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Abstract. Unit testing has become a common step in software development. Al-
though manually created unit tests are valuable, they are often insufficient; there-
fore, programmers can use an automatic unit-test-generation tool to produce a
large number of additional tests for a class. However, without a priori specifica-
tions, programmers cannot practically inspect the execution of each automatically
generated test. In this paper, we develop the observer abstraction approach for au-
tomatically extracting object-state-transition information of a class from unit-test
executions, without requiring a priori specifications. Given a class and a set of
its initial tests generated by a third-party tool, we generate new tests to augment
the initial tests and produce the abstract state of an objectbased on the return
values of a set of observers (public methods with non-void returns) invoked on
the object. From the executions of both the new and initial tests, we automat-
ically extract observer abstractions, each of which is an object state machine
(OSM): a state in the OSM represents an abstract state and a transition in the
OSM represents method calls. We have implemented the Obstratool for the ap-
proach and have applied the approach on complex data structures; our experiences
suggest that this approach provides useful object-state-transition information for
programmers to inspect unit-test executions effectively.

1 Introduction

Automatic test-generation tools are powerful; given a class, these tools can generate
a large number of tests, including some valuable corner cases or special inputs that
programmers often forget to include in their manual tests. When programmers write
specifications, some specification-based test generation tools [4, 10, 18] automatically
generate tests and check execution correctness against thewritten specifications. With-
out a prior specifications, some automatic test-generationtools [11] perform structural
testing by generating tests to increase structural coverage. Some other tools [5] perform
random testing by generating random inputs. Without a priorspecifications, program-
mers rely on uncaught exceptions or inspect the executions of generated tests for deter-
mining whether the program behaves as expected. However, relying on only uncaught
exceptions for catching bugs is limited and inspecting the executions of a large number
of generated tests is impractical.
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To help programmers to inspect unit-test executions effectively, we develop theob-
server abstractionapproach, a novel black-box approach for summarizing and present-
ing object-state-transition information from unit-test executions. The approach is auto-
mated and does not require a priori specifications. Instead of inspecting the execution
of each single test, programmers can inspect the summarizedobject-state-transition in-
formation for various purposes. For example, programmers can inspect the information
to determine whether the class under test exhibits expectedbehavior. Programmers can
also inspect the information to investigate causes of the failures exhibited by uncaught
exceptions. Programmers can inspect the information for achieving better understand-
ing of the class under test or even its tests.

A concrete object stateof an object is characterized by the values of all the fields
reachable from the object. Anobserveris a public method with a non-void return.1 The
observer abstraction approach abstracts a concrete objectstate exercised by a test suite
based on the return values of a set of observers that are invoked on the concrete object
state. Anobserver abstractionis an object state machine (OSM): a state in the OSM
represents an abstract state and a transition in the OSM represents method calls. We
have implemented a tool, called Obstra, for the observer abstraction approach. Given
a Java class and its initial unit test, Obstra identifies concrete object states exercised
by the tests and generates new tests to augment these initialtests. Based on the return
values of a set of observers, Obstra maps each concrete object state to an abstract state
and constructs an OSM.

This paper makes the following main contributions:
– We propose a new program abstraction, called observer abstraction.
– We present and implement an automatic approach for dynamically extracting ob-

server abstractions from unit-test executions.
– We apply the approach on complex data structures and their automatically gener-

ated tests; our experiences show that extracted observer abstractions provide useful
object-state-transition information for programmers to inspect.

2 Observer Abstraction Approach

We first discuss two techniques (developed in our previous work [22, 23]) that enable
the dynamic extraction of observer abstractions. We next describe object state machines,
being the representations of observer abstractions. We then define observer abstractions
and illustrate dynamic extraction of them. We finally describe the implementation and
present an example of dynamically extracted observer abstractions.

