TranStrL: An Automatic Need-to-Translate String L ocator for Software
I nternationalization

Xiaoyin Wang?, Lu Zhand? Tao Xie**, Hong Mei"?, Jiasu Suh?
!Institute of Software, School of Electronics Engineerind £omputer Science
2Key laboratory of High Confidence Software TechnologiesiigUniversity), Ministry of Education
Peking University, Beijing, 100871, China
{wangxy06, zhanglu, meih, gj€sei.pku.edu.cn
3Department of Computer Science, North Carolina State Usiitye Raleigh, NC 27695, USA
xie@csc.ncsu.edu

Abstract Developers of these applications try to avoid hard-coding
elements that need to be changed from one local version to
Software internationalization is often necessary when another. However, in many cases, developers adopt soft-
distributing software applications to different regions ware internationalization only during or after the develop
around the world. In many cases, developers often do notment of the first non-international version with two main
internationalize a software application at the beginnirfg o reasons. First, many popular software applications origi-
the development stage. To internationalize such an exist-nate from open source prototypes or research prototypes,
ing application, developers need to externalize some hard-whose developers do not expect their users to have require-
coded constant strings to resource files, so that transtator ments specific to particular regions in the beginning of the
can easily translate the application to be in alocal langaag tool development. Second, developers of an international
without modifying its source code. Since not all the con- software application may reuse some non-internation&l sof
stant strings require externalization, locating those ctee ware components. Thus, the developers may have to inter-
to-translate constant strings is a basic task that the devel nationalize these reused components. In all these cases, de
opers must conduct. In this paper, we present TranStrL, velopers need to internationalize existing code, which typ
an Eclipse plug-in tool that automatically locates need-to ically contains many hard-coded elements specific to one
translate constant strings in Java code. Our tool maintains local version.
a pre-collected list of APl methods related to the Graph-
ical User Interface (GUI), and then searches for need-to-
translate strings in the source code starting from the invo-
cations of these API methods using string-taint analysis.

When internationalizing existing code, developers usu-
ally need to locate those hard-coded elements that need
translation [2, 4]. The need-to-translate elements irelud
constant strings, time/date objects, number-format adjec
etc. In particular, locating need-to-translate constairtgs
o is often the most tedious task. The reason is that, un-
1 Motivation like other need-to-translate elements, a software applica
tion typically contains a large number of constant strings,
many but not all of which need translation. Some need-
to-translate constant strings are easy to locate, sucheas th
string” Nane" in new But t on(" Nanme"), but many others
may be very difficult to locate, such as those strings that are

Modern software applications often target at users from
different regions around the world. To better serve useas in
certain region, a software application must be adaptedto it
local version to meet the users’ requirement. This adapta-

tion often includes translation of the user-visible texine .
X p-output to the Graphics User Interface (GUI) through sev-

version of number and date formats, etc. In general, tec | X ¢ ter t SN d stri
nigues for obtaining and managing these local versions aretrd! assignments, parameter transmissions and string op-

usually referred to as software internationalization. erations [5]', The eX|stenc_e.0f a large ngmber of need-to-
Some software applications adopt the technique of inter- translate strings and the difficulty of locating some of them

nationalization at the beginning of the development stage.make the task of locating need-to-translate strings tedliou
and error-prone. Therefore, an automatic need-to-transla

*Corresponding author string locator would provide great help to the developers.

In this paper, we present TranStrlan Eclipse plug-in TranStrL requires a pre-collected Output APl Method list
tool that locates need-to-translate constant stringsva Ja as input.
code. The basic idea behind our tool is to locate invoca- The main process of TranStrL includes five steps: (1)
tions of APl methods that output strings to the GUI, and TranStrL uses the API-invocation search engine to search
trace from the output strings to the constant strings thedine for invocations of the methods in the Output APl Method
translation [5]. List. (2) TranStrL takes the actual arguments (in these-invo
cations) that are output to the application GUI as the ihitia
2 Related Work Output Strings and passes them to the string-taint analyzer

