Appears inProceedings of the 6th International Conference on FornrajiBeering Methods (ICFEM 04peattle, WA

Automatic Extraction of Object-Oriented Observer
Abstractions from Unit-Test Executions

Tao Xie and David Notkin

Department of Computer Science & Engineering
University of Washington
Seattle, WA 98195, USA

{taoxi e, not ki n}@s. washi ngt on. edu

Abstract. Unit testing has become a common step in software developiken
though manually created unit tests are valuable, they &ee aisufficient; there-
fore, programmers can use an automatic unit-test-genarétpl to produce a
large number of additional tests for a class. However, witlzopriori specifica-
tions, programmers cannot practically inspect the exenwdf each automatically
generated test. In this paper, we develop the observeraabstr approach for au-
tomatically extracting object-state-transition infortina of a class from unit-test
executions, without requiring a priori specifications. &iva class and a set of
its initial tests generated by a third-party tool, we geteerew tests to augment
the initial tests and produce the abstract state of an obgsed on the return
values of a set of observers (public methods with non-vaidrns) invoked on
the object. From the executions of both the new and initisistewe automat-
ically extract observer abstractions, each of which is ajeatbstate machine
(OSM): a state in the OSM represents an abstract state arahsition in the
OSM represents method calls. We have implemented the Qiosiréor the ap-
proach and have applied the approach on complex data seaptwr experiences
suggest that this approach provides useful object-statesition information for
programmers to inspect unit-test executions effectively.

1 Introduction

Automatic test-generation tools are powerful; given agldsese tools can generate
a large number of tests, including some valuable cornerscasspecial inputs that
programmers often forget to include in their manual testheld/programmers write
specifications, some specification-based test generatas 4, 10, 18] automatically
generate tests and check execution correctness againstittem specifications. With-
out a prior specifications, some automatic test-gener#iols [11] perform structural
testing by generating tests to increase structural coeefzgme other tools [5] perform
random testing by generating random inputs. Without a mpearcifications, program-
mers rely on uncaught exceptions or inspect the executiogsrerated tests for deter-
mining whether the program behaves as expected. Howelgng®n only uncaught
exceptions for catching bugs is limited and inspecting thexations of a large number
of generated tests is impractical.

290

201

To help programmers to inspect unit-test executions effelgt we develop theb-
server abstractiompproach, a novel black-box approach for summarizing aeskmt-
ing object-state-transition information from unit-texeeutions. The approach is auto-
mated and does not require a priori specifications. Instéatspecting the execution
of each single test, programmers can inspect the summarigedt-state-transition in-
formation for various purposes. For example, programmemsrespect the information
to determine whether the class under test exhibits expéeteavior. Programmers can
also inspect the information to investigate causes of tierés exhibited by uncaught
exceptions. Programmers can inspect the information foieaing better understand-
ing of the class under test or even its tests.

A concrete object statef an object is characterized by the values of all the fields
reachable from the object. Asbserveiis a public method with a non-void retutThe
observer abstraction approach abstracts a concrete shjgetexercised by a test suite
based on the return values of a set of observers that areddvakthe concrete object
state. Anobserver abstractios an object state machine (OSM): a state in the OSM
represents an abstract state and a transition in the OSMsems method calls. We
have implemented a tool, called Obstra, for the observerati®on approach. Given
a Java class and its initial unit test, Obstra identifies oetecobject states exercised
by the tests and generates new tests to augment thesetigstisl Based on the return
values of a set of observers, Obstra maps each concretd stgjgcto an abstract state
and constructs an OSM.

This paper makes the following main contributions:

— We propose a new program abstraction, called observaaaben.

— We present and implement an automatic approach for dymélynextracting ob-
server abstractions from unit-test executions.

— We apply the approach on complex data structures and tiigimatically gener-
ated tests; our experiences show that extracted obsersteaetions provide useful
object-state-transition information for programmersispect.

2 Observer Abstraction Approach

We first discuss two techniques (developed in our previouk\i2?, 23]) that enable
the dynamic extraction of observer abstractions. We nesdritie object state machines,
being the representations of observer abstractions. Viedtfine observer abstractions
and illustrate dynamic extraction of them. We finally deserihe implementation and
present an example of dynamically extracted observeradigins.

2.1 Concrete-State Representation and Test Augmentation

In previous work, we have developed the Rostra frameworkfaedautomatic tech-
niques to represent and detect equivalent object statgsT[i2i8 work focuses on using

1 We follow the definition by Henkel and Diwan [12]. The defipii differs from the more
common definition that limits an observer to methods that atochange any state. We have
found that state-modifying observers also provide valumiirtechnique and state modification
does not harm our technique.

292

one of the techniques for state representation: the Whatie 8chnique. The technique
represents aoncrete object statef an object as a sequence of the values of the fields
reachable from the object. We use a linearization algorf@3hto avoid putting those
field values with reference addresses in the seqdemaestill keep the referencing
relationship among fields. A set abnequivalent concrete object statamntain those
concrete object states any two of which do not have the saateergpresentation.

