
JSidentify: A Hybrid Framework for Detecting Plagiarism
Among JavaScript Code in Online Mini Games
Qun Xia

kelvinhhxia@tencent.com

Tencent Inc., China

Zhongzhu Zhou
∗

zhouzhzh8@mail2.sysu.edu.cn

Sun Yat-sen University, China

Zhihao Li

edgarlli@tencent.com

Tencent Inc., China

Bin Xu, Wei Zou, Zishun Chen,

Huafeng Ma, Gangqiang Liang

addyxu,nofreezou,zishunchen@tencent.com

Tencent Inc., China

Haochuan Lu

luhc17@fudan.edu.cn

Fudan University, China

Shiyu Guo

whiteguo@tencent.com

Tencent Inc., China

Ting Xiong, Yuetang Deng

candyxiong,yuetangdeng@tencent.com

Tencent Inc., China

Tao Xie
†

taoxie@pku.edu.cn

Peking University, China

ABSTRACT
Online mini games are lightweight game apps, typically imple-

mented in JavaScript (JS), that run inside another host mobile app

(such as WeChat, Baidu, and Alipay). These mini games do not need

to be downloaded or upgraded through an app store, making it

possible for one host mobile app to perform the aggregated services

of many apps. Hundreds of millions of users play tens of thou-

sands of mini games, which make a great profit, and consequently

are popular targets of plagiarism. In cases of plagiarism, deeply

obfuscated code cloned from the original code often embodies ma-

licious code segments and copyright infringements, posing great

challenges for existing plagiarism detection tools. To address these

challenges, in this paper, we design and implement JSidentify, a

hybrid framework to detect plagiarism among online mini games.

JSidentify includes three techniques based on different levels of

code abstraction. JSidentify applies the included techniques in the

constructed priority list one by one to reduce overall detection

time. Our evaluation results show that JSidentify outperforms other

existing related state-of-the-art approaches and achieves the best

precision and recall with affordable detection time when detecting

plagiarism among online mini games and clones among general JS

programs. Our deployment experience of JSidentify also shows that

JSidentify is indispensable in the daily operations of online mini

games in WeChat.

∗
The research done by this author was during his internship at Tencent Inc. His work

is supported in part by the National Natural Science Foundation of China under Grant

U1911201, Guangdong Special Support Program under Grant 2017TX04X148.

†
The author is affiliated with Key Laboratory of High Confidence Software Technolo-

gies (Peking University), Ministry of Education. His work is supported in part by NSF

under grant no. CNS-1564274, CCF-1816615.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7123-0/20/05. . . $15.00

https://doi.org/10.1145/3377813.3381352

KEYWORDS
Plagiarism Detection, Online Mini Games, JavaScript, Clone Detec-

tion

ACM Reference Format:
Qun Xia, Zhongzhu Zhou, Zhihao Li, Bin Xu, Wei Zou, Zishun Chen,

Huafeng Ma, Gangqiang Liang, Haochuan Lu, Shiyu Guo, Ting Xiong, Yue-

tang Deng, and Tao Xie. 2020. JSidentify: A Hybrid Framework for Detecting

Plagiarism Among JavaScript Code in Online Mini Games. In Software Engi-
neering in Practice (ICSE-SEIP ’20), May 23–29, 2020, Seoul, Republic of Korea.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3377813.3381352

1 INTRODUCTION
Online mini games are lightweight game apps, typically imple-

mented in JavaScript (JS), that run inside another host mobile app

(such as WeChat, Baidu, and Alipay). These mini games do not need

to be downloaded or upgraded through an app store, making it

possible for one host mobile app to perform the aggregated services

of many apps. These online mini games are typically implemented

in JS, which has been a very popular programming language [45]

in recent years thanks to its high expressiveness and portability.

Hundreds of millions of users play tens of thousands of mini games,

which make a great profit, and consequently are popular targets

of plagiarism. For example, almost tens of code plagiarism cases

happen just in a day from the developers’ submission of the original

game program. Such plagiarism poses great threats to mobile se-

curity (given that the plagiarized code can embody malicious code

segments) and intellectual property. In practice, it is highly critical

for the platform of the host mobile app to compare the developers’

submitted game programwith the game programs from the existing

repository of online mini games to detect plagiarism effectively and

efficiently.