2.1 Concrete-State Representation and Test Augmentation

In previous work, we have developed the Rostra framework andfive automatic tech-
niques to represent and detect equivalent object states [23]. This work focuses on using

1 We follow the definition by Henkel and Diwan [12]. The definition differs from the more
common definition that limits an observer to methods that do not change any state. We have
found that state-modifying observers also provide value inour technique and state modification
does not harm our technique.
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one of the techniques for state representation: the WholeState technique. The technique
represents aconcrete object stateof an object as a sequence of the values of the fields
reachable from the object. We use a linearization algorithm[23] to avoid putting those
field values with reference addresses in the sequence2 but still keep the referencing
relationship among fields. A set ofnonequivalent concrete object statescontain those
concrete object states any two of which do not have the same state representation.

A unit test suite consists of a set of unit tests. Each execution of a unit test creates
several objects and invokes methods on these objects. Behavior of a method invocation
depends on the state of the receiver object and method arguments at the beginning of the
invocation. Amethod callis characterized by the actual class of the receiver object,the
method name, the method signature, and the method-argumentvalues. When argument
values are not primitive values, we represent them using their state representations. We
determine whether two method calls are equivalent by checking the equivalence of their
corresponding characteristic entities, including the receiver-object class, method name,
method signature, and method-argument values. A set ofnonequivalent method calls
contain those method calls any two of which are not equivalent.

After we execute an initial test suite, the concrete-state representation technique
identifies all nonequivalent object states and nonequivalent method calls that were ex-
ercised by the test suite. The test augmentation technique generates new tests to exer-
cise each possible combination of nonequivalent object states and nonequivalent non-
constructor method calls [22]. We augment an initial test suite because the test suite
might not invoke each observer on all nonequivalent object states; invoking observers
on a concrete object state is necessary for us to know the abstract state enclosing the
concrete object state. The augmented test suite guaranteesthat each nonequivalent ob-
ject state is exercised by each nonequivalent non-constructor method call at least once.
In addition, the observer abstractions extracted from the augmented test suite can better
help programmers to inspect object-state-transition behavior. The complexity of the test
augmentation algorithm isO(|CS| × |MC|), whereCS is the set of the nonequivalent
concrete states exercised by an initial test suiteT for the class under test andMC is the
set of the nonequivalent method calls exercised byT .

2.2 Object State Machine

We define an object state machine for a class:3

Definition 1. An object state machine(OSM)M of a classc is a sextupleM = (I, O,
S, δ, λ, INIT ) whereI, O, andS are nonempty sets of method calls inc’s interface,
returns of these method calls, and states ofc’s objects, respectively.INIT ∈ S is
the initial state that the machine is in before calling any constructor method ofc. δ :
S × I → P (S) is the state transition function andλ : S × I → P (O) is the output
function whereP (S) andP (O) are the power sets of S and O, respectively. When the

2 Running the same test twice might produce different reference addresses for those fields of
non-primitive types.

3 The definition is adapted from the definition of finite state machine [15]; however, an object
state machine is not necessarily finite.
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machine is in a current states and receives a method calli fromI, it moves to one of the
next states specified byδ(s, i) and produces one of the method returns given byλ(s, i).

An OSM can be deterministic or nondeterministic.

2.3 Observer Abstractions

The object states in an OSM can be concrete or abstract. Anabstract stateof an object
is defined by anabstraction function[16]; the abstraction function maps each concrete
state to an abstract state. The observer abstraction approach constructs abstraction func-
tions to map concrete states to abstract states in an OSM.

We first define an observer following previous work on specifying algebraic speci-
fications for a class [12]:

Definition 2. Anobserverof a classc is a methodob in c’s interface such that the return
type ofob is not void.

Given a classc and a set of observersOB = {ob1, ob2, ..., obn} of c, the observer
abstraction approach constructs an abstraction ofc with respect toOB. In particular,
a concrete statecs is mapped to an abstract stateas defined byn valuesOBR =
{obr1, obr2, ..., obrn}, where each valueobri represents the return value of method call
obi invoked oncs.