A unit test suite consists of a set of unit tests. Each execwdf a unit test creates
several objects and invokes methods on these objects. Beloda method invocation
depends on the state of the receiver object and method argsiatéhe beginning of the
invocation. Amethod calis characterized by the actual class of the receiver ohifeet,
method name, the method signature, and the method-argwalaas. When argument
values are not primitive values, we represent them usinigstete representations. We
determine whether two method calls are equivalent by cingakie equivalence of their
corresponding characteristic entities, including theehesr-object class, method name,
method signature, and method-argument values. A seboéquivalent method calls
contain those method calls any two of which are not equivalen

After we execute an initial test suite, the concrete-stafgasentation technique
identifies all nonequivalent object states and nonequitatesthod calls that were ex-
ercised by the test suite. The test augmentation techniguergtes new tests to exer-
cise each possible combination of nonequivalent objettstand nonequivalent non-
constructor method calls [22]. We augment an initial testesbecause the test suite
might not invoke each observer on all nonequivalent objextes; invoking observers
on a concrete object state is necessary for us to know theaabstate enclosing the
concrete object state. The augmented test suite guarahstesach nonequivalent ob-
ject state is exercised by each nonequivalent non-constrnethod call at least once.
In addition, the observer abstractions extracted from tiggreented test suite can better
help programmers to inspect object-state-transitionieha he complexity of the test
augmentation algorithm i9(|C'S| x |M C|), whereC'S is the set of the nonequivalent
concrete states exercised by an initial test siiifer the class under test add C' is the
set of the nonequivalent method calls exercised’by

2.2 Object State Machine
We define an object state machine for a cfass:

Definition 1. Anobject state machin®SM)M of a classc is a sextupleV = (I, O,

S, 0, A\, INIT) wherel, O, and S are nonempty sets of method callscia interface,
returns of these method calls, and states’'sfobjects, respective M NIT € S is

the initial state that the machine is in before calling anyswuctor method of. § :

S x I — P(9) is the state transition function and: S x I — P(O) is the output
function whereP(S) and P(O) are the power sets of S and O, respectively. When the

2 Running the same test twice might produce different refezeaddresses for those fields of
non-primitive types.

% The definition is adapted from the definition of finite statectiime [15]; however, an object
state machine is not necessarily finite.

293

machine is in a current stateand receives a method calfrom I, it moves to one of the
next states specified bys, i) and produces one of the method returns givei@y1).

An OSM can be deterministic or nondeterministic.

2.3 Observer Abstractions

The object states in an OSM can be concrete or abstracbAatract statef an object
is defined by arabstraction functiorj16]; the abstraction function maps each concrete
state to an abstract state. The observer abstraction agiproastructs abstraction func-
tions to map concrete states to abstract states in an OSM.

We first define an observer following previous work on speniyalgebraic speci-
fications for a class [12]:

Definition 2. Anobservepf aclass:is a methodb in ¢'s interface such that the return
type ofob is not void.

Given a clasg and a set of observef3B = {ob1, 0bs, ..., 0b,, } of ¢, the observer
abstraction approach constructs an abstractionwith respect toOB. In particular,
a concrete states is mapped to an abstract state defined byn valuesOBR =
{obry, obra, ..., obr, }, where each valuebr; represents the return value of method call
ob; invoked oncs.

Definition 3. Given a class and a set of observe8B = {ob1, 0bs, ..., 0b, } Of ¢, an
observer abstractiowith respect taOB is an OSMM of ¢ such that the states i/
are abstract states defined BB.

2.4 Dynamic Extraction of Observer Abstractions

We dynamically extract observer abstractions of a clags frait-test executions. The
number of the concrete states exercised by an augmentesuigsts finite and the
execution of the test suite is assumed to terminate; thexgtoe dynamically extracted
observer abstractions are also finite.

In a dynamically extracted observer abstractigh we add additional statistical
information: the transition count and the emission coutie fransition countfor a
nonequivalent method calhc transiting from a state to a states’ is the number of
nonequivalent concrete object statessithat transit tos’ after mc is invoked. The
emission countor s andmc is the number of nonequivalent concrete object states in
wheremc is invoked.

Given an initial test suité& for a class:, we first identify the nonequivalent concrete
statesC'S and method callg/C exercised byl". We then augmerif’ with new tests
to exercise”'S with M C exhaustively, producing an augmented test sTiiteVe have
described these steps in Section ZI'l.exercises each nonequivalent concrete state
in C'S with each method call in/C; therefore, each nonequivalent observer call in
MC' is guaranteed to be invoked on each nonequivalent condegteia C'S at least
once. We then collect the return values of observer calld i for each nonequivalent
concrete state i’'S. We use this test-generation mechanism to collect retuuesaf

294

observers, instead of inserting observer method callsreefiod after any call site t©
in T, because the latter does not work for state-modifying atesey which change the
functional behavior of".