In practice, plagiarists (i.e., developers who conduct plagiarism)

deeply obfuscate their plagiarism code cloned from the original

code, resulting in their plagiarism code being a sophisticated type

of code clones. In general, clones are broadly classified into two

types: syntactic and semantic clones [42]. Syntactic clones can

be further divided into Identical Clones (Type I), Renamed Clones

(Type II), and Gapped Clones (Type III) [42]. In cases of plagiarism in

https://doi.org/10.1145/3377813.3381352
https://doi.org/10.1145/3377813.3381352

ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea Qun Xia et al.

online mini games, plagiarists often conduct the code modifications

corresponding to the Type II and Type III clones (i.e., renaming

and gapping) to obfuscate the plagiarism code. Furthermore, the

plagiarists apply advanced obfuscation operations such as control

flow flattening, nested function, and string array encoding [4]. We

name the finally resulting plagiarism code as Type IV clones, which

are similar to semantic clones. Type IV clones refactor standard code

constructs such as control flow or function calls. Thus, it is often

impossible even for human inspectors to reach a high-confidence

verdict of plagiarism in code unless they comprehensively play

all versions of online mini games, whose version quantity reaches

more than 200,000 in WeChat as focused in our work, and compare

their behavior similarity.

In cases of plagiarism among online mini games, deeply ob-

fuscated code cloned from the original code often poses great

challenges for existing plagiarism detection tools. The existing

approaches of code clone detection typically resolve the problem of

detecting duplicated code without intentional obfuscation [20]. De-

spite being applied for code plagiarism detection, these approaches

cannot effectively handle obfuscation. The existing approaches

for detecting code plagiarism or clone can be classified into six

types [14, 41]: textual [47, 49, 50], lexical token based [5, 19, 32],

Abstract Syntax Tree (AST) based [6, 34], Program Dependency

Graph (PDG) based [13, 17, 20, 36, 39], metric based [24, 30, 40],

and hybrid [48]. However, majority of textual and lexical-token-

based approaches cannot detect Type III or IV clones. AST, PDG,

metric-based, and hybrid approaches do not support JS, because

of dynamic compilation features and restriction imposed by the

online mini game engine. These approaches cannot detect Type

IV clones effectively [16, 44] and suffer from scalability issues, be-

ing unable to handle the huge number of online mini games in

WeChat’s repository.

In the past two years of attempting to apply and adapt the exist-

ing approaches for being adopted inWeChat, we have first-hand ob-

served their significant limitations for plagiarism detection among

online mini games hosted byWeChat. In particular, we attempted to

apply MOSS [47], PMD [8], and Simian [9], which support JS clone

detection. However, their recall on JS code is lower than 5% in online

mini games hosted byWeChat. In addition, previous studies [16, 30]

suggest that MOSS is very coarse-grained and is not suitable for

clone detection. We also attempted other approaches designed for

JS (e.g., Jsinspect [6], jscpd [5]). They cannot detect Type IV or mix-

ture of multiple clone types. Their recall, precision, and F1-Score

are very poor. JSCD(safe) [20] and other PDG-based approaches can

detect a few Type IV clones except those undergoing obfuscations

of control flow flattening and nested function. Other metric-based

(e.g., Heap-Based Software Theft Detection [17]), hybrid [48], and

malware-detection approaches [19, 33] need to set very low values

of similarity threshold, which can greatly compromise precision.

To address these limitations, in this paper, we propose a novel

hybrid framework, named JSidentify. JSidentify includes both static

and dynamic analyses for plagiarism detection integrated through

a constructed priority list. To evaluate JSidentify and compare it

against other related approaches [5, 6, 20, 47], we collect 400 mini

games (including both plagiarism and non-plagiarism ones) from

WeChat’s repository along with general JS programs being obfus-

cated [43] to synthesize clones.

This paper makes the following main contributions:

• Formulation of Plagiarism Detection in Online Mini
Games. According to the literature [20] and our investiga-

tion of numerous plagiarism cases among WeChat’s online

mini games, we define code clones undergoing advanced

obfuscation operations as Type IV clones in the setting of on-

line mini games, and analyze the limitations of the existing

clone detection approaches in this setting.

• Novel Framework. We propose a novel framework named

JSidentify, including (1) theWinnowing plus technique to im-

prove the existingWinnowing technique [47], (2) the Sewing

technique applied upon the dynamically compiled JS byte-

code, and (3) the Scene Tree technique based on Scene Tree,

an abstract representation of online mini games.

• Evaluation Results. Our evaluation results show that JSi-

dentify outperforms other existing related approaches and

achieves the best precision and recall within affordable de-

tection time when detecting plagiarism among online mini

games and clones among general JS programs.

In 2018, plagiarism games accounted for 21% of online mini

games in WeChat, a popular messenger app with over 1 billion

monthly active users. Currently there are already more than 200,000

game versions for tens of thousands of onlinemini games inWeChat’s

repository. After we deploy JSidentify, JSidentify has conducted 1.5

billion comparisons (between a submitted game and a repository

game version) during its deployment period of about 11 months.

JSidentify can scale to comparing a mini game (averagely 10,000

LOC) against more than 200,000 game versions in WeChat’s repos-

itory, to effectively conduct plagiarism detection in averagely 6

minutes. Thanks to JSidentify, the proportion of plagiarism games

has dropped to 4% so far, indicating that JSidentify is indispensable

in the daily operations of online mini games in WeChat.

