JDF: Detecting Duplicate Bug Reports in Jazz’

Yoonki Song* Xiaoyin Wang??

Tao Xiet

Lu Zhang?*® Hong Mei*?

!Department of Computer Science, North Carolina State University, Raleigh, NC, USA
%Institute of Software, School of Electronics Engineering and Computer Science
3Key laboratory of High Confidence Software Technologies (Peking University), Ministry of Education
Peking University, Beijing, 100871, China
{ysong2, txiex@ncsu.edu, {wangxy06, zhanglu, meih}@sei.pku.edu.cn
ysong gxy g P

ABSTRACT

Both developers and users submit bug reports to a bug repository.
These reports can help reveal defects and improve software qual-
ity. As the number of bug reports in a bug repository increases, the
number of the potential duplicate bug reports increases. Detecting
duplicate bug reports helps reduce development efforts in fixing
defects. However, it is challenging to manually detect all potential
duplicates because of the large number of existing bug reports. This
paper presents JDF (representing Jazz Duplicate Finder), a tool that
helps users to find potential duplicates of bug reports on Jazz, which
is a team collaboration platform for software development and pro-
cess management. JDF finds potential duplicates for a given bug
report using natural language and execution information.

Categories and Subject Descriptors: D.2.7 [Software Engineer-
ing]: Distribution, Maintenance and Enhancement

General Terms: Management, Reliability

Keywords: bug report, execution information, information retrieval

1. INTRODUCTION

Bug reports play an important role in software development and
maintenance. A common activity when using a bug repository is to
detect duplicate bug reports stored in the bug repository. Detecting
duplicate bug reports helps reduce the efforts of programmers in
fixing related defects. However, it is quite challenging to manually
detect duplicate bug reports since there can be a large number of
bug reports.

Jazz [2] is a team collaboration platform for software devel-
opment and process management. Jazz provides a repository for
archiving software artifacts such as change sets, build results, and
work items used in a development process. A work item represents
a traceable and coordinated team work such as Defect (bug report).
A bug report in a Jazz repository contains the same properties (such
as summary and description) as those of common bug reports such
as Bugzilla reports [1].

*This work is supported in part by an IBM Jazz Innovation Award,
NSF grants CCF-0725190 and CCF-0845272, and ARO grants
WOI11NF-08-1-0443 and W911NF-08-1-0105.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICSE °10, May 2-8 2010, Cape Town, South Africa

Copyright 2010 ACM 978-1-60558-719-6/10/05 ...$10.00.

315

JDF
RCP UI

Query
Interface
Similarity

Viewer

JDF Service

IR

[Tokenizer] [Stemmer j [Reoognizer}
alar VSM Similarity
Generator || Calculator

JDF
Common

Service
Interface

Jg/F [Service] [Repository]
. Impl. Retriever

Client

Jazz Client Jazz Server %

Figure 1: Architecture of the JDF tool

When submitting bug reports, Jazz users need to find potential
duplicates to avoid submitting duplicates. To address this issue, we
developed JDF! (representing Jazz Duplicate Finder), a tool that
automatically mines a Jazz bug repository under analysis and de-
tects duplicate bug reports. Our JDF tool uses natural language and
execution information associated with the bug reports [7].

Rational Team Concert (RTC) [5], a Jazz extension that pro-
vides a collaborative software development platform, enables users
to find duplicates of bug reports. RTC uses the summary and the
description of a bug report in finding duplicates. Similar to Rune-
son et al.’s work [6], RTC gives a higher weight on the summary
than that on the description of a bug report, because the summary
is likely to contain more relevant words. Our JDF tool used several
heuristics with different parameters including the parameter used in
Runeson et al.’s work. In addition, RTC calculates similarities by
using natural language information only, while our JDF tool com-
putes similarities by using both natural language information and
execution information.

2. JDF ARCHITECTURE

Figure 1 provides the high-level overview of JDF’s architecture.
The architecture consists of four plug-ins: the JDF Rich Client
Platform (RCP) Ul, JDF Client, JDF Common, and JDF Service.
JDF takes a bug report as input and produces a list of bug reports
that are similar to the given bug report. We next present how the
JDF client component and the JDF server component work and in-
teract with each other.

2.1 JDF Client Component

The JDF client component contains the JDF RCP Ul, JDF Client,
and JDF Common. JDF RCP UI provides the Query Interface, the

1JDF is available at http://sites.google.com/site/
asergrp/projects/jazz

=g

=
&

Bl work Items I?} Tag Cloud | [21 Problems | &8 Team Advisor | " Wark Items (JIDF) &2
11 Items

1d
35
14
16
45

Score
0.23
0.24
0.23
0.22

Summary

Handling of SecurityException from suite) method is wrong
Tests on protected methods Fail

@aAfker method not called after my test timeout in 4.3.1
Junit 4 nat really backward compatible

0.18 24 Tests methods with return value should be allowed

0.17 42 Suite allows for cycles ta be created on load

0.16 g Runtime grows quadradtically with number of test methods
0.14 40 Tgnoted method Fails

0.1
0.09
0.08

57
4
44

‘Wi test cases for assertThat
Errar while compiling the Test code.
Runner throws confusing exception "no runnable methods"...