Given an augmented test suifé and a set of observe3B = {ob;, 0ba, ..., 0b, },
we go through the following steps to produce an observeratigtin M in the form
of OSM. Initially M is empty. During the execution @', we collect the following
tuple for each method executiondis interface:(css, m, mr, cs.), wherecss, m, mr,
andcs,. are the concrete object state at the method entry, methdretirn value,
and concrete object state at the method exit, respecti¥elys return type is void, we
assign“—" tomr. If m’s execution throws an uncaught exception, we also assigh
to mr and assign the name of the exception typestg called anexception stateThe
concrete object state at a constructor’s entty A& 7', called aninitial state

After the test executions terminate, we iterate on eacindigtiple(cs;, m, mr, cs.)
to produce a new tupléis,, m, mr, as.), whereass andas. are the abstract states
mapped fromes, and cs. based onOB, respectively. Ifes. is an exception state,
its mapped abstract state is the samesas whose value is the name of the thrown-
exception type. Its; is an initial state, its mapped abstract state is $MWNIIT'. If cs.
is not exercised by the initial tests before test augmeortdiut exercised by new tests,
we mapes, to a special abstract state denoted\&s, because we have not invoked
OB oncs, yet and do not have a known abstract state-for

After we produce(ass, m, mr, as.) from (css, m,mr, cs.), we then addus,
andas. to M as states, and put a transition fram, to as. in M. The transition
is denoted by a tripléas,, m?/mr!,as.). If ass, ase, O (ass,m?/mr! as.) is al-
ready present in/, we do not add it. In addition, we increase the transitionntou
for (ass,m?/mr!, as.), denoted @€, m?/mri,as.)» Which is initialized to one when
(ass,m?/mrl, as.) is added toM at the first time. We also increase the emission
count foras, andm, denoted a€’,,_). After we finish processing all distinct tu-
ples(css, m, mr, cs.), we postfix the label of each transiti¢as, m?/mr!, as.) with
[Clas.,m?/mrtas)/Clas, .m)l- The complexity of the extraction algorithm for an ob-
server abstraction i9(|C'S| x |OB|), whereC'S is the set of the nonequivalent concrete
states exercised by an initial test suiteandOB is the given set of observers.

2.5 Implementation

We have developed a tool, called Obstra, for the observéraaion approach. Obstra
isimplemented based on the Rostra framework developed previous work [23]. We
use the Byte Code Engineering Library (BCEL) [6] to rewrlte bytecodes of a class
at class-loading time. Objects of the class under test feereel ascandidate objects
We collect concrete object states at the entry and exit df esthod call invoked from
a test suite to a candidate object; these method calls agedfasandidate method
calls. We do not collect object states for those method calls tiegitdernal to candidate
objects.

To collect concrete object states, we use Java reflectiomamézms [2] to recur-
sively collect all the fields that are reachable from a caaticbbject, an argument
object, or a return object of candidate method calls. We ialsioument test classes to

295

collect method call information that is used to reproducgeatstates in test augmen-
tation. We also use Java reflection mechanisms [2] to gemarat execute new tests
online. We export a selected subset of tests in the augmesgeduite to a JUnit [13]
test class using JCrasher’s functionality of test-codeeggion [5]; we select and ex-
port a test if it exercises at least one previously uncovémasition in an observer
abstraction. Each exported test is annotated with its esestd¢ransitions as comments.
We display extracted observer abstractions by using thpgarpackage, which is part
of graphviz [8].

By default, Obstra generates one OSM for each observer (iti@al to one OSM
for all observers) and outputs a default grouping configomdile; programmers can
manipulate the configurations in the file to generate OSMsetaon multiple ob-
servers.

2.6 Example

We use a class of Binary Search Tree (name8Sas ee) as an example of illustrat-
ing observer abstractions. This class was used in evatu&iimat [4] and the Ros-
tra framework in our previous work [23]. Parasoft Jtest (enntercial tool for Java)
[18] generates 277 tests for the class. The class has 24@amment, non-blank
lines of code and its interface includes eight public meth(le observers), some
of which are a constructor (denoted [aisni t] ()), bool ean cont ai ns(Myl nput
i nfo),voi d add(Myl nput info),andoool ean renmove (Ml nput info) where
Myl nput 4 is a class that contains an integer field

Figure 1 shows the observer abstraction of BSTree with tdpean observer
cont ai ns(Myl nput i nfo) (including two observer instancesdd(a0. v: 7;) ® and
add(a0: nul | ;)) and augmented Jtest-generated tests. The top state irgtine s
marked withl NI T, indicating the object state before invoking a construdibe second-
to-top state is marked with the observer instances and théige return values. This
abstract state encloses those concrete states such thatwehevoke these two ob-
server instances on those concrete states, their retuwas/ate al se. In the central
state, the observers throw uncaught exceptions and we puxteption-type name
Nul | Poi nt er Except i on in the positions of their return values. The bottom state is
marked with the exception-type narNel | Poi nt er Except i on. An object is in such

a state after a method call on the object throwsNiel Poi nt er Except i on.

