Indeed, when testing real programs in practice, DSE cannot es-
tablish 100% correctness confidence for two main reasons. First,
DSE may not be able to explore a large number of all feasible paths
within reasonable time (in fact, there could be an infinite number of
feasible paths for exploration, e.g., in the presence of a loop whose
iteration bound is an unbounded integer input). Second, some con-
straints from a path condition could be too complex for the under-
lying constraint solver to solve.

Below are example open research questions related to correct-
ness confidence (especially test generation):

• How do we improve DSE to deal with those barriers in com-
promising correctness confidence? One significant challenge
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is the path explosion problem. Recent techniques are pro-
posed to alleviate issues related to loops [35, 48], string con-
straint solving [26, 43], and object creation [39].

• How do we measure and report to the developers the level
of correctness confidence after DSE is applied (when it is
not 100%, which could be often the time in practice)? For
a measured and reported level, how do we validate that it
reflects the real level? On possible direction is to adapt or
customize traditional code coverage [49] to take into account
of the assertion under consideration and the difficulties faced
by DSE. For example, the coverage of some not-yet-covered
branches may have no impact on the (un)satisfaction of the
assertion under consideration, and then these branches could
be excluded for measurement. One example direction is to
focus the measurement of code coverage on only the prob-
lematic areas for DSE to reflect the compromised confidence
levels.

• How do we improve the level of correctness confidence after
DSE is applied and 100% correctness confidence cannot be
established? One example direction is to use static verifica-
tion to complement testing [20, 11].

In addition, keep in mind that whatever level of correctness con-
fidence being established is with respect to the assertion under con-
sideration. There could be a gap between the confidence on the
assertions (written in the PUT or embedded in the program under
test) and the confidence on the program correctness. Such issues
are discussed in the next section on specifications.

4. SPECIFICATIONS
White-box testing has been known to be ineffective in detecting

omission faults, which are related to missing functionalities or log-
ics. One example is that if the program under test misses a certain
branch, e.g., an input-validation branch for checking whether an
input x is greater than 100, then there exists no such a path involv-
ing this missing branch in the program under test. Then DSE does
not explore such a path involving this missing branch, and the con-
straint solver may not specifically generate test inputs where x is
greater than 100. On the surface, this observation seems to contra-
dict to our discussion in the preceding section on the claim of 100%
correctness confidence with DSE, which is basically a white-box
testing technique.

What is the catch here? When DSE is applied, assertions in the
PUT or the program under test change the picture: if we write an
assertion to assert the return value of the program under test to be
greater than 0 (assuming that missing that input-validation branch
could cause this assertion to be violated for test inputs greater than
100), applying DSE still allows us to detect the omission fault.
However, if no assertions are written, and developers rely on in-
specting whether the actual output (e.g., return value) from the ex-
ecution of each single generated test input (one for each explored
path when applying DSE) is expected, we cannot escape the fate of
not being able to detect omission faults.

A PUT or the program under test with assertions in combination
of a white-box test-generation tool (such as one based on DSE) can
be classified as an integrated form of both white-box testing and
black-box testing. The assertions make the conducted testing to
enjoy the benefits of black-box testing, alleviating the well-known
limitation of white-box testing to deal with omission faults.

Assertions in a PUT or the program under test can be seen as a
form of specifications. In the context of developer testing, two com-
mon types of specifications are algebraic specifications [21] and
axiomatic specifications [23] (also called design by contracts [33]).



Axiomatic specifications for object-oriented programs are in the
form of method preconditions, method postconditions, and class
invariants. Jtest, AnalytiX, and Pex (when used in combination of
Code Contracts [5]) support such types of axiomatic specifications.
AgitarOne allows developers to specify class invariants. Algebraic
specifications can be encoded in PUTs supported by Pex and Ag-
itarOne. Note that developers could encode specifications in the
form of assertions within PUTs, beyond traditionally defined alge-
braic specifications. In the rest of this position paper, we refer to
specifications that could be encoded in PUTs as algebraic specifi-
cations (defined in a loose sense).

We next summarize two main differences between axiomatic and
algebraic specifications in providing test oracles for developer test-
ing. First, axiomatic specifications are written and placed in the
code under test and the specifications could refer to internal im-
plementation information (e.g., private fields), whereas algebraic
specifications are written and placed in the test code (e.g., PUTs)
and the specifications could refer to only information visible out-
side of the interface of the code under test, e.g., often referring to
two public methods in code interface (e.g., push and pop methods
of a Stack class). Second, in practice, axiomatic specifications are
often written to capture general behavior of the code under test,
whereas algebraic specifications in PUTs are written to capture be-
haviors applicable to scenarios (encoded in the PUTs) where the
code under test is exercised (e.g., asserting the behavior of pop in-
voked immediately after push is invoked). It is believed that writ-
ing (general) axiomatic specifications is more difficult than writing
(scenario-specific) algebraic specifications.

Below are example open research questions related to specifica-
tions:

• What are costs and benefits in writing axiomatic versus al-
gebraic specifications? What are the limitations of axiomatic
versus algebraic specifications in expressing behavior of code
under test in practice? Are there any other specification types
that could be used to complement axiomatic and algebraic
specifications in serving as test oracles? For what types of
code under test, developers are advised to write axiomatic
versus algebraic specifications? For example, axiomatic spec-
ifications may be written better for reusable library or frame-
work code so that one-time substantial investment of writing
specifications could get paid off with many library or frame-
work API clients being checked with the specifications.

