
1 of 24

Automatic Extraction of
Object-Oriented

Observer Abstractions
from Unit-Test Executions

Dept. of Computer Science & Engineering
University of Washington, Seattle

Nov. 2004
ICFEM 04, Seattle

Tao Xie David Notkin

2 of 24

Motivation

• Manually created unit tests
• Valuable but often insufficient

• Automatically generated unit-test inputs
• A large number
• Without specifications, test-result inspection

is impractical

3 of 24

Motivation

• Manually created unit tests
• Valuable but often insufficient

• Automatically generated unit-test inputs
• A large number
• Without specifications, test-result inspection

is impractical
Test selection
for inspection

[Xie&Notkin ASE 03]

4 of 24

Motivation

• Manually created unit tests
• Valuable but often insufficient

• Automatically generated unit-test inputs
• A large number
• Without specifications, test-result inspection

is impractical
Test selection
for inspection

[Xie&Notkin ASE 03]

Test abstraction
for inspection

5 of 24

Synopsis

• Dynamically extract observer abstractions
from test executions
• A set of object state machines
• States represented by observer returns
• Focus on both method returns and object-state

transitions

• Succinct and useful for inspection
• bug finding, bug isolation, component

understanding, etc.

6 of 24

Outline

• Motivation
• Observer Abstractions
• Experience
• Related Work
• Conclusion

7 of 24

Object State Machine (OSM)

M = (I, O, S, δ, λ, INIT) of a class c
• I: method calls in c’s interface
• O: returns of method calls
• S: states of c’s objects
• δ: S Χ I P(S) state transition function
• λ: S Χ I P(O) output function
• INIT: initial state

8 of 24

Object State Machine (OSM)

M = (I, O, S, δ, λ, INIT) of a class c
• I: method calls in c’s interface
• O: returns of method calls
• S: states of c’s objects
• δ: S Χ I P(S) state transition function
• λ: S Χ I P(O) output function
• INIT: initial state

States can be concrete or abstract

9 of 24

Concrete State Representation

• Rostra includes five techniques for state
representation [Xie, Marinov, and Notkin ASE 04]

• WholeState technique
• Traversal: collect the values of all the fields

transitively reachable from the object
• Linearization: remove reference addresses but

keep reference relationship
• State comparison is reduced to sequence

comparison

10 of 24

Concrete OSM of HashMap

• 58 concrete states, 5186 tests generated by Parasoft Jtest 4.5,

• Too complex to be useful (even too complex for graphviz [AT&T])

11 of 24

Abstract State Representation

• Abstraction function: observer
• A public method whose return type is not void.

• Abstract state representation:
• Return values of observers invoked on the

concrete state
• State comparison is reduced to sequence

comparison
• Observer abstraction

• An OSM with observer-abstracted states

12 of 24

Construction of
Observer Abstractions

• Run the existing tests (generated by Parasoft Jtest)
• Collect concrete state representation

• Augment the existing tests
• Invoke all method arguments on each concrete state

• Collect abstract state representations (observer returns)
• Facilitate inspections (e.g. missing transitions)

• Generate one OSM for each observer method by
default
• Group transitions (of the same method) with the

same starting and ending states

13 of 24

Outline

• Motivation
• Observer Abstractions
• Experience
• Related Work
• Conclusion

14 of 24

exception OSM of BinSearchTree

• Bug/illegal-input isolation
where to put preconditions/guard-condition checking?

emission count

transition count

Hide self transitions
by default

Exception observer
• Exception state: a state reached after invoking an exception-throwing method
• Normal state: other states

15 of 24

contains OSM of BinSearchTree
• Bug/illegal-input isolation

•add(null)
•remove(null)

new test

16 of 24

contains OSM of BinSearchTree
Test 1 (T1):
BSTree b1 = new BSTree();
b1.remove(null);

• Bug/illegal-input isolation
•add(null)
•remove(null)

17 of 24

contains OSM of BinSearchTree
Test 1 (T1):
BSTree b1 = new BSTree();
b1.remove(null);

Test 2 (T2):
BSTree b1 = new BSTree();
MyInput m1 = new MyInput(0);
b1.add(m1);
b1.remove(null);

• Bug/illegal-input isolation
•add(null)
•remove(null)

when !isEmpty()

18 of 24

exception/repOk OSM of HashMap

• Illegal input: putAll(null)

•Class invariant: threshold shall be (int)(capacity * loadFactor).

setLoadFactor sets loadFactor without updating threshold

19 of 24

get OSM of HashMap

• Suspicious transition: put(a0:null;a1:null;)?/ret.v:0![1/1]

• Expose an error in Java API doc for HashMap

20 of 24

Java API Doc for HashMap

• Returns: the value to which this map maps the specified key, or null if the
map contains no mapping for this key.

• A return value of null does not necessarily indicate that the map
contains no mapping for the key; it is also possible that the map
explicitly maps the key to null.

http://java.sun.com/j2se/1.4.2/docs/api/java/util/HashMap.html

21 of 24

isEmpty OSM of HashMap

• Almost the same as a manually created state machine for a container
structure [Nguyen 98]

22 of 24

Lessons
• Extracted observer abstractions help

• investigate causes of uncaught exceptions
• identify weakness of an initial test suite
• find bugs in a class implementation or its documentation
• understand class behavior

• But some observer abstractions are complex
three observers of HashMap produce 43 abstract states

(e.g., Collection values())
• user-specified filtering criteria to display a portion of a

complex observer abstraction
• extraction based on a user-specified subset of the initial tests

23 of 24

Related Work
• Sliced OSM extraction [Xie&Notkin SAVCBS 04]
• Daikon [Ernst et al. 01] and algebraic spec discovery

[Henkel&Diwan 03]
• Focus on intra-method or method-pair properties

• Component interface extraction [Whaley et al. 02] and
specification mining [Ammons et al. 02]
• Assume availability of “good” system tests
• Extract complete graphs from generated unit tests

• Predicate abstraction [Graf&Saidi 97, Ball et al. 00]
• Returns of predicates are limited to boolean values
• Focus on program states between program statements

• FSM generation from ASM [Grieskamp et al. 02]
• Require user-defined indistinguishability properties

24 of 24

Conclusion

• Need tool support to help test inspection
• too many automatically generated test inputs

• Extract observer abstractions from test
executions
• succinct and useful object-state-transition

information for inspection
• Provide some benefits of formal methods

without the pain of writing specifications.

25 of 24

Questions?