Each transition from a starting abstract state to an endistract state is marked
with method calls, their return values, and some statisios example, the generated
test suite contains two tests:

Test 1 (T1): Test 2 (T2):
BSTree bl = new BSTree(); BSTree bl = new BSTree();
M/l nput nl = new Myl nput (0); bl.renmove(null);
bl. add(nt);

bl.renove(null);

4 The original argument type i8bj ect ; we change the type tdly| nput so that Jtest can be
guided to generate better arguments.

5 ai represents thé -+ 1)th argument andi. v represents the field of the(i + 1)th argument.
Argument values are specified following their argument nesseparated by and different
arguments are separated by

296

[init](2/-[141]

contains{a0.v:7;)=false
contains(a0:null;)=false

add(a0:null;)?£[2/2] add(a0.v:7;)?4[1/1] remove(al.v:7;)?Arue![1/1]

contains{a0.v:7;)=NullPointerException
contains(a0:null;)=NullPointerException

contains{a0.v:7;)=true
contains(a0:null;)=false

remove(al:null;)?~[1/2]

add(a0.v:7;)2/-[2/2] /

::((:([l]:u?l)):‘:’[[;,!g]] / remove(@0:null;y?A[1/1]

ALL_ARGS [5/6]
~

_— -
=_ NullPointerException 7% — — — — = —

Fig. 1.cont ai ns observer abstraction of BSTree

contains{a0.v:7;)?/-[2/2]
contains(a0:null;)?+[2/2]
ALL_ARGS [4/4]

remove(al:null;)?/~[2/2]

[init))2/-[1/1]

add(a0.v:7;)?/-[2/4]
add(a0.v:0;)?/-[1/4]
add(a0:null;)?/-[2/4]

ALL_ARGS [5/12]

contains(al.v:7;)?/-[2/5]
contains(a0:null;)?/-[2/3]
ALL_ARGS [4/10]

emove({al:null;)?/-[4/3]

NullPointerException

Fig.2.except i on observer abstraction of BSTree

The execution obl. remove(nul |') in T1 does not throw any exception. Both be-
fore and after invoking1. renove(nul 1) in T1, if we invoke the two observer in-
stances, their return values dral se; therefore, there is a state-preserving transi-
tion on the second-to-top state. (To present a succinct, Wigwdefault we do not
show state-preserving transitions.) The executionlofr enove(nul I') in T2 throws
aNul | Poi nt er Except i on. If we invoke the two observer instances before invoking
bl. remove(nul |') in T2, their return values arfeal se; therefore, given the method
execution ofbl. remove(nul 1) in T2, we extract the transition from the second-to-
top state to the bottom state and the transition is markédrwitove(a0: nul | ;) ?/ - .

In the mark of a transition, when return values areé d or method calls throw un-
caught exceptions, we putin the position of their return values. We pufafter the

297

method calls andl after return values if return values are notWe also attach two
numbers for each transition in the form[off M , whereN is the transition count and
Mis the emission count. If these two numbers are equal, theitian is deterministic,
and is indeterministic otherwise. Because there are twierdifit transitions from the
second-to-top state with the same method ccattove(a0: nul | ;) (one transition is
state-preserving being extracted from T1), the transiterove(a0: nul | ;) fromthe
second-to-top state to the bottom state is indeterminiséing attached with1/ 2] .
We display thicker edges and bold-font texts for nondeteistic transitions so that
programmers can easily identify them based on visual effect

To present a succinct view, we do not displsiyA states and the transitions leading
to N/A states. In addition, we combine multiple transitions tretéthe same starting
and ending abstract states, and whose method calls havartieeraethod names and
signatures. When we combine multiple transitions, we dateuthe transition count
and emission count of the combined transitions and show théine bottom line of the
transition label. When a combined transition containsatieguivalent method calls of
the same method name and signature, we 4fld _ARG S in the bottom line of the
transition label. When a transition contains only methdts¢hat are exercised by new
generated tests but not exercised by the initial tests, w@ali a dotted edge for the
transition.

To focus on understanding uncaught exceptions, we cregitecasexception ob-
serverand construct an observer abstraction based on it. Figurte\gssthe exception-
observer abstraction of BSTree extracted from augmengsi-generated tests. The
exception observer maps all concrete states except¥dfl' and exception states to an
abstract state calledORMAL. The mapped abstract state of an initial state is BNII T’
and the mapped abstract state of an exception state isistdbime as the exception-type
name.

3 Experiences

We have used Obstra to extract observer abstractions frametyof programs, most
of which were used to evaluate our previous work in test siele¢25], test minimiza-
tion [23], and test generation [22]. Many of these programsipulate nontrivial data
structures. Because of the space limit, in this section]lusgtiate how we applied Ob-
stra on two complex data structures and their automatigaiherated tests. We applied
Obstra on these examples on a MS Windows machine with a Pei2.8 GHz pro-
cessor using Sun’s Java 2 SDK 1.4.2 JVM with 512 Mb allocatechory.