To the best of our knowledge, our tool is the first one (3) The string-taint analyzer traces from the initial Outpu
focusing on automatically locating need-to-translate-con Strings to their.data origins and obtains a list of basi_c neeq
stant strings in source code. There are some publishedO-translate strings. (4) TranStrL passes the obtained lis
books [2, 4] on how to manually internationalize a software to .the string-transmission analyze_r to. further trace to the
application. However, none of them provides any automatic Strings that are passed to the application GUI through net-
approach or tool to locating need-to-translate strings. work communications, and to the string-comparison ana-

There exist tools (e.g., GNU gett&and Java interna- lyzer to further trace to the strings that are compared with
tionalization APP) to help developers externalize need-to- the already-known need-to-translate strings. The fourth
translate constant strings after the developers locate.the St€P is performed iteratively until no more need-to-tratesl
Other tools such as KBaehelp developers edit and man- strings are added to the_strlng list. For optimization, only
age resource files (called PO files in KBabel) containing ex- the need-to-translate strings newly located by the current
ternalized constant strings. Other commercial tools ssch a [teration are used as the input to the next iteration. (5)
Redpir? and Passofoprovide an integrated localization en- 17anStrLfilters the constant strings in the string varidiste
vironment that includes file visualizers, translation edif ~ acauired in Step 4 according to some heuristics and passes
term translators, and translation consistency checkers, ~ the filtered listto the GUI of TranStrL. _

Some development environments (e.g., Eclipse String The.Outp_ut API Method List is a list of method signa-
Externalizing and Susiliz&y provide features to locate and tUreés, in which each method can output at least one of its
externalize all constant strings in the code of an appticati ~ Parameters to the application GUI. We denote the param-
However, not all of the constant strings need translation. €t€rs that can be output to the application GUI as Output
Our empirical results [5] show that in many real-world soft- Parameters so that we can trace from them in the tool’s pro-
ware applications, less than half of the constant stringsine €€sS- We manually collected the Output API Method List
translation. Thus, it may be a waste of time for translators TOmM packagesjava.awt.*" and"j avax. swing. *".
to translate all the constant strings. To be even worse, somérhl{sv TranStrL cur.rently supports only applications with
constant strings should not be translated; otherwise, bugdheir GUI written using these libraries. We next present the
could be introduced to the application. For example, if the S components of the tool in detail.
name of a field from a database table is translated to be in
another language, the application may suffer from runtime 3.1 ~ API-Invocation Search Engine

fallures when retrieving data from the database. TranStrL searches for the invocations of the Output API

Methods with Eclipse’s Java Search Engine, which is a

3 TranStrL Architecture powerful tool to search for the declarations and references
—) i to different syntactic elements in Java. The engine can pre-

As shown in Figure 1, TranStrL consists of six COM- jsely [ocate possible invocations of a given Java method in
ponents: an API invocation search engine, an adaptedyg presence of polymorphism. Then TranStrL uses the ac-
string-taint analyzer, a string-comparison analyzemiagt ,a arguments (in the invocations) that correspond to Out-

transmission analyzer, a filter, and the tool GUI. TranStrL ,, parameters as the initial output strings that are passed
takes the source code of a Java application as input angy,, String-Taint Analyzer.

produces a list of need-to-translate strings. Additignall

Lpronounced ag{renstel] 3.2 String-Taint Analyzer
2htt p: // wwy. gnu. or g/ sof t war e/ get t ext / manual / . .

gettexlto. ht m 9 g 9 From each initial output string, TranStrL performs an
Shttp://java. sun. com docs/ books/tutorial/i18n/ adapted string-taint analysis to locate the possible ssurc

i ”ﬂﬁx- htm cbabel Kk of the initial output string in the code.
5h:tgi ;;mb?eap?i' ZL?/ String analysis and string-taint analysis are recent ad-
Shtt p: / / wwmv. passol o. cond vances in static data-flow analysis [3]. Christensen et

“http:// waw. susilizer.com al. [1] first suggested string analysis, which is an approach

Output API

; String String
Method List Comparison g Transmission
Analyzer CD Analyzer
S
|
Code .
Repository of Eclipse API Inlt;:inOustput - String Taint Output Strings - Filter
the Software Search Engine £ Analyzer