Definition 3. Given a classc and a set of observersOB = {ob1, ob2, ..., obn} of c, an
observer abstractionwith respect toOB is an OSMM of c such that the states inM
are abstract states defined byOB.

2.4 Dynamic Extraction of Observer Abstractions

We dynamically extract observer abstractions of a class from unit-test executions. The
number of the concrete states exercised by an augmented testsuite is finite and the
execution of the test suite is assumed to terminate; therefore, the dynamically extracted
observer abstractions are also finite.

In a dynamically extracted observer abstractionM , we add additional statistical
information: the transition count and the emission count. The transition countfor a
nonequivalent method callmc transiting from a states to a states′ is the number of
nonequivalent concrete object states ins that transit tos′ after mc is invoked. The
emission countfor s andmc is the number of nonequivalent concrete object states ins
wheremc is invoked.

Given an initial test suiteT for a classc, we first identify the nonequivalent concrete
statesCS and method callsMC exercised byT . We then augmentT with new tests
to exerciseCS with MC exhaustively, producing an augmented test suiteT ′. We have
described these steps in Section 2.1.T ′ exercises each nonequivalent concrete state
in CS with each method call inMC; therefore, each nonequivalent observer call in
MC is guaranteed to be invoked on each nonequivalent concrete state inCS at least
once. We then collect the return values of observer calls inMC for each nonequivalent
concrete state inCS. We use this test-generation mechanism to collect return values of
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observers, instead of inserting observer method calls before and after any call site toc
in T , because the latter does not work for state-modifying observers, which change the
functional behavior ofT .

Given an augmented test suiteT ′ and a set of observersOB = {ob1, ob2, ..., obn},
we go through the following steps to produce an observer abstractionM in the form
of OSM. Initially M is empty. During the execution ofT ′, we collect the following
tuple for each method execution inc’s interface:(css, m, mr, cse), wherecss, m, mr,
and cse are the concrete object state at the method entry, method call, return value,
and concrete object state at the method exit, respectively.If m’s return type is void, we
assign“−” to mr. If m’s execution throws an uncaught exception, we also assign“−”
to mr and assign the name of the exception type tocse, called anexception state. The
concrete object state at a constructor’s entry isINIT , called aninitial state.

After the test executions terminate, we iterate on each distinct tuple(css, m, mr, cse)
to produce a new tuple(ass, m, mr, ase), whereass andase are the abstract states
mapped fromcss and cse based onOB, respectively. Ifcse is an exception state,
its mapped abstract state is the same ascse, whose value is the name of the thrown-
exception type. Ifcss is an initial state, its mapped abstract state is stillINIT . If cse

is not exercised by the initial tests before test augmentation but exercised by new tests,
we mapcse to a special abstract state denoted asN/A, because we have not invoked
OB oncse yet and do not have a known abstract state forcse.

After we produce(ass, m, mr, ase) from (css, m, mr, cse), we then addass

and ase to M as states, and put a transition fromass to ase in M . The transition
is denoted by a triple(ass, m?/mr!, ase). If ass, ase, or (ass, m?/mr!, ase) is al-
ready present inM , we do not add it. In addition, we increase the transition count
for (ass, m?/mr!, ase), denoted asC(ass,m?/mr!,ase), which is initialized to one when
(ass, m?/mr!, ase) is added toM at the first time. We also increase the emission
count forass andm, denoted asC(ass,m). After we finish processing all distinct tu-
ples(css, m, mr, cse), we postfix the label of each transition(ass, m?/mr!, ase) with
[C(ass,m?/mr!,ase)/C(ass,m)]. The complexity of the extraction algorithm for an ob-
server abstraction isO(|CS|×|OB|), whereCS is the set of the nonequivalent concrete
states exercised by an initial test suiteT andOB is the given set of observers.

