
TranStrL: An Automatic Need-to-Translate String Locator for Software
Internationalization

Xiaoyin Wang1,2, Lu Zhang1,2∗, Tao Xie3∗, Hong Mei1,2, Jiasu Sun1,2

1Institute of Software, School of Electronics Engineering and Computer Science
2Key laboratory of High Confidence Software Technologies (Peking University), Ministry of Education

Peking University, Beijing, 100871, China
{wangxy06, zhanglu, meih, sjs}@sei.pku.edu.cn

3Department of Computer Science, North Carolina State University, Raleigh, NC 27695, USA
xie@csc.ncsu.edu

Abstract

Software internationalization is often necessary when
distributing software applications to different regions
around the world. In many cases, developers often do not
internationalize a software application at the beginning of
the development stage. To internationalize such an exist-
ing application, developers need to externalize some hard-
coded constant strings to resource files, so that translators
can easily translate the application to be in a local language
without modifying its source code. Since not all the con-
stant strings require externalization, locating those need-
to-translate constant strings is a basic task that the devel-
opers must conduct. In this paper, we present TranStrL,
an Eclipse plug-in tool that automatically locates need-to-
translate constant strings in Java code. Our tool maintains
a pre-collected list of API methods related to the Graph-
ical User Interface (GUI), and then searches for need-to-
translate strings in the source code starting from the invo-
cations of these API methods using string-taint analysis.

1 Motivation

Modern software applications often target at users from
different regions around the world. To better serve users ina
certain region, a software application must be adapted to its
local version to meet the users’ requirement. This adapta-
tion often includes translation of the user-visible text, con-
version of number and date formats, etc. In general, tech-
niques for obtaining and managing these local versions are
usually referred to as software internationalization.

Some software applications adopt the technique of inter-
nationalization at the beginning of the development stage.

∗Corresponding author

Developers of these applications try to avoid hard-coding
elements that need to be changed from one local version to
another. However, in many cases, developers adopt soft-
ware internationalization only during or after the develop-
ment of the first non-international version with two main
reasons. First, many popular software applications origi-
nate from open source prototypes or research prototypes,
whose developers do not expect their users to have require-
ments specific to particular regions in the beginning of the
tool development. Second, developers of an international
software application may reuse some non-international soft-
ware components. Thus, the developers may have to inter-
nationalize these reused components. In all these cases, de-
velopers need to internationalize existing code, which typ-
ically contains many hard-coded elements specific to one
local version.

When internationalizing existing code, developers usu-
ally need to locate those hard-coded elements that need
translation [2, 4]. The need-to-translate elements include
constant strings, time/date objects, number-format objects,
etc. In particular, locating need-to-translate constant strings
is often the most tedious task. The reason is that, un-
like other need-to-translate elements, a software applica-
tion typically contains a large number of constant strings,
many but not all of which need translation. Some need-
to-translate constant strings are easy to locate, such as the
string"Name" in new Button("Name"), but many others
may be very difficult to locate, such as those strings that are
output to the Graphics User Interface (GUI) through sev-
eral assignments, parameter transmissions and string op-
erations [5]. The existence of a large number of need-to-
translate strings and the difficulty of locating some of them
make the task of locating need-to-translate strings tedious
and error-prone. Therefore, an automatic need-to-translate
string locator would provide great help to the developers.



In this paper, we present TranStrL1, an Eclipse plug-in
tool that locates need-to-translate constant strings in Java
code. The basic idea behind our tool is to locate invoca-
tions of API methods that output strings to the GUI, and
trace from the output strings to the constant strings that need
translation [5].

2 Related Work

To the best of our knowledge, our tool is the first one
focusing on automatically locating need-to-translate con-
stant strings in source code. There are some published
books [2, 4] on how to manually internationalize a software
application. However, none of them provides any automatic
approach or tool to locating need-to-translate strings.

