BERT: A Tool for Behavioral Regression Testing’

Wei Jin
Georgia Tech
weijin@gatech.edu

ABSTRACT

During maintenance, software is modified and evolved to enhance
its functionality, eliminate faults, and adapt it to changed or new
platforms. In this demo, we present BERT, a tool for helping devel-
opers identify regression faults that they may have introduced when
modifying their code. BERT is based on the concept of behavioral
regression testing: given two versions of a program, BERT identifies
behavioral differences between the two versions through dynamic
analysis, in three steps. First, it generates a large number of test in-
puts that focus on the changed parts of the code. Second, it runs the
generated test inputs on the old and new versions of the code and
identifies differences in the tests’ behavior. Third, it analyzes the
identified differences and presents them to the developers. By fo-
cusing on a subset of the code and leveraging differential behavior,
BERT can provide developers with more detailed information than
traditional regression testing approaches—approaches that rely ex-
clusively on existing test suites, which may be limited in scope and
may not adequately test the changes in a program. BERT is imple-
mented as a plug-in for Eclipse, a popular Integrated Development
Environment, and is freely available.! This demo presents BERT,
its underlying technology, and examples of its usage.

Categories and Subject Descriptors: D.2.5 [Software Engineer-
ing]: Testing and Debugging

General Terms: Algorithms, Experimentation, Reliability

Keywords: Regression testing, differential testing

1. TECHNOLOGY AND TOOL

Figure 1 provides a high-level view of our approach compared
to traditional regression testing. In traditional regression testing
(e.g., [6]), an existing test suite (7°0) defined for the old version of
a program (V0) is run on the modified version of a program (V'1).
Non-obsolete test cases that, according to their oracle, fail on V'1
and did not fail on V0 are reported to the developers as warnings
that may indicate the presence of regression faults.

Automated BEhavioral Regression Testing complements the afore-
mentioned traditional approach by improving regression testing along

two main dimensions: (1) it generates a set of test inputs that are
specifically targeted at the changed code, and (2) it explicitly lever-
ages both the old and the new versions of the code. The result is a

*This demo illustrates the implementation of a technique presented
at WODA 2008 [3] and, more extensively, at ICST 2010 [2].

'See http://www.cc.gatech.edu/~orso/software.html

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

FSE-18, November 7—-11, 2010, Santa Fe, New Mexico, USA.

Copyright 2010 ACM 978-1-60558-791-2/10/11 ...$10.00.

Alessandro Orso
Georgia Tech

orso@gatech.edu

Tao Xie
NC State University
xie@csc.ncsu.edu

Traditional Regression Testing BERT: BEhavioral Regression Testing

Change - Test
analyzer o generator
(Code changes C|

v R

&
5
8-
“

[TestsuiteTo | [Programvo] [Programvi] 1 [Programvo] [Programvi] [TestsforcTC

Test runner Test runner

Behavioral

racle checker
Oracle checker comparator

Behavioral

difference Raw behavioral
analyzer differences

Regression
errors
=t
Benavioral
differences

Figure 1: High-level view of our approach.

set of behavioral differences between these two versions. This in-
formation can provide developers with more and finer grained data
on how their code changes have affected the behavior of the code.
Unexpected changes in the behavior, together with the detailed in-
formation about these changes, could help developers identify and
remove regression faults. The scenario of use for our technique is
one where the approach is integrated into the IDE used by the devel-
opers and is activated every time the code is updated and compiled
successfully. In such a scenario, the amount of changes in the code
would typically be limited and localized.

BERT is currently implemented for the Java language, integrated
into Eclipse, and consists of three phases: generation of test inputs
for changed code, behavioral comparison of original and changed
code, and differential behavior analysis and reporting. We next
provide an overview of these phases. Complete details on these
phases can be found in the paper that describes the approach [2].

Phase 1: Generation of Inputs for Changed Code.