2.5 Implementation

We have developed a tool, called Obstra, for the observer abstraction approach. Obstra
is implemented based on the Rostra framework developed in our previous work [23]. We
use the Byte Code Engineering Library (BCEL) [6] to rewrite the bytecodes of a class
at class-loading time. Objects of the class under test are referred ascandidate objects.
We collect concrete object states at the entry and exit of each method call invoked from
a test suite to a candidate object; these method calls are referred ascandidate method
calls. We do not collect object states for those method calls that are internal to candidate
objects.

To collect concrete object states, we use Java reflection mechanisms [2] to recur-
sively collect all the fields that are reachable from a candidate object, an argument
object, or a return object of candidate method calls. We alsoinstrument test classes to
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collect method call information that is used to reproduce object states in test augmen-
tation. We also use Java reflection mechanisms [2] to generate and execute new tests
online. We export a selected subset of tests in the augmentedtest suite to a JUnit [13]
test class using JCrasher’s functionality of test-code generation [5]; we select and ex-
port a test if it exercises at least one previously uncoveredtransition in an observer
abstraction. Each exported test is annotated with its exercised transitions as comments.
We display extracted observer abstractions by using the Grappa package, which is part
of graphviz [8].

By default, Obstra generates one OSM for each observer (in addition to one OSM
for all observers) and outputs a default grouping configuration file; programmers can
manipulate the configurations in the file to generate OSM’s based on multiple ob-
servers.

2.6 Example

We use a class of Binary Search Tree (named asBSTree) as an example of illustrat-
ing observer abstractions. This class was used in evaluating Korat [4] and the Ros-
tra framework in our previous work [23]. Parasoft Jtest (a commercial tool for Java)
[18] generates 277 tests for the class. The class has 246 non-comment, non-blank
lines of code and its interface includes eight public methods (five observers), some
of which are a constructor (denoted as[init]()), boolean contains(MyInput

info),void add(MyInput info), andboolean remove (MyInput info)where
MyInput4 is a class that contains an integer fieldv.

Figure 1 shows the observer abstraction of BSTree with respect to an observer
contains(MyInput info) (including two observer instances:add(a0.v:7;)5 and
add(a0:null;)) and augmented Jtest-generated tests. The top state in the figure is
marked withINIT, indicating the object state before invoking a constructor. The second-
to-top state is marked with the observer instances and theirfalse return values. This
abstract state encloses those concrete states such that when we invoke these two ob-
server instances on those concrete states, their return values arefalse. In the central
state, the observers throw uncaught exceptions and we put the exception-type name
NullPointerException in the positions of their return values. The bottom state is
marked with the exception-type nameNullPointerException. An object is in such
a state after a method call on the object throws theNullPointerException.

Each transition from a starting abstract state to an ending abstract state is marked
with method calls, their return values, and some statistics. For example, the generated
test suite contains two tests:

Test 1 (T1): Test 2 (T2):
BSTree b1 = new BSTree(); BSTree b1 = new BSTree();
MyInput m1 = new MyInput(0); b1.remove(null);
b1.add(m1);
b1.remove(null);

4 The original argument type isObject; we change the type toMyInput so that Jtest can be
guided to generate better arguments.

5 ai represents the(i+1)th argument andai.v represents thev field of the(i+1)th argument.
Argument values are specified following their argument names separated by: and different
arguments are separated by;.
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Fig. 1.contains observer abstraction of BSTree