There exist tools (e.g., GNU gettext2 and Java interna-
tionalization API3) to help developers externalize need-to-
translate constant strings after the developers locate them.
Other tools such as KBabel4 help developers edit and man-
age resource files (called PO files in KBabel) containing ex-
ternalized constant strings. Other commercial tools such as
Redpin5 and Passolo6 provide an integrated localization en-
vironment that includes file visualizers, translation editors,
term translators, and translation consistency checkers.

Some development environments (e.g., Eclipse String
Externalizing and Susilizer7) provide features to locate and
externalize all constant strings in the code of an application.
However, not all of the constant strings need translation.
Our empirical results [5] show that in many real-world soft-
ware applications, less than half of the constant strings need
translation. Thus, it may be a waste of time for translators
to translate all the constant strings. To be even worse, some
constant strings should not be translated; otherwise, bugs
could be introduced to the application. For example, if the
name of a field from a database table is translated to be in
another language, the application may suffer from runtime
failures when retrieving data from the database.

3 TranStrL Architecture

As shown in Figure 1, TranStrL consists of six com-
ponents: an API invocation search engine, an adapted
string-taint analyzer, a string-comparison analyzer, a string-
transmission analyzer, a filter, and the tool GUI. TranStrL
takes the source code of a Java application as input and
produces a list of need-to-translate strings. Additionally,

1pronounced as [′trenstr∂l]
2http://www.gnu.org/software/gettext/manual/

gettext.html
3http://java.sun.com/docs/books/tutorial/i18n/

index.html
4http://kbabel.kde.org/
5http://www.redpin.eu/
6http://www.passolo.com/
7http://www.susilizer.com

TranStrL requires a pre-collected Output API Method list
as input.

The main process of TranStrL includes five steps: (1)
TranStrL uses the API-invocation search engine to search
for invocations of the methods in the Output API Method
List. (2) TranStrL takes the actual arguments (in these invo-
cations) that are output to the application GUI as the initial
Output Strings and passes them to the string-taint analyzer.
(3) The string-taint analyzer traces from the initial Output
Strings to their data origins and obtains a list of basic need-
to-translate strings. (4) TranStrL passes the obtained list
to the string-transmission analyzer to further trace to the
strings that are passed to the application GUI through net-
work communications, and to the string-comparison ana-
lyzer to further trace to the strings that are compared with
the already-known need-to-translate strings. The fourth
step is performed iteratively until no more need-to-translate
strings are added to the string list. For optimization, only
the need-to-translate strings newly located by the current
iteration are used as the input to the next iteration. (5)
TranStrL filters the constant strings in the string variablelist
acquired in Step 4 according to some heuristics and passes
the filtered list to the GUI of TranStrL.

The Output API Method List is a list of method signa-
tures, in which each method can output at least one of its
parameters to the application GUI. We denote the param-
eters that can be output to the application GUI as Output
Parameters so that we can trace from them in the tool’s pro-
cess. We manually collected the Output API Method List
from packages"java.awt.*" and "javax.swing.*".
Thus, TranStrL currently supports only applications with
their GUI written using these libraries. We next present the
six components of the tool in detail.

3.1 API-Invocation Search Engine

TranStrL searches for the invocations of the Output API
Methods with Eclipse’s Java Search Engine, which is a
powerful tool to search for the declarations and references
to different syntactic elements in Java. The engine can pre-
cisely locate possible invocations of a given Java method in
the presence of polymorphism. Then TranStrL uses the ac-
tual arguments (in the invocations) that correspond to Out-
put Parameters as the initial output strings that are passedto
the String-Taint Analyzer.

3.2 String-Taint Analyzer

From each initial output string, TranStrL performs an
adapted string-taint analysis to locate the possible sources
of the initial output string in the code.