Vi i i

Figure 2: JDF View showing the result

Similarity Viewer as shown in Figure 2, and the Preference. The
Preference provides a configuration interface for users to choose in-
dexing schemes, similarity metrics such as Cosine and Jaccard [3],
and which properties of a bug report should be considered in find-
ing duplicates. JDF allows users to give weights on the summary
and description of bug reports. For example, a user can find poten-
tial duplicates with the summary and the description of bug reports
using the Cosine similarity metric and the same weight on the sum-
mary and the description of bug reports. JDF Client provides a
mechanism for finding the service provided by JDF Service (de-
scribed in Section 2.2) running on the Jazz Server. JDF Common
provides models and service interfaces that are used by both the
JDF client and JDF server sides.

Workflow among Components. If there is a JDF service request
from the JDF RCP UI, the JDF Client finds the service through
the Service Interface in the JDF Common. Then, the JDF Common
calls the actual service in the JDF Service. After finding potential
duplicates, the JDF Service returns the result to the JDF RCP Ul
through the JDF Common. Finally, the JDF RCP Ul displays the
result in the Similarity Viewer.

2.2 JDF Server Component

The JDF server component contains the JDF Common and JDF
Service. As described in Section 2.1, the JDF Common is a com-
mon part of both the JDF client component and the JDF server
component. The JDF Service contains an Information Retrieval
(IR) implementation that is the main part of JDF’s underlying ap-
proach [7], the Service Implementation for sending the result, and
the Repository Retriever for retrieving existing bug reports from
the repository. When retrieving existing bug reports, the Reposi-
tory Retriever gathers only work items that are bug reports and in
the same project area as the given bug report.

The Storage of Execution Information. The execution informa-
tion of bug reports (in the form of method-call lists) is often very
large (megabytes for one bug report). Therefore, to store execu-
tion information of all bug reports, we record a dynamic method
list for each project. The elements in the dynamic method list are
the methods (in the project) that have been executed at least once
in the bug-revealing runs of all the existing bug reports. Thus, ex-
ecution information of a bug report can be represented as a list of
boolean values (called the execution list). Each boolean value in
the execution list indicates whether the bug report involves calls to
the corresponding method in the dynamic method list. When a new
method is executed in a bug-revealing run of a newly submitted bug
report, we add this new method to the end of the dynamic method
list, and add a boolean value ‘0’ to the end of the execution list of
each existing bug report.

The IR Implementation. The IR implementation consists of six
sub-components: the Tokenizer, Stemmer, Recognizer, Indexer, Vec-

316

tor Space Model (VSM [4]) Generator, and Similarity Calculator.
More specifically, given the extracted text from the summary and/or
the description of a bug report, the Tokenizer splits the text into
tokens, and then the Stemmer identifies the root form from each
token. Next, the Recognizer removes stop words such as “the” and
“a” from the root forms. With the resulting root forms, the Indexer
and the VSM Generator represent the vector space model. Finally,
the Similarity Calculator produces the similarity scores between a
given bug report and other bug reports in the repository using sim-
ilarity metrics.

Main Idea for Calculating Similarity. Our technique [7] for the
similarity calculator component consists of three steps. First, we
calculate the Natural-Language-based Similarities (NL-S) between
the new bug report and existing bug reports. Second, we calcu-
late the Execution-information based Similarities (E-S) between
the new bug report and existing bug reports. Finally, we retrieve
potential target reports using the preceding two kinds of similarities
based on two heuristics. The first heuristic is to combine the NL-
S and the E-S into one combined similarity, and use the combined
similarity to retrieve potential target reports. The second heuristic is
to try to distinguish whether the natural language information or the
execution information is the dominant factor in detecting each pair
of possible duplicate reports, and use different strategies to deal
with different situations. We next present our heuristics for com-
bining the calculated similarities to retrieve potential duplicates of
a bug report.

Retrieving Potential Duplicates. After calculating the NL-S score
and the E-S score, we apply two heuristics (i.e., Basic Heuristic
and Classification-Based Heuristic [7]) for ranking the existing bug
reports in a list using these similarity scores. The Similarity Cal-
culator uses the basic heuristic that gets the arithmetic average of
the NL-S and E-S scores. When one of the two similarity scores is
dominant, the calculator can use the classification-based heuristic
with Credibility Threshold (CT) [7].

3. CONCLUSION

We have presented JDF, a set of Eclipse plug-ins integrated within
Jazz to help users find potential duplicates using natural language
and execution information. JDF also allows users to choose various
indexing schemes and similarity metrics. JDF consists of the client
component, which provides the user interface and the result view;
and the server component, which retrieves a list of bug reports in a
Jazz repository and computes similarity scores.

4. REFERENCES

[1] K. Herzig and A. Zeller. Mining the Jazz Repository:
Challenges and Opportunities. In Proc. MSR, pages 159-162,
2009.

Jazz. http://jazz.net.

C. D. Manning and H. Schiitze. Foundations of Statistical
Natural Language Processing. MIT Press, 1999.

V. Raghavan and M. Wong. A Critical Analysis of Vector
Space Model for Information Retrieval. JASIS, 37(5):
279-287, 1986.

IBM Rational Team Concert.
http://www.ibm.com/software/awdtools/rtc/.
P. Runeson, M. Alexandersson, and O. Nyholm. Detection of
Duplicate Defect Reports Using Natural Language
Processing. In Proc. ICSE, pages 499-510, 2007.

X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun. An Approach
to Detecting Duplicate Bug Reports Using Natural Language
and Execution Information. In Proc. ICSE, pages 461-470,
2008.

(2]
(3]

(4]

(5]

(6]

(7]