In the initial step of Phase 1, BERT collects change information
by leveraging a change analyzer that takes as input the two versions
of the program considered, V0 and V'1, and produces a list of the
classes that differ in the two versions. To do so, BERT leverages
two features of Eclipse: the ability to intercept events and to pro-
duce change information between two versions of a project. More
precisely, BERT intercepts successful compilation events to be able
to perform its analysis each time some part of a project has been
modified, saved, and compiled. When triggered by one such event,
BERT compares the previous and the new versions of the project
using the functionality provided by Eclipse through its API. The
result of this step is a list of modified classes in the project. BERT
then generates a set of test inputs for the changed classes in V'1
by feeding each of these classes to a test generator. In the current
version of the tool, we use Randoop [4] and JPF [8] as test input
generators. We chose these tools because they can generate test
inputs for individual classes and, with minimal changes, can build
the scaffolding needed for the tests, such as drivers and stubs (i.e.,
mock objects) and produce readily runnable JUnit tests.

Phase 2: Behavioral Comparison of Changed Code.

In Phase 2, BERT first runs all of the tests generated in Phase
1 on their corresponding classes. For each changed class ¢ and
each test ¢ for c, the test runner module runs ¢ on the old and
new versions of ¢, cyo and c,1. After each call to a method m
of ¢ performed by ¢, BERT logs the following information. First,
it logs the state of the instances of c,0 and c,1 created and exer-
cised by t, inst_cyo and inst_c,1. To do so, it retrieves the values
of each field f in both inst_c,o and inst_c,1 and stores them as
< seq_id, m_sig, name, value > tuples: seq_id is a unique (per
version) id whose value is one for the first call and is increased for
each subsequent call; m_sig is m’s signature; name is f’s name,
and value is the value of f. If f is scalar, the logged value is
the actual value of f in inst_c,o and inst_c,1. If f is a refer-
ence to an object o, BERT logs the value of each of o’s fields re-
cursively until either a scalar field is encountered or a user-defined
depth is reached. Second, BERT stores the return value returned
by m in the two cases as a < seq_id, m_sig,value > tuple,
where seq_id, m_sig, and value are defined as in the previous
case. If the method terminates with an exception, the value of
the exception is stored as the return value. Third, BERT captures
the output produced by the execution of m and stores it in the
form < seq_id, m_sig, destination,data >, where seq_id and
m_sig have the usual meaning, destination is the entity where the
output is sent (e.g., a textual terminal, a network port, a graphical
element), and data is the raw data sent to that entity. Finally, with
every value logged after a call to m, BERT also records the shortest
distance between m and any changed method in the dynamic call
graph induced by ¢, which is later used to rank differences. To log
this information, BERT instruments the tests and the code under test
using Javassist (http://www.csg.is.titech.ac.jp/~chiba/
javassist), a bytecode rewriting library written in Java.

When t’s execution terminates and the data logs are produced,
BERT’s behavioral comparator accesses the logs for inst_c,o and
inst_c,1 and compares states, return values of corresponding calls,
and outputs collected for the two versions of the class. For each
difference found, BERT records the fact that there was a difference
and a set of relevant data for differences of that type. In particu-
lar, each of the recorded changes is tagged with a unique identifier
for ¢, which allows to map individual changes to the test that re-
vealed them. After executing all of the tests generated in Phase 1
on all of the changed classes, the result is a set of zero or more raw
behavioral differences for each class. Each behavioral difference
consists of a state, return value, or output difference together with
its context information.

Phase 3: Differential Behavior Analysis/Reporting.

Phase 3 analyzes and manipulates the set of differences produced
in the previous phase to group and order them, so as to allow de-
velopers to better consume the information produced by BERT. To
achieve this goal, BERT’s behavioral difference analyzer first ranks
or filters them based on their likelihood to represent a regression
fault. It then abstracts away some of the information contained in
the raw differences and reduces redundancy within the set of iden-
tified differences. First, BERT divides the set of differences into
classes based on their distance value, so that differences with the
same distance are in the same class. It then groups changes that
are within a class and involve the same entities. For example, for
state-related differences, the analyzer groups all differences that in-
volve the same method and field as a single behavioral difference,
associates it with the set of test inputs that reveal each individual
difference, and stores the individual value differences separately for
possible further analysis.