3.1 Binary Search Tree Example

We have described the BSTree in Section 2.6 and two of itaeted observer ab-

stractions in Figure 1 and 2. Jtest generates 277 tests foreBSThese tests exercise
five nonequivalent concrete object states in addition tdrthial state and one excep-

tion state, 12 nonequivalent non-constructor method galsldition to one constructor

call, and 33 nonequivalent method executions. Obstra antgntiee test suite to exer-

cise 61 nonequivalent method executions. The elapsedimeafor test augmentation

and abstraction extraction is 0.4 and 4.9 seconds, resphcti

298

Figure 2 shows thatul | Poi nt er Except i on is thrown by three nondeterministic
transitions. During test inspection, we want to know in wd@tditions the exception is
thrown. If the exception is thrown because of illegal inpute can add necessary pre-
conditions to guard against the illegal inputs. Alterneltyywe can perform defensive
programming: we can add input checking at method entriestaosv more informa-
tive exceptions if the checking fails. However, we do not itaradd over-constrained
preconditions, which prevent legal inputs from being pesesl. For example, after in-
specting the exception OSM in Figure 2, we should not comsilarguments foadd,
thenul I argumentfor enove, or all arguments focont ai ns as illegal arguments, al-
though doing so indeed prevents the exceptions from benogvth After we inspected
the cont ai ns OSM in Figure 1, we gained more information about the exosgsti
and found that callingdd(a0: nul | ;) after calling the constructor leads to an un-
desirable state: callingont ai ns on this state deterministically throws the exception.
In addition, callingr enmove(a0: nul | ;) also deterministically throws the exception
and callingadd throws the exception with a high probability of 5/6. Therefove had
more confidence on consideringl | as an illegal argument fardd and preventing it
from being processed. After we preventetti(a0: nul | ;) ,twor enove(a0: nul | ;)
transitions still throw the exception: one is determinmisind the other is with 1/2 prob-
ability. We then considerenul | as an illegal argument faremove and prevented it
from being processed. We did not need to impose any restmictn the argument of
cont ai ns.

We found that there are three different argumentsafdd but only two differ-
ent arguments fotont ai ns, although these two methods have the same signatures.
We could add a method call @bnt ai n(a0. v: 0;) to the Jtest-generated test suite;
therefore, we could have three observer instances foctime ai ns OSM in Fig-
ure 1. In the new OSM, the second-to-top state includes orre wioserver instance
cont ai ns(a0. v: 0) =f al se and the indeterministic transitionoénove(a0: nul | ;)

?/ -[1/ 2] from the second-to-top state to the bottom state is turnedideterministic
transitionr emove(a0: nul | ;) ?/-[1/ 1] . In general, when we add new tests to a test
suite and these new tests exercise new observer instanaaO8M, the states in the
OSM can be refined, thus possibly turning some indeternmristnsitions into deter-
ministic ones. On the other hand, adding new tests can pp$sih some deterministic
transitions into indeterministic ones.

3.2 Hash Map Example

A HashMap class was given jrava. ut i | . HashMap from the standard Java libraries
[19]. A repOK and some helper methods were added to this class for evajusti-

rat [4]. We also used this class in our previous work for exihg Rostra [23]. The
class has 597 non-comment, non-blank lines of code andégace includes 19 public
methods (13 observers), some of which[drei t] () ,voi d set LoadFact or (I oat
f),void putAll (Map t),0bject renmove(Myl nput key),CObject put (M nput
key, Myl nput val ue),andvoi d clear().Jtestgenerates 5186 tests for HashMap.
These tests exercise 58 nonequivalent concrete objeesstataddition to the initial
state and one exception state, 29 nonequivalent non-cotmtimethod calls in addi-
tion to one constructor call, and 416 nonequivalent metixed@tions. Obstra augments

299

(nr)

[l y7-[141]

setLoadFactor(al: 7.0;)7/-[17/17]
PULAIl a0 null) 2~ [38/56] setloadFactor(al:0.0;)7/-[6/6)

ALL_ARGS [23/23]
NullPointerException

[init])()24-[141]

repQOk()=false

Fig. 3.except i on observer abstraction ama&pCk observer abstraction of HashMap

get(a0.v:0;)=null
get(a0.v:7;)=null
get(a0:null;)=ret.v:0;

~

~
\/ remove(a0:null;) ?/ret.v:0;![1/1] ' put(@a0null;alnull;)?/ret.v:0;![1/1] + clear()?/-[1/1] put(a:null;al.v:0;)?/mull![2/2] [init]()2/-[1/1]
- . \

get(a0.v:0;)=null
get(a0.v:7:)=null
get(a0null;)=null

put(a0.v:7:al.v:7:)2mull! [17/17] clear()?/-[6/6] ' remove(a0.v:7;)/ret.v:7;![6/6]

get(a0.v:0;)=null
get(a0.v:7;)=ret.v:7;
get(a0:null;)=null

Fig. 4.get observer abstraction of HashMap

the test suite to exercise 1683 nonequivalent method eresuilThe elapsed real time
for test augmentation and abstraction extraction is 10 &&ktonds, respectively.