String analysis and string-taint analysis are recent ad-
vances in static data-flow analysis [3]. Christensen et
al. [1] first suggested string analysis, which is an approach



Figure 1: Overview of TranStrL

for obtaining possible values of a string variable. Re-
cently, Wassermann and Su [6] developed string-taint anal-
ysis based on string analysis. String-taint analysis further
analyzes whether some substrings in the string variable
might come from insecure sources. The input of string-
taint analysis is the source code and a string variable in the
code. String-taint analysis predicts the possible values of
the given string variable and determines whether the possi-
ble values might contain insecure substrings.

To apply string-taint analysis for our problem, we need
to do some adaptation. As we are interested in hard-coded
constant strings, we use the locations of these strings as
their annotations. For strings from other sources such as
files and network, we further annotate them as “&FileIn-
put” and “transmitted”, etc. TranStrL adopts the adapted
string-taint analysis, with which TranStrL can locate a list
of basic need-to-translate strings.

3.3 String-Transmission Analyzer

Using string-taint analysis, TranStrL can trace to string
variables whose values are transmitted from the network.
For these variables, we further apply a string-transmission
analyzer in TranStrL. By matching the socket number and
the flag variables transmitted along with the data in a net-
work packet, the string-transmission analyzer locates the
strings whose values are passed to the strings in the pre-
viously obtained need-to-translate string list. Currently,
TranStrL can cope with only network transmissions by
passing objects through sockets.

3.4 String-Comparison Analyzer

After string-taint analysis and string-transmission anal-
ysis, TranStrL can locate the constant strings viewable
on the application GUI. However, we need to further lo-
cate the strings that are compared with these viewable
strings because otherwise the logic of the program may go
wrong. Thus, we apply our string-comparison analyzer for
TranStrL to address this issue. The analyzer first locates all

the comparisons between strings in the source code. Then,
for each side of a comparison, the analyzer performs string-
taint analysis to locate all the constant strings that are the
sources of the side. After this step, the analyzer checks if
any located constant string as a source for one side is in the
list of previously located viewable strings. If so, the an-
alyzer adds all the strings located as sources for the other
side as need-to-translate strings. TranStrL uses the string-
comparison analyzer iteratively until TranStrL cannot lo-
cate any more need-to-translate strings.

3.5 String-Candidate Filter

As a practical matter, not all the located strings require
translation. Some strings should be the same in all local lan-
guages (e.g., strings composed of arabic numerals), while
some other strings may be intentionally untranslated (e.g.,
trademarks). Therefore, we further apply a string-candidate
filter to filter out some located constant strings that may not
need translation. By default, TranStrL filters out two kinds
of strings: a constant string includes no letter and a constant
string that is equal (ignoring the case) to the name of the
project. TranStrL also uses a property file, in which the tool
users can provide the types of strings that the users want to
filter out in the form of regular expressions.

3.6 Tool GUI

We reuse the Eclipse String Externalize Wizard as the
GUI of TranStrL. The reason is that the String Externalize
Wizard provides a context view for the developers to check
the context of a certain constant string and edit it. Further-
more, it provides a default strategy to externalize a list of
strings automatically.

The Eclipse String Externalize Wizard gets as its input a
list of all the constant strings (each string is identified byits
value and its offset in the file enclosing it) in the code. In
TranStrL, we reuse the wizard by popping up an identical
wizard and setting its input as the need-to-translate string
list produced by TranStrL.



4 Tool Usage
4.1 Example Usage Scenarios

TranStrL can be especially useful to developers in two
main scenarios:
• When a software application that has not been inter-

nationalized is required to be translated to other lan-
guages, the developers can run the tool to get a list of
need-to-translate constant strings. The developers may
choose to inspect the list of strings manually one by
one. In this case, TranStrL can reduce by about 70% of
the strings that the developers need to inspect, accord-
ing to our recent empirical results [5]. That is to say,
TranStrL usually retrieves only 30% of all the constant
strings in the code as need-to-translate. The develop-
ers can also choose to externalize them all using the
Eclipse string externalize strategy. This step may bring
in a small number of incorrectly-located and/or unlo-
cated need-to-translate strings, and further testing and
debugging may be required, but the developers can ef-
fectively reduce the effort on manually checking each
located string.