Fig. 2.exception observer abstraction of BSTree

The execution ofb1.remove(null) in T1 does not throw any exception. Both be-
fore and after invokingb1.remove(null) in T1, if we invoke the two observer in-
stances, their return values arefalse; therefore, there is a state-preserving transi-
tion on the second-to-top state. (To present a succinct view, by default we do not
show state-preserving transitions.) The execution ofb1.remove(null) in T2 throws
a NullPointerException. If we invoke the two observer instances before invoking
b1.remove(null) in T2, their return values arefalse; therefore, given the method
execution ofb1.remove(null) in T2, we extract the transition from the second-to-
top state to the bottom state and the transition is marked withremove(a0:null;)?/-.
In the mark of a transition, when return values arevoid or method calls throw un-
caught exceptions, we put- in the position of their return values. We put? after the
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method calls and! after return values if return values are not-. We also attach two
numbers for each transition in the form of[N/M], whereN is the transition count and
M is the emission count. If these two numbers are equal, the transition is deterministic,
and is indeterministic otherwise. Because there are two different transitions from the
second-to-top state with the same method callremove(a0:null;) (one transition is
state-preserving being extracted from T1), the transitionremove(a0:null;) from the
second-to-top state to the bottom state is indeterministic, being attached with[1/2].
We display thicker edges and bold-font texts for nondeterministic transitions so that
programmers can easily identify them based on visual effect.

To present a succinct view, we do not displayN/A states and the transitions leading
to N/A states. In addition, we combine multiple transitions that have the same starting
and ending abstract states, and whose method calls have the same method names and
signatures. When we combine multiple transitions, we calculate the transition count
and emission count of the combined transitions and show themin the bottom line of the
transition label. When a combined transition contains all nonequivalent method calls of
the same method name and signature, we addALL ARGS in the bottom line of the
transition label. When a transition contains only method calls that are exercised by new
generated tests but not exercised by the initial tests, we display a dotted edge for the
transition.

To focus on understanding uncaught exceptions, we create a specialexception ob-
serverand construct an observer abstraction based on it. Figure 2 shows the exception-
observer abstraction of BSTree extracted from augmented Jtest-generated tests. The
exception observer maps all concrete states except forINIT and exception states to an
abstract state calledNORMAL. The mapped abstract state of an initial state is stillINIT
and the mapped abstract state of an exception state is still the same as the exception-type
name.

3 Experiences

We have used Obstra to extract observer abstractions from a variety of programs, most
of which were used to evaluate our previous work in test selection [25], test minimiza-
tion [23], and test generation [22]. Many of these programs manipulate nontrivial data
structures. Because of the space limit, in this section, we illustrate how we applied Ob-
stra on two complex data structures and their automaticallygenerated tests. We applied
Obstra on these examples on a MS Windows machine with a Pentium IV 2.8 GHz pro-
cessor using Sun’s Java 2 SDK 1.4.2 JVM with 512 Mb allocated memory.

3.1 Binary Search Tree Example

We have described the BSTree in Section 2.6 and two of its extracted observer ab-
stractions in Figure 1 and 2. Jtest generates 277 tests for BSTree. These tests exercise
five nonequivalent concrete object states in addition to theinitial state and one excep-
tion state, 12 nonequivalent non-constructor method callsin addition to one constructor
call, and 33 nonequivalent method executions. Obstra augments the test suite to exer-
cise 61 nonequivalent method executions. The elapsed real time for test augmentation
and abstraction extraction is 0.4 and 4.9 seconds, respectively.



298

Figure 2 shows thatNullPointerException is thrown by three nondeterministic
transitions. During test inspection, we want to know in whatconditions the exception is
thrown. If the exception is thrown because of illegal inputs, we can add necessary pre-
conditions to guard against the illegal inputs. Alternatively, we can perform defensive
programming: we can add input checking at method entries andthrow more informa-
tive exceptions if the checking fails. However, we do not want to add over-constrained
preconditions, which prevent legal inputs from being processed. For example, after in-
specting the exception OSM in Figure 2, we should not consider all arguments foradd,
thenull argument forremove, or all arguments forcontains as illegal arguments, al-
though doing so indeed prevents the exceptions from being thrown. After we inspected
the contains OSM in Figure 1, we gained more information about the exceptions
and found that callingadd(a0:null;) after calling the constructor leads to an un-
desirable state: callingcontains on this state deterministically throws the exception.
In addition, callingremove(a0:null;) also deterministically throws the exception
and callingadd throws the exception with a high probability of 5/6. Therefore, we had
more confidence on consideringnull as an illegal argument foradd and preventing it
from being processed. After we preventedadd(a0:null;), tworemove(a0:null;)
transitions still throw the exception: one is deterministic and the other is with 1/2 prob-
ability. We then considerednull as an illegal argument forremove and prevented it
from being processed. We did not need to impose any restriction on the argument of
contains.