Eclipse String
Externalization
Wizard

Figure 1: Overview of TranStrL

for obtaining possible values of a string variable. Re- the comparisons between strings in the source code. Then,
cently, Wassermann and Su [6] developed string-taint anal-for each side of a comparison, the analyzer performs string-
ysis based on string analysis. String-taint analysis &rrth taint analysis to locate all the constant strings that aee th
analyzes whether some substrings in the string variablesources of the side. After this step, the analyzer checks if
might come from insecure sources. The input of string- any located constant string as a source for one side is in the
taint analysis is the source code and a string variable in thelist of previously located viewable strings. If so, the an-
code. String-taint analysis predicts the possible valdes o alyzer adds all the strings located as sources for the other
the given string variable and determines whether the possiside as need-to-translate strings. TranStrL uses theystrin
ble values might contain insecure substrings. comparison analyzer iteratively until TranStrL cannot lo-
To apply string-taint analysis for our problem, we need cate any more need-to-translate strings.
to do some gdaptatlon. As we are |_nterested in hard_-codeds.5 String-Candidate Filter
constant strings, we use the locations of these strings as
their annotations. For strings from other sources such as As a practical matter, not all the located strings require
files and network, we further annotate them as “&Fileln- translation. Some strings should be the same in all local lan
put” and “transmitted”, etc. TranStrL adopts the adapted guages (e.g., strings composed of arabic numerals), while
string-taint analysis, with which TranStrL can locate & lis some other strings may be intentionally untranslated,(e.qg.
of basic need-to-translate strings. trademarks). Therefore, we further apply a string-cartdida
filter to filter out some located constant strings that may not
)) i i _need translation. By default, TranStrL filters out two kinds
Using string-taint analysis, TranStrL can trace to string of strings: a constant string includes no letter and a costa
variables who_se values are transmitted frpm the ”et_Wo_rk-string that is equal (ignoring the case) to the name of the
For these variables, we further apply a string-transmimssio project. TranStrL also uses a property file, in which the tool

analyzer in TranStrL. By matching the socket number and ysers can provide the types of strings that the users want to
the flag variables transmitted along with the data in a net-fjiter out in the form of regular expressions.

work packet, the string-transmission analyzer locates the
strings whose values are passed to the strings in the pre3-6 Tool GUI

viously obtained need-to-translate string list. Currgntl We reuse the Eclipse String Externalize Wizard as the
TranStrL can cope with only network transmissions by Gul of TranStrL. The reason is that the String Externalize
passing objects through sockets. Wizard provides a context view for the developers to check
the context of a certain constant string and edit it. Further
more, it provides a default strategy to externalize a list of
strings automatically.

3.3 String-Transmission Analyzer

3.4 String-Comparison Analyzer

After string-taint analysis and string-transmission anal
ysis, TranStrL can locate the constant strings viewable The Ecli String Ext lize Wizard et its inout
on the application GUI. However, we need to further lo- € Eclipse String Externalize Wizard gets as I's input a

cate the strings that are compared with these viewabletztlt?é ZILBhﬁ;g?ét;r};sttag%ﬁe(i?](;?os:iuggi;)s if?ﬁgfgztzy In
strings because otherwise the logic of the program may go. . . o
9 g prog Y9 TranStrL, we reuse the wizard by popping up an identical

wrong. Thus, we apply our string-comparison analyzer for " d and setting its input as th d-to-t latecstri
TranStrL to address this issue. The analyzer first locates al wizard and setling 1ts input as the need-to-ransiategtrin
list produced by TranStrL.