We found that the exception OSM of HashMap contains one iehatéstic transition
put Al | (a0: nul I ;) from NORMAL to Nul | Poi nt er Except i on, as is shown in the
left part of Figure 3. Therefore, we considerad | as an illegal argument fqut Al | .
We checked the Java APl documentation for HashMap [19] aadddtumentation
states thaput Al I throwsNul | Poi nt er Except i on if the specified map is null. This
description confirmed our judgement. In other observerabons, to provide a more
succinct view, by default Obstra does not display any ddteastic transitions leading
to an exception state in the exception OSM.

We found an erroriset LoadFact or (f | oat f),amethodthat was later added to
facilitate Korat's test generation [4]. The right part ofjgre 3 shows theepOk OSM of
HashMapr epCk is a predicate used to check class invariants [16]. If aglliepOk on
an object state returrisl se, the object state is invalid. By inspecting thepOK OSM,
we found that callinget LoadFact or with all arguments deterministically leads to an
invalid state. We checked the source codeaifLoadFact or and found that its method
body is simplyl oadFact or = f;, wherel oadFact or is an object field andl is the
method argument. The comments for a private figldeshol d states that the value of

300

& isEmpty()Z observer abstraction of HashMap

(wr)

[init]()

clear()

isEmpty():true

put(ad,a1) [remove(a0)

clear()

.
e putfan,at)

isEmpty()=fals

remove(al:null) Sinulll[18i2 4
removeialy? a?inulll[80 4]
remove(al.v0)?inulll[24r25]
ALL ARGS [60063]

Fig.5.i sEnpt y observer abstraction of HashMap (screen snapshot)

t hreshol d shall be(int)(capacity * | oadFact or). Apparently this property
is violated when settinjoadFact or without updating hr eshol d accordingly. We
fixed this error by appending a call to an existing privatehundtvoi d rehash() in
the end ofset LoadFact or's method bodyr ehash updates hr eshol d using the
newl oadFact or .

Figure 4 shows thget OSM of HashMap. In the representation of method returns
on a transition or in a stategt represents the non-primitive return value ared . v
represents the field of the non-primitive return value. Recall that a trdiosi with a
dotted edge is exercised only by new generated tests butyntbtebinitial tests. We
next walk through the scenario in which programmers cougéat Figure 4. During
inspection, programmers might focus their explorationro®&M on transitions. Three
such transitions arel ear, r enove, andput . Programmers are not surprised to see
thatcl ear orr enove transitions cause a nonempty HashMap to be empty, as is shown
by the transitions from the top or bottom state to the cerstia@e. But programmers
are surprised to see the transitionpoft (a0: nul | ; al: nul ') from the top state to
the central state, indicating thatit can cause a honempty HashMap to be empty. By
browsing the Java APl documentation for HashMap [19], paogners can find that
HashMap allows either a key or a value torhé | ; therefore, theaul | return ofget
does not necessarily indicate that the map contains no mgi the key. However,
in the documentation, the description for the returngeaf states: “the value to which
this map maps the specified key, or null if the map contains appimg for this key.”
After reading the documentation more carefully, they cad fimat the description for
get (but not the description for the returnsgdt) does specify the accurate behavior.
This finding shows that the informal description for the ratuof get is not accu-
rate or consistent with the descriptiongdt even in such widely published Java API
documentation [19].

301

Figure 5 shows a screen snapshot of thenpt y OSM of HashMap. We configured
Obstra to additionally show each state-preserving trimmsthat has the same method
name as another state-modifying transition. We also cord@j®bstra to display on
each edge only the method name associated with the transittben programmers
want to see the details of a transition, they can move the enoursor over the method
name associated with the transition and then the detaitlisplayed. We have searched
the Internet for manually created state machines for comdada structures but few
could be found. One manually created state machine for agwntstructure [17] is
almost the same as thaEnpt y OSM of HashMap shown in Figure 5. There are two
major differences. ThéNIT state and thgi ni t] () transition are shown in Figure 5
but not in the manually created state machine. The manuedisted state machine
annotates “not last element” for the state-preservingsttim r enove(a0) (pointed
by the mouse cursor in Figure 5) on theEnpt y() =f al se state and “last element” for
the state-modifying transitionenove(a0) (shown in the middle of Figure 5) starting
from thei sEnpt y() =f al se state; Figure 5 shows these two transition names in bold
font, indicating them to be indeterministic.

3.3 Discussion

Our experiences have shown that extracted observer afistiacan help investigate
causes of uncaught exceptions, identify weakness of aaliteést suite, find bugs in
a class implementation or its documentation, and undetstiass behavior. Although
many observer abstractions extracted for the class undeate succinct, some ob-
server abstractions are still complex, containing too maébrmation for inspection.
For example, three observers of HashMap, sucboh$ ecti on val ues(), have 43
abstract states. The complexity of an extracted obsenggraaition depends on both the
characteristics of its observers and the initial testsutare work, we plan to display
a portion of a complex observer abstraction based on ussifig filtering criteria or
extract observer abstractions from the executions of agmetified subset of the initial
tests.