We found that there are three different arguments foradd but only two differ-
ent arguments forcontains, although these two methods have the same signatures.
We could add a method call ofcontain(a0.v:0;) to the Jtest-generated test suite;
therefore, we could have three observer instances for thecontains OSM in Fig-
ure 1. In the new OSM, the second-to-top state includes one more observer instance
contains(a0.v:0)=falseand the indeterministic transition ofremove(a0:null;)
?/-[1/2] from the second-to-top state to the bottom state is turned into a deterministic
transitionremove(a0:null;)?/-[1/1]. In general, when we add new tests to a test
suite and these new tests exercise new observer instances inan OSM, the states in the
OSM can be refined, thus possibly turning some indeterministic transitions into deter-
ministic ones. On the other hand, adding new tests can possibly turn some deterministic
transitions into indeterministic ones.

3.2 Hash Map Example

A HashMap class was given injava.util.HashMap from the standard Java libraries
[19]. A repOK and some helper methods were added to this class for evaluating Ko-
rat [4]. We also used this class in our previous work for evaluating Rostra [23]. The
class has 597 non-comment, non-blank lines of code and its interface includes 19 public
methods (13 observers), some of which are[init](),void setLoadFactor(float

f),void putAll(Map t),Object remove(MyInput key),Object put(MyInput

key, MyInput value), andvoid clear(). Jtest generates 5186 tests for HashMap.
These tests exercise 58 nonequivalent concrete object states in addition to the initial
state and one exception state, 29 nonequivalent non-constructor method calls in addi-
tion to one constructor call, and 416 nonequivalent method executions. Obstra augments
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Fig. 3.exception observer abstraction andrepOk observer abstraction of HashMap

Fig. 4.get observer abstraction of HashMap

the test suite to exercise 1683 nonequivalent method executions. The elapsed real time
for test augmentation and abstraction extraction is 10 and 15 seconds, respectively.

We found that the exception OSM of HashMap contains one deterministic transition
putAll(a0:null;) from NORMAL to NullPointerException, as is shown in the
left part of Figure 3. Therefore, we considerednull as an illegal argument forputAll.
We checked the Java API documentation for HashMap [19] and the documentation
states thatputAll throwsNullPointerException if the specified map is null. This
description confirmed our judgement. In other observer abstractions, to provide a more
succinct view, by default Obstra does not display any deterministic transitions leading
to an exception state in the exception OSM.

We found an error insetLoadFactor(float f), a method that was later added to
facilitate Korat’s test generation [4]. The right part of Figure 3 shows therepOkOSM of
HashMap.repOk is a predicate used to check class invariants [16]. If calling repOk on
an object state returnsfalse, the object state is invalid. By inspecting therepOK OSM,
we found that callingsetLoadFactor with all arguments deterministically leads to an
invalid state. We checked the source code ofsetLoadFactor and found that its method
body is simplyloadFactor = f;, whereloadFactor is an object field andf is the
method argument. The comments for a private fieldthreshold states that the value of
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Fig. 5.isEmpty observer abstraction of HashMap (screen snapshot)

threshold shall be(int)(capacity * loadFactor). Apparently this property
is violated when settingloadFactor without updatingthreshold accordingly. We
fixed this error by appending a call to an existing private methodvoid rehash() in
the end ofsetLoadFactor’s method body;rehash updatesthreshold using the
newloadFactor.