The overall result of this phase is a set of behavioral differences
between c,0 and ¢, that includes (1) which fields can have differ-
ent values, (2) which methods can return different values, and (3)
which differences in output can occur in ¢, and c,1 and which test
inputs can cause such differences to manifest. BERT reports these
differences to the developers in an Eclipse custom view, ranked in
an order that is inversely proportional to their distance value (i.e.,
with the differences with greater distance at the top). BERT can also
filter out reports below a given distance based on the total num-
ber of reports. The intuition and rationale behind this ranking and
filtering are that behavioral differences that occur at a greater dis-
tance from an actual change are less likely to be intentional than
behavioral differences that occur closer to a change—an intuition
confirmed by the results of our empirical evaluation [2].

Developers can use this information to assess which differences
may indicate the presence of a regression fault and which ones are
expected given the changes performed on the code. If the develop-
ers identify regression faults, they can then use the test inputs asso-
ciated to the corresponding behavioral differences to reproduce and
investigate the faulty behaviors and eventually eliminate the faults.

2. RELATION WITH EXISTING TOOLS

To the best of our knowledge, our behavioral regression testing
approach is novel, and BERT is the first tool that implements it.
Most regression testing techniques and tools would be complemen-
tary, rather than alternative to BERT. Particularly, test input gener-
ation and maintenance tools, such as Parasoft Jtest [5], could be
integrated with BERT to improve its test generation and execution
phase. Similarly, capture and replay tools that can generate unit test
cases from system tests (e.g., [1,7]) could be used in combination
with BERT to extend the set of unit tests used to test changes.

3. BENEFITS OF BERT

BERT has two key aspects that distinguish it from traditional re-
gression testing. First, it focuses on a small subset of the code,
which lets it generate a more thorough set of tests. Second, it lever-
ages differential behavior, which eliminates the need for developer-
provided oracles. Because of these novel aspects, BERT can give
developers more (and more detailed) information than traditional
regression testing approaches. Our evaluation of BERT provides
initial evidence of such usefulness: for the cases considered, BERT
was able to identify true regression faults while generating false
positives that could be reduced through ranking [2]. This demo
presents BERT and shows such results and benefits in practice.

Acknowledgments
This work was supported in part by NSF awards CCF-0725202 and CCF-0916605 to
Georgia Tech and NSF award CCF-0725190 to NC State University.

4. REFERENCES

[1] S. Elbaum, H. N. Chin, M. Dwyer, and J. Dokulil. Carving differential unit test
cases from system test cases. In Proc. FSE, pages 253-264, 2006.

[2] W.lJin, A. Orso, and T. Xie. Automated behavioral regression testing. In Proc.
of ICST, pages 137-146, 2010.

[3] A.Orso and T. Xie. BERT: BEhavioral Regression Testing. In Proc. WODA,
pages 3642, 2008.

[4] C.Pacheco and M. D. Ernst. Randoop: Feedback-directed random testing for
Java. In OOPSLA Companion, pages 815-816, 2007.

[5] Parasoft Jtest 8.4.20, 2009. http://www.parasoft.com/.

[6] G. Rothermel, R. Untch, C. Chu, and M.J. Harrold. Test case prioritization.

IEEE Transactions on Software Engineering, 27(10):929-948, October 2001.

D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst. Automatic test factoring for

Java. In Proc. ASE, pages 114-123, 2005.

W. Visser, K. Havelund, G. Brat, and S.-J. Park. Model checking programs. In

Proc. ASE, pages 3—-12, 2000.

[7

[8