Although thei sEnpt y OSM of HashMap is almost the same as a manually created
state machine [17], our approach does not guarantee theletsmess of the resulting
observer abstractions — our approach does not guaranteéhthabserver abstrac-
tions contain all possible legal states or legal transitidbur approach also does not
guarantee that the observer abstractions contain no liliegesitions. Instead, the ob-
server abstractions faithfully reflect behavior exercisgthe executed tests; inspecting
observer abstractions could help identify weakness of xeewged tests. This charac-
teristic of our approach is shared by other dynamic infeedechniques [1, 7,12, 21]
discussed in the next section.

4 Related Work

Ernst et al. use Daikon to dynamically infer likely invariarirom test executions [7].
Invariants are in the form of axiomatic specifications. Ehewariants describe the
observed relationships among the values of object fieldsinaents, and returns of a

302

single method in a class interface, whereas observer atistra describe the observed
state-transition relationships among multiple methodsdlass interface and use the re-
turn values of observers to represent object states, withqulicitly referring to object
fields. Henkel and Diwan discover algebraic specificatioamfthe execution of auto-
matically generated unit tests [12]. Their discovered lalgie specifications present a
local view of relationships between two methods, whereasler abstractions present
a global view of relationships among multiple methods. Idiadn, Henkel and Di-
wan'’s approach cannot infer local properties that areedl&t indeterministic transi-
tions in observer abstractions; our experiences show liesetindeterministic transi-
tions are useful for inspection. In summary, observer absbons are a useful form of
property inference, complementing invariants or algebspicifications inferred from
unit-test executions.

Whaley et al. extract Java component interfaces from syssinexecutions [21].
The extracted interfaces are in the form of multiple finilgesimachines, each of which
contains the methods that modify or read the same object fdderver abstractions
are also in the form of multiple finite state machines, eacWldth is with respect to
a set of observers (containing one observer by default).l®ylet al. map all concrete
states that are at the same state-modifying method’s exitset same abstract state.
Our approach maps all concrete states on which observéushrealues are the same
to the same abstract state. Although Whaley et al.'s apprisagpplicable on system-
test executions, it is not applicable on the executions tdraatically generated unit
tests, because their resulting finite state machine wouéddmenplete graph of methods
that modify the same object field. Ammons et al. mine protepacifications in the
form of a finite state machine from system-test executiohsTeir approach faces
the same problem as Whaley et al.’s approach when beingealmt the executions of
automatically generated unit tests. In summary, neithealyhet al. nor Ammons et
al.'s approaches capture object states as accurate asproaap and neither of them
can be applied on the executions of automatically generatidests.

Given a set of predicates, predicate abstraction [3, 9] naapsncrete state to an
abstract state that is defined by the boolean values of thresécptes on the concrete
state. Given a set of observers, observer abstraction mapxeete state to an abstract
state that is defined by the return values (not limited to daolvalues) of these ob-
servers on the concrete state. Concrete states consideprddicate abstractions are
usually those program states between program statemdreseas concrete states con-
sidered by observer abstractions are those object statgedremethod calls. Predicate
abstraction is mainly used in software model checking, ehgobserver abstraction in
our approach is mainly used in helping inspection of testetiens.

Turner and Robson use finite state machines to specify thevimatof a class [20].
The states in a state machine are defined by the values of et sultomplete set of ob-
ject fields. The transitions are method names. Their apprggecifies specifications in
the form of finite state machines and generates tests bashd specifications, whereas
our approach extracts observer abstractions in the forrmié fstate machines with-
out requiring a priori specifications. In future work, we pl#@ use extracted observer
abstractions to guide test generation using existing fstége-machine-based testing
techniques [15] and use new generated tests to further irapbserver abstractions.

303

This future work fits into the feedback loop between test gaien and specification
inference proposed in our previous work [24].

Kung et al. statically extract object state models from slasurce code and use
them to guide test generation [14]. An object state modei thé form of a finite state
machine: the states are defined by value intervals over olgéas, which are derived
from path conditions of method source; the transitions arézdd by symbolically ex-
ecuting methods. Our approach dynamically extracts findgesnachines based on
observers during test executions. Grieskamp et al. ganBnite state machines from
executable abstract state machines [10]. Manually spdgifiedicates are used to group
states in abstract state machines to hyperstates duriegésation of abstract state ma-
chine. Finite state machines, abstract state machinesnandally specified predicates
in their approach correspond to observer abstractiongretmobject state machines,
and observers in our approach, respectively. However,mpnoach is totally automatic
and does not require programmers to specify any specifiatiopredicates.