Figure 4 shows theget OSM of HashMap. In the representation of method returns
on a transition or in a state,ret represents the non-primitive return value andret.v

represents thev field of the non-primitive return value. Recall that a transition with a
dotted edge is exercised only by new generated tests but not by the initial tests. We
next walk through the scenario in which programmers could inspect Figure 4. During
inspection, programmers might focus their exploration of an OSM on transitions. Three
such transitions areclear, remove, andput. Programmers are not surprised to see
thatclear or remove transitions cause a nonempty HashMap to be empty, as is shown
by the transitions from the top or bottom state to the centralstate. But programmers
are surprised to see the transition ofput(a0:null;a1:null) from the top state to
the central state, indicating thatput can cause a nonempty HashMap to be empty. By
browsing the Java API documentation for HashMap [19], programmers can find that
HashMap allows either a key or a value to benull; therefore, thenull return ofget
does not necessarily indicate that the map contains no mapping for the key. However,
in the documentation, the description for the returns ofget states: “the value to which
this map maps the specified key, or null if the map contains no mapping for this key.”
After reading the documentation more carefully, they can find that the description for
get (but not the description for the returns ofget) does specify the accurate behavior.
This finding shows that the informal description for the returns of get is not accu-
rate or consistent with the description ofget even in such widely published Java API
documentation [19].
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Figure 5 shows a screen snapshot of theisEmptyOSM of HashMap. We configured
Obstra to additionally show each state-preserving transition that has the same method
name as another state-modifying transition. We also configured Obstra to display on
each edge only the method name associated with the transition. When programmers
want to see the details of a transition, they can move the mouse cursor over the method
name associated with the transition and then the details aredisplayed. We have searched
the Internet for manually created state machines for commondata structures but few
could be found. One manually created state machine for a container structure [17] is
almost the same as theisEmpty OSM of HashMap shown in Figure 5. There are two
major differences. TheINIT state and the[init]() transition are shown in Figure 5
but not in the manually created state machine. The manually created state machine
annotates “not last element” for the state-preserving transition remove(a0) (pointed
by the mouse cursor in Figure 5) on theisEmpty()=false state and “last element” for
the state-modifying transitionremove(a0) (shown in the middle of Figure 5) starting
from theisEmpty()=false state; Figure 5 shows these two transition names in bold
font, indicating them to be indeterministic.

3.3 Discussion

Our experiences have shown that extracted observer abstractions can help investigate
causes of uncaught exceptions, identify weakness of an initial test suite, find bugs in
a class implementation or its documentation, and understand class behavior. Although
many observer abstractions extracted for the class under test are succinct, some ob-
server abstractions are still complex, containing too muchinformation for inspection.
For example, three observers of HashMap, such asCollection values(), have 43
abstract states. The complexity of an extracted observer abstraction depends on both the
characteristics of its observers and the initial tests. In future work, we plan to display
a portion of a complex observer abstraction based on user-specified filtering criteria or
extract observer abstractions from the executions of a user-specified subset of the initial
tests.

Although theisEmpty OSM of HashMap is almost the same as a manually created
state machine [17], our approach does not guarantee the completeness of the resulting
observer abstractions — our approach does not guarantee that the observer abstrac-
tions contain all possible legal states or legal transitions. Our approach also does not
guarantee that the observer abstractions contain no illegal transitions. Instead, the ob-
server abstractions faithfully reflect behavior exercisedby the executed tests; inspecting
observer abstractions could help identify weakness of the executed tests. This charac-
teristic of our approach is shared by other dynamic inference techniques [1, 7, 12, 21]
discussed in the next section.

