WebSob: A Tool for Robustness Testing of Web Services

Evan Martin

Suranjana Basu

Tao Xie

North Carolina State University, Raleigh, NC, USA
{eemartin, sbasu2} @ncsu.edu, xie @csc.ncsu.edu

Abstract

Web services are a popular way of implementing a
Service-Oriented Architecture. Testing can be used to help
assure both the correctness and robustness of a web ser-
vice. Because manual testing is tedious, tools are needed
to automate test generation and execution for web services.
This paper presents WebSob, a tool for automatically gen-
erating and executing web-service requests given a ser-
vice provider’s Web Service Description Language (WSDL)
specification. We have applied WebSob to freely available
web services and our experiences show that WebSob can be
used to quickly generate and execute web-service requests
that may reveal robustness problems with no knowledge of
the underlying web service implementation.

1. The WebSob Tool

We have developed the WebSob tool for robustness test-
ing of web services, as illustrated in Figure 1 [4]. Given
a WSDL from a service provider, WebSob first generates
code to facilitate both test generation and test execution.
WebSob then generates a test suite. WebSob runs the gener-
ated test suite on the generated client code, which eventually
invokes the web service. WebSob then collects the results
returned from the web service. In particular, our WebSob
tool consists of Code Generation, Test Generation, Test Ex-
ecution, and Response Analysis.

1.1. Code Generation

WebSob generates the necessary code required to im-
plement a service consumer. In addition, WebSob gener-
ates a test class that can execute each service independently.
Axis [1] provides a Java implementation of the SOAP pro-
tocol. We use Axis to generate client-side code from a ser-
vice provider’s WSDL. WSDL is an XML-based language
that describes the public interface of a service. It defines
the protocol bindings, message formats, and supported op-
erations that are required to interact with the web services

WsDL |[)| 1:Code | [|TestClass|[) | 2 Test
Generation Generation
ﬁ Client @ Test
Code Suite
Service <<:j::::::::::i::> 3. Test [::j> Test
Provider Execution Results
Selected <ﬁ:] 4. Response
Tests Analysis

Figure 1. Overview of the Framework

listed in its directory. The Axis utility class, wSDL2Java,
parses the WSDL and generates the necessary WSDL files
that facilitate the implementation of service consumers. A
Java class is generated to encapsulate each supported mes-
sage format for both the input and output parameters to and
from the service. A Java interface is generated to represent
each port type. A stub class is generated for each binding. A
service interface and corresponding implementation is gen-
erated for each service. In addition, we generate a wrapper
class that leverages the code generated by WSDL2Java to
invoke the service provider. This wrapper class is designed
to allow unit-test generation tools to automatically generate
unit tests that exercise the various services offered by the
service provider.

1.2. Test Generation

Given the generated wrapper class, WebSob uses a unit-
test generation tool to generate a test suite that exercises
the services defined in the WSDL. WebSob operates rel-
atively independently of the test generation tool and thus
other unit test generation tools (such as Agitar Agitator' and
Parasoft Jtest?) may also be used. Our results are obtained

'www.agitator.com

2www.parasoft .com

via JCrasher [2], a third-party test generation tool that au-
tomatically generates JUnit [3] tests for a given Java class.
For example, JCrasher generates —1, 0, and 1 for arguments
with the integer type and it can generate method sequences
that create values for those arguments with non-primitive
types. We have modified JCrasher to generate additional
values for numeric arguments such as the maximum and
minimum values supported by that type. JCrasher is de-
signed as a robustness testing tool by causing the program
under test to throw an undeclared runtime exception. More
specifically, JCrasher examines the type information of a
set of Java classes and constructs code fragments that cre-
ate instances of different types to test the behavior of public
methods. These code fragments are used in the generated
unit tests to supply inputs to the public methods under test.
In our case, the public methods under test are in the wrapper
class. Each method there corresponds to a service defined in
the WSDL and each method argument corresponds to an in-
put parameter for that service. JCrasher generates unit tests
that instantiate the necessary input parameters to invoke the
web service.

1.3. Test Execution

Given the generated wrapper class, unit test suite, and
client-side implementation, we use JUnit [3] to execute the
unit tests against the wrapper class, which invokes the re-
mote web service. JUnit [3] is a regression testing frame-
work that is used to execute a unit-test suite against the class
under test. The test class throws an exception if a SOAP
failure is encountered.

1.4. Response Analysis

The responses from the web service are classified and
analyzed. WebSob selects tests that cause the web service
to return robustness-problem-exposing responses. Manual
inspection and heuristics may be used to determine whether
an exception should be considered to be caused by a bug
in the web service implementation or the supplied inputs’
violation of the service provider’s preconditions. WebSob
selects tests whose responses may indicate robustness prob-
lems and present the selected tests for manual inspection.
We use a packet sniffer or monitor to help facilitate request-
response analysis. This monitor acts as a man-in-the-middle
between the service consumer and the service provider. The
service consumer directs the service request to the monitor
who records the request and forwards the request to the ser-
vice provider. The monitor also records the service response
or error condition returned by the service provider. Based
on our experience of applying WebSob on various web ser-
vices, we classify four types of exceptions encountered that
may indicate robustness problems:

1. 404 File Not Found. The 404 or Not Found error mes-
sage is an HTTP standard response code indicating that
the client was able to communicate with the server, but
the server either could not find what was requested, or
it was configured not to fulfill the request and not re-
veal the reason why.

2. 405 Method Not Allowed. The HTTP protocol defines
methods to indicate the action to be performed on the
Web server for the particular URL resource identified
by the client. 405 errors can be traced to configuration
of the web server and security governing access to the
content of the site.

3. 500 Internal Server Exception. In certain cases the
server fails to handle a specific type of random input
generated by JCrasher and produces an Internal Server
Exception with an error code of 500. This is the most
common exception and contains little insight into what
the problem may be.

4. Hang. The web service hangs indefinitely or the server
takes more than 30 seconds to return a response.

We used WebSob to generate and execute thousands of
requests on 35 freely available web services. In many cases
it is difficult to determine whether the cause of the excep-
tion is a service user error (i.e., the inputs violated some
precondition) or a potential problem in the service imple-
mentation without access to the service source code. How-
ever, in some cases we may infer what the problem may be
and what category it may fall under. In addition to manual
inspection of selected tests, we may apply more sophisti-
cated analysis such as invariant detection and data mining
techniques. This, in conjunction with data visualization,
can aide in human understanding of large sets of request-
response pairs and produce higher-level rules that may in-
dicate specific problems. For example, perhaps a certain
value for a particular argument always leads to a 500 Inter-
nal Server Exception. Someone familiar with the problem
domain or service implementation may be able to identify
bugs directly from such a high-level rule without manual
inspection of large sets of test results.

References

[1] Apache. Axis. http://ws.apache.org/axis/.

[2] C. Csallner and Y. Smaragdakis. JCrasher: an automatic ro-
bustness tester for Java. Software: Practice and Experience,
34:1025-1050, 2004.

[3] E. Gamma and K. Beck. JUnit, 2003. http://www.
junit.orag.

[4] E. Martin, S. Basu, and T. Xie. Automated robustness test-
ing of web services. In Proceedings of the 4th International
Workshop on SOA And Web Services Best Practices (SOAWS
2006), October 2006.