• When the software application has been international-
ized but the developers are not certain about the qual-
ity of the internationalization, they can run TranStrL
to find out a list of suspicious missed need-to-translate
strings, and then check the list to confirm whether each
string needs translation. In fact, based on our recent
research [5], we reported 17 such missed strings in
the latest version of Megamek8 (the most downloaded
real-time strategy game in Sourceforge) to the devel-
opers, and the developers confirmed and translated all
of the 17 strings.

4.2 Starting TranStrL

TranStrL is easy to start. A user just needs to open the
project in Eclipse, right click on the project icon to get a
context menu, and press the button of “internationalize...”
in the menu. Then, a list of need-to-translate strings of the
project is output to a result file.

TranStrL can be started without any configurations.
However, if a user already knows that some of the methods
in the client code can output some of their parameters to the
application GUI before starting TranStrL, the user may add
these methods to the Output API Method List. Adding these
methods to the list may reduce some inaccuracy. Further-
more, as mentioned previously, a user can also customize
the filtering strategies in TranStrL to improve the effective-
ness of the filter.

4.3 Using the Results

After locating need-to-translate strings with TranStrL,
the user can press the button “TranStrL Externalize...” to

8http://sourceforge.net/projects/megamek/

open the tool GUI to externalize these strings. Since
TranStrL reuses the tool GUI and the string externalizing
strategies of “Externalize Strings” in Eclipse, the user can
easily externalize and edit the located strings either in the
way that the developer wants or using a default external-
izing strategy provided by Eclipse. When used on inter-
nationalized applications, TranStrL automatically filters out
the strings that have already been externalized, so that the
developers can focus on only the potentially missed need-
to-translate strings.

5 Conclusion
In this paper, we present TranStrL, an Eclipse plug-in

to automatically locate need-to-translate constant strings.
TranStrL is mainly based on the Eclipse Java Search en-
gine and an adapted string-taint analyzer, and supplemented
with three other components to further enhance the accu-
racy. TranStrL reuses the GUI of Eclipse String External-
ization as the user interface.

In future work, we plan to extend the Output API Method
List to other popular GUI libraries to support more software
applications. Furthermore, we plan to extend the String
Transmission Analyzer to cope with other network trans-
mission strategies such as SOAP or event Bus.

Acknowledgment
The authors from Peking University are sponsored by

the National Basic Research Program of China (973) No.
2009CB320703, the High-Tech Research and Development
Program of China (863) No. 2007AA010301 and No.
2006AA01Z156, the Science Fund for Creative Research
Groups of China No. 60821003, and the National Science
Foundation of China No. 90718016. Tao Xie’s work is sup-
ported in part by NSF grants CNS-0720641, CCF-0725190,
and Army Research Office grant W911NF-08-1-0443.

References

[1] A. Christensen, A. Mller, and M. Schwartzbach. Precise anal-
ysis of string expressions. InProc. SAS, pages 1–18, 2003.

[2] B. Esselink.A Practical Guide to Software Localization: For
Translators, Engineers and Project Managers. John Ben-
jamins Publishing Co, 2000.

[3] J. Kam and J. Ullman. Global data flow analysis and itera-
tive algorithms.Journal of the ACM (JACM), 23(1):158–171,
January 1976.

[4] E. Uren, R. Howard, and T. Perinotti.Software International-
ization and Localization: An Introduction. 1993.

[5] X. Wang, L. Zhang, T. Xie, H. Mei, and J. Sun. Locating
need-to-translate constant strings for software international-
ization. InProc. ICSE, 2009.

[6] G. Wassermann and Z. Su. Sound and precise analysis of
web applications for injection vulnerabilities. InProc. PLDI,
pages 32–41, 2007.