2 BACKGROUND
WeChat’s online mini games are hosted through JS on a messag-

ing app, named WeChat. More and more people enjoy online mini

games with friends. In WeChat’s online mini games, plagiarism

games account for as high as 21% in 2018. Without proper mecha-

nisms to guard against plagiarism games, it has an abominable im-

pact on fair, profitable, and healthy game ecological environment in

WeChat; therefore, plagiarism detection is an urgent challenge [23].

However, based on our experience of technology adoption, the

existing plagiarism detection approaches and supporting tools [20]

being applied on WeChat’s mini games demonstrate poor effective-

ness and efficiency. We first apply multiple existing open-source

tools to attempt to find plagiarism code based on comparing a

submission program and each program from the repository of on-

line mini games. Most of tools that support JS plagiarism detection

check on the text, lexicon, and abstract syntax tree (AST) [27, 38, 44].

These tools cannot find those plagiarism games cloned from the

original games as clones. We then attempt to adapt existing ap-

proaches [20, 22]. For example, we adapt approaches based on the

program dependency graph (PDG) or birthmark [20, 25, 48] to com-

pute similarity. The recall improves but the efficiency is so poor,

because these approaches dynamically run a game, costing a lot of

detection time, and these approaches achieve low precision.

JSidentify: A Hybrid Framework for Detecting Plagiarism Among JavaScript Code in Online Mini Games ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea

We next introduce WeChat’s online mini games and clone types

in WeChat’s repository of online mini games. We then discuss the

related work on plagiarism detection.

2.1 WeChat’s Online Mini Games
Mini games are lightweight game apps that run inside another host

mobile app (such as WeChat, Baidu, and Alipay). A user just needs

to open an online mini game and play it without downloading or

installing it. Hundreds of millions of users play tens of thousands

of mini games, which make a great profit. During our recent efforts

of detecting source code with copyright infringement, we find that

there exists substantial plagiarism in WeChat’s online mini games

submitted by third-party developers.

WeChat’s online mini games are lightweight games that run on

WeChat. They are driven by the JS engine within WeChat. This JS

engine is adapted from the JS V8 engine [11], a dynamic JS compiler.

The JS engine generates bytecode based on the Ignition interpreter

in V8. The JS engine achieves high speed via just-in-time (JIT) [26]

compilation so that bytecode is generated at runtime. Because of this

“lazy” mode, existing dynamic analysis approaches that require to

access all the bytecode before runtime are not applicable here. Upon

the JS engine, there is a game engine (e.g., Cocos2d [1], LayaAir [7]).

2.2 Code Obfuscator Types in WeChat’s
Repository of Online Mini Games

JS plagiarism code in WeChat’s repository of online mini games is

usually obtained by performing the following types of changes/ob-

fuscations, corresponding to four common types of code clones [35,

44, 46]:

• (Type I) Identical code except change in whitespace or com-

ments.

• (Type II) Change in name, cases, replacement of identifiers

with expressions.

• (Type III) Addition or deletion of redundant code fragments,

gapping.

• (Type IV) Advanced obfuscation operations such as con-

trol flow flattening, nested function, and string array encod-

ing [4].

The first type is the same code fragment, except for whitespace

changes (which may also be layout changes) and comments (Type

I). The second type is the structurally/syntactically identical code

fragments except the variations in identifiers, literals, types, lay-

out, and comments (Type II). In the third type, statements can be

changed, added, or removed in addition to variations in identifiers,

literals, types, layout, and comments (Type III). We summarize from

WeChat’s cases of online mini games and classify into Type IV

clones those cases resulted from advanced obfuscation operations

such as control flow flattening, nested function, and string array

encoding [4]. The existing approaches that support JS cannot be

adapted to detect Type IV clones here.

A plagiarist may simultaneously apply multiple obfuscation op-

erations andmay apply further changes to a key part of the program.

All these factors contribute to the challenge of detecting plagiarism

code in WeChat’s repository of online mini games.

2.3 Related Work
Related approaches [6, 8, 9, 47] based on textual or lexical informa-

tion consider the source code as a text and try to find equal sub-

strings or compare similar characteristics such as a sequence of to-

kens. Among tools that can detect duplication of JS code, MOSS [47],

Simian [9], and PMD [8] are widely studied in the literature [44].

MOSS summarizes a program as its n-gram token distribution. But

previous studies [16] have shown that the recall of MOSS on Java is

only 10%. In addition, an extensive comparison of clone detection

tools on 17 Java and C systems has shown that both Simian [9] and

PMD [8] are good at detecting identical clones but not renamed

and gapped clones; both text-based and token-based approaches

are not suitable in detecting Type III or IV clones unless they set a

low threshold value that can cause poor precision.

Abstract