• Could inferred specifications [17, 15] be good enough for
serving as test oracles when specifications are not manually
written? AgitarOne recommends specification candidates for
developers to confirm. However, these specification candi-
dates are often limited, e.g., being often insufficient to cap-
ture real method postconditions, which could be quite com-
plex. Indeed, these inferred specification candidates could
serve as stimulus for encouraging developers to write down
more specifications, to complement the recommended speci-
fication candidates.

• How could we measure the quality of written specifications
for the code under test? High fault-detection capability can-
not be accomplished even when perfect test-generation tools
are available but written specifications are insufficient. There
existed initial work to attempt to address the question with
mutation analysis in the area of verifying security policies [32]
and with analysis of object-field read/write [37].

5. (DIS)INTEGRATION TESTING
In developer testing, unit testing, i.e., testing individual compo-

nents in isolation, is primarily conducted. In real-world code bases,

a component could have quite some dependencies on external envi-
ronments such as file systems and complex frameworks for dealing
with webs or clouds. A common solution is to mock or simulate
environment dependencies [30, 28, 31, 38], so that the unit tests
run quickly and give deterministic results. Basically, such a so-
lution improves the testability [18], including controllability and
observability: developers could better control what environment-
input values a unit test needs to have, and developers could add as-
sertions at the environment-interaction points for checking whether
values flowing to the environment are expected. We name such
testing as disintegration testing (since it aims to break the inte-
gration, being contrary to integration testing). There existed tool
support [16] for isolating the environment. Developers could also
spend one-time effort for writing parameterized models [28, 31,
38] for a specific environment to faithfully simulate the behavior
of the environment. Then when testing any client code interact-
ing with that environment, the same developer or other developers
could reuse such parameterized models.

In developer testing, integration testing would still need to be
conducted, whose main goal is to test the integration of differ-
ent components, including environments that components interact
with. Integration testing should be conducted after unit testing is
conducted.

Below are example open research questions related to (dis)integration
testing:

• How could we measure the quality of parameterized mod-
els for faithfully simulating an environment? Is there any
methodology for systematically modeling the environment
with parameterized models? Parameterized models provide
an abstraction of the environment, capturing only essential
behaviors from the perspective of components interacting with
the environment. Modeling techniques in model-based test-
ing [24] could be borrowed to tackle these questions.

• How could we make smooth transition from disintegration
testing (i.e., isolated unit testing) to integration testing by
exploiting the knowledge gained in unit testing of isolated
components? One possible direction [38] is to automati-
cally synthesize a real-environment state for the simulated-
environment state after it is generated during disintegration
testing; then the real-environment state could be used during
integration testing.

• What types of components besides environments should de-
velopers mock? In principle, developers could mock any
component (not just environments) that the component under
test interacts with. Potentially when a dependent component
is too complex to explore with DSE, developers could mock
this component. However, mocking comes with cost: it takes
effort to write faithful parameterized models to prevent in-
feasible paths (which could cause false warnings among test
failures).

6. HUMAN FACTORS
Tool automation such as improving automated test generation [46]

has been a traditional focus of software testing research. At the
same time, human factors also play important roles in software test-
ing. For example, given the code under test, tools can try to auto-
mate the generation of test inputs as much as possible but test ora-
cles still need come from developers or testers, who specify them
in the form of specifications (or generally assertions), or directly
inspect the actual test outputs for correctness. In addition, tools are
not always perfect to deal with software complexity; developers or
testers need to cooperate with tools to effectively carry out testing



tasks, by interpreting results produced by tools and giving guid-
ance to the tools. In addition, to effectively carry out these tasks,
developers or testers need to be well educated or trained to possess
necessary skills. Taking human factors together with tool automa-
tion, we advocate a new methodology of cooperative developer

testing2, where tools and developers cooperate to effectively carry
out developer testing. We recently co-organized a 2010 Dagstuhl
Seminar [22] on “Practical Software Testing: Tool Automation and
Human Factors”3.

Below are example open research questions related to human
factors:

• How could tools be designed to effectively explain the chal-
lenges that the tools face and seek guidance from developers
(if at all possible)? One possible direction [45] is to pro-
vide accurate explanation and narrow down the investigation
scope for developers (thus reducing their required effort). Ef-
fective visualization [25, 29, 12] of testing information such
as coverage is also an important direction.

• Where and how could we provide effective ways for devel-
opers to guide tools? Some example guidance to tools given
by developers include writing factory methods [40, 6, 13, 1,
8, 2] that include method sequences for generating desirable
objects, a common challenge faced by existing tools [39], as
well as instructing tools on what classes to instrument for
path exploration and mocking specific APIs [16].

• How could we provide effective tool support to help develop-
ers write and debug high-quality specifications? How could
we design effective teaching/training methods [47] as well as
educational materials and tools [7] for teaching/training de-
velopers to write high-quality specifications? With the adop-
tion of DSE and PUTs, we believe that the traditional test-
ing curriculum with already good focus on coverage crite-
ria [9] and black-box testing methodologies should be ex-
tended to put more emphasis on specification writing and ab-
stract thinking.

7. CONCLUSION
In this position paper, we have laid out our positions in future of

developer testing from the dimensions of correctness confidence,
specifications, (dis)integration testing, and human factors. Our po-
sitions are originated from two recent promising technologies in de-
veloper testing: parameterized unit testing and dynamic symbolic
execution, also called concolic testing.

Our discussion has been primarily on functional correctness. How-
ever, all or most of our discussed positions could be also applicable
for other quality attributes such as security and performance. In-
deed, these other quality attributes would call for further new future
directions. Our discussion has been primarily on testing sequential
code. Concurrency testing [34, 4] is also important in developer
testing, and would also call for further new research directions.
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