4 Tool Usage open the tool GUI to externalize these strings. Since
TranStrL reuses the tool GUI and the string externalizing
)) strategies of “Externalize Strings” in Eclipse, the user ca
TranStrL can be especially useful to developers in two gasily externalize and edit the located strings either @ th
main scenarios: way that the developer wants or using a default external-
e When a software application that has not been inter- jzing strategy provided by Eclipse. When used on inter-
nationalized is required to be translated to other lan- nationalized applications, TranStrL automatically fiteut
guages, the developers can run the tool to get a list ofthe strings that have already been externalized, so that the

need-to-translate constant strings. The developers mayjevelopers can focus on only the potentially missed need-
choose to inspect the list of strings manually one by to-translate strings.

one. In this case, TranStrL can reduce by about 70% of .
the strings that the developers need to inspect, accord® Conclusion

ing to our recent empirical results [5]. Thatis to say, |n this paper, we present TranStrL, an Eclipse plug-in
TranStrL usually retrieves only 30% of all the constant to gutomatically locate need-to-translate constant gsrin
strings in the code as need-to-translate. The develop-TranStrL is mainly based on the Eclipse Java Search en-
ers can also choose to externalize them all using thegine and an adapted string-taint analyzer, and supplemhente
Eclipse string externalize strategy. This step may bring with three other components to further enhance the accu-
in a small number of incorrectly-located and/or unlo- racy. TranStrL reuses the GUI of Eclipse String External-
cated need-to-translate strings, and further testing andization as the user interface.
debugging may be required, but the developers can ef- | future work, we plan to extend the Output API Method
fectively reduce the effort on manually checking each | jst to other popular GUI libraries to support more software
located string. o _ _ applications. Furthermore, we plan to extend the String
e When the software application has been international- Transmission Analyzer to cope with other network trans-

ized but the developers are not certain about the qual-mjssijon strategies such as SOAP or event Bus.
ity of the internationalization, they can run TranStrL

to find out a list of suspicious missed need-to-translate ACKnowledgment

strings, and then check the list to confirm whethereach The authors from Peking University are sponsored by
string needs translation. In fact, based on our recentine National Basic Research Program of China (973) No.
research [5], we reported 17 such missed strings in 2009CcB320703, the High-Tech Research and Development
the latest version of Megam@&khe most downloaded Program of China (863) No. 2007AA010301 and No.
real-time strategy game in Sourceforge) to the devel- 500sAA01Z156, the Science Fund for Creative Research
opers, and the developers confirmed and translated allgoups of China No. 60821003, and the National Science
of the 17 strings. Foundation of China No. 90718016. Tao Xie’s work is sup-
4.2 Starting TranStrL ported in part by NSF grants CNS-0720641, CCF-0725190,
and Army Research Office grant W911NF-08-1-0443.

4.1 Example Usage Scenarios

TranStrL is easy to start. A user just needs to open the
project in Eclipse, right click on the project icon to get a References
context menu, and press the button of “internationalize...
in the menu. Then, a list of need-to-translate strings of the [1] A. Christensen, A. Miler, and M. Schwartzbach. Precisala
project is output to a result file. ysis of string expressions. Proc. SASpages 1-18, 2003.
TranStrL can be started without any configurations. [2] B. Esselink.A Practical Guide to Software Localization: For
However, if a user already knows that some of the methods Translators, Engineers and Project Managerslohn Ben-
in the client code can output some of their parametersto the jamins Publishing Co, 2000.
application GUI before starting TranStrL, the user may add [3] J- Kam and J. Uliman. Global data flow analysis and itera-
these methods to the Output API Method List. Adding these g\éiségsritg%s.Journal of the ACM (JACMR3(1):158-171,
methods to thg list may r?duce Some Inaccuracy. Furthgr-[4] E. Uren, R. Howard, and T. Perinotoftware International-
morg, a_s ment'one_'d p_rev'OUSIy’ a uger can also custqmlze ization and Localization: An Introductiori993.
the filtering strategies in TranStrL to improve the effeetiv [5] X. Wang, L. Zhang, T. Xie, H. Mei, and J. Sun. Locating
ness of the filter. need-to-translate constant strings for software intésnat-

4.3 Using the Results ization. InProc. ICSE 2009.
6] G. Wassermann and Z. Su. Sound and precise analysis of

: , , [6]
After locating need-to-translate strings with TranStrL, web applications for injection vulnerabilities. Rroc. PLDI,
the user can press the button “TranStrL Externalize...” to pages 32-41, 2007.

8htt p: / / sour cef or ge. net / pr oj ect s/ meganek/