4 Related Work

Ernst et al. use Daikon to dynamically infer likely invariants from test executions [7].
Invariants are in the form of axiomatic specifications. These invariants describe the
observed relationships among the values of object fields, arguments, and returns of a
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single method in a class interface, whereas observer abstractions describe the observed
state-transition relationships among multiple methods ina class interface and use the re-
turn values of observers to represent object states, without explicitly referring to object
fields. Henkel and Diwan discover algebraic specifications from the execution of auto-
matically generated unit tests [12]. Their discovered algebraic specifications present a
local view of relationships between two methods, whereas observer abstractions present
a global view of relationships among multiple methods. In addition, Henkel and Di-
wan’s approach cannot infer local properties that are related to indeterministic transi-
tions in observer abstractions; our experiences show that these indeterministic transi-
tions are useful for inspection. In summary, observer abstractions are a useful form of
property inference, complementing invariants or algebraic specifications inferred from
unit-test executions.

Whaley et al. extract Java component interfaces from system-test executions [21].
The extracted interfaces are in the form of multiple finite state machines, each of which
contains the methods that modify or read the same object field. Observer abstractions
are also in the form of multiple finite state machines, each ofwhich is with respect to
a set of observers (containing one observer by default). Whaley et al. map all concrete
states that are at the same state-modifying method’s exits to the same abstract state.
Our approach maps all concrete states on which observers’ return values are the same
to the same abstract state. Although Whaley et al.’s approach is applicable on system-
test executions, it is not applicable on the executions of automatically generated unit
tests, because their resulting finite state machine would bea complete graph of methods
that modify the same object field. Ammons et al. mine protocolspecifications in the
form of a finite state machine from system-test executions [1]. Their approach faces
the same problem as Whaley et al.’s approach when being applied on the executions of
automatically generated unit tests. In summary, neither Whaley et al. nor Ammons et
al.’s approaches capture object states as accurate as our approach and neither of them
can be applied on the executions of automatically generatedunit tests.

Given a set of predicates, predicate abstraction [3, 9] mapsa concrete state to an
abstract state that is defined by the boolean values of these predicates on the concrete
state. Given a set of observers, observer abstraction maps aconcrete state to an abstract
state that is defined by the return values (not limited to boolean values) of these ob-
servers on the concrete state. Concrete states considered by predicate abstractions are
usually those program states between program statements, whereas concrete states con-
sidered by observer abstractions are those object states between method calls. Predicate
abstraction is mainly used in software model checking, whereas observer abstraction in
our approach is mainly used in helping inspection of test executions.

Turner and Robson use finite state machines to specify the behavior of a class [20].
The states in a state machine are defined by the values of a subset or complete set of ob-
ject fields. The transitions are method names. Their approach specifies specifications in
the form of finite state machines and generates tests based onthe specifications, whereas
our approach extracts observer abstractions in the form of finite state machines with-
out requiring a priori specifications. In future work, we plan to use extracted observer
abstractions to guide test generation using existing finite-state-machine-based testing
techniques [15] and use new generated tests to further improve observer abstractions.
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This future work fits into the feedback loop between test generation and specification
inference proposed in our previous work [24].

Kung et al. statically extract object state models from class source code and use
them to guide test generation [14]. An object state model is in the form of a finite state
machine: the states are defined by value intervals over object fields, which are derived
from path conditions of method source; the transitions are derived by symbolically ex-
ecuting methods. Our approach dynamically extracts finite state machines based on
observers during test executions. Grieskamp et al. generate finite state machines from
executable abstract state machines [10]. Manually specified predicates are used to group
states in abstract state machines to hyperstates during theexecution of abstract state ma-
chine. Finite state machines, abstract state machines, andmanually specified predicates
in their approach correspond to observer abstractions, concrete object state machines,
and observers in our approach, respectively. However, our approach is totally automatic
and does not require programmers to specify any specifications or predicates.

5 Conclusion

It is important to provide tool support for programmers as they inspect the executions
of automatically generated unit tests. We have proposed theobserver abstraction ap-
proach to aid inspection of test executions. We have developed a tool, called Obstra, to
extract observer abstractions from unit-test executions automatically. We have applied
the approach on a variety of programs, including complex data structures; our expe-
riences show that extracted observer abstractions provideuseful object-state-transition
information for programmers to inspect.
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