5 Conclusion

It is important to provide tool support for programmers asytinspect the executions
of automatically generated unit tests. We have proposeoliserver abstraction ap-
proach to aid inspection of test executions. We have deeelagool, called Obstra, to
extract observer abstractions from unit-test executiomsnaatically. We have applied
the approach on a variety of programs, including complea datuctures; our expe-
riences show that extracted observer abstractions proelfel object-state-transition
information for programmers to inspect.

Acknowledgments

We thank Arnaud Gotlieb, Amir Michail, Andrew Peterson, NebSazawal and the
anonymous reviewers for their valuable feedback on anezasirsion of this paper. We
thank Darko Marinov for providing Korat subjects. This wavks supported in part by
the National Science Foundation under grant ITR 0086003atk¥aowledge support
through the High Dependability Computing Program from NASes cooperative
agreement NCC-2-1298.

References

1. G. Ammons, R. Bodik, and J. R. Larus. Mining specificatiortis Proc. the 29th ACM
SIGPLAN-SIGACT Symposium on Principles of Programmingglages pages 4-16,
2002.

2. K. Arnold, J. Gosling, and D. Holmehe Java Programming Languag@ddison-Wesley
Longman Publishing Co., Inc., 2000.

3. T.Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Auntatic predicate abstraction of C
programs. IrProc. the ACM SIGPLAN 2001 Conference on Programming LagegZesign
and Implementatiorpages 203-213, 2001.

304

4.

10.

11.

12.

13.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

C. Boyapati, S. Khurshid, and D. Marinov. Korat: autorddgsting based on Java predicates.
In Proc. the International Symposium on Software Testing analysis pages 123-133,
2002.

. C. Csallner and Y. Smaragdakis. JCrasher documentsnémianual, December 2003.
. M. Dahm and J. van Zyl. Byte Code Engineering Library, Ap@03.htt p: / / j akart a.

apache. org/ bcel /.

. M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Camically discovering likely

program invariants to support program evolutidEEE Trans. Softw. Eng27(2):99-123,
2001.

. E. R. Gansner and S. C. North. An open graph visualizagistem and its applications to

software engineeringSoftware: Practice and Experiencg0(11):1203-1233, Sept. 2000.

. S. Graf and H. Saidi. Construction of abstract state grapth PVS. InProc. the 9th

International Conference on Computer Aided Verificatipages 72—83, 1997.

W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes. €&aing finite state machines
from abstract state machines.Rroc. the International Symposium on Software Testing and
Analysis pages 112-122, 2002.

N. Gupta, A. P. Mathur, and M. L. Soffa. Automated tesadggneration using an iterative
relaxation method. IRroc. the 6th ACM SIGSOFT International Symposium on Fotiowis

of Software Engineeringpages 231-244, 1998.

J. Henkel and A. Diwan. Discovering algebraic specificest from Java classes. Rroc.

the 17th European Conference on Object-Oriented Programgnpiages 431-456, 2003.
JUnit, 2003ht t p: / / www. j uni t. org.

. D. Kung, N. Suchak, J. Gao, and P. Hsia. On object stategedn Proc. the 18th Annual

International Computer Software and Applications Confiees pages 222—-227, 1994.

D. Lee and M. Yannakakis. Principles and methods ofrtgdinite state machines - A
survey. InProc. The IEEEvolume 84, pages 1090-1123, Aug. 1996.

B. Liskov and J. GuttagProgram Development in Java: Abstraction, Specificatiamj a
Object-Oriented DesignAddison-Wesley, 2000.

D. Nguyen. Design patterns for data structure®rbt. the 29th SIGCSE Technical Sympo-
sium on Computer Science Educatipages 336—340, 1998.

Parasoft. Jtest manuals version 4.5. Online manualil 2003. http://ww.
parasoft.coni.

Sun Microsystems. Java 2 Platform, Standard Editiond\21API Specification. Online
documentation, Nov. 200ht t p: // j ava. sun. coni j 2se/ 1. 4. 2/ docs/ api / .

C. D. Turner and D. J. Robson. The state-based testingjefteoriented programs. Proc.
the Conference on Software Maintenangages 302—-310, 1993.

J. Whaley, M. C. Martin, and M. S. Lam. Automatic extrantof object-oriented component
interfaces. InProc. the International Symposium on Software Testing amalysis pages
218-228, 2002.

T. Xie, D. Marinov, and D. Notkin. Improving generatiohabject-oriented test suites by
avoiding redundant tests. Technical Report UW-CSE-00B1University of Washington
Department of Computer Science and Engineering, Seatfie Jahuary 2004.

T. Xie, D. Marinov, and D. Notkin. Rostra: A framework fdetecting redundant object-
oriented unit tests. IfProc. 19th IEEE International Conference on Automated @k
Engineering 2004.

T. Xie and D. Notkin. Mutually enhancing test generaton specification inference. In
Proc. 3rd International Workshop on Formal Approaches tstifgy of Softwargvolume
2931 ofLNCS pages 60-69, 2003.

T. Xie and D. Notkin. Tool-assisted unit test selectiasdd on operational violations. In
Proc. 18th IEEE International Conference on Automatedv&af Engineeringpages 40—
48, 2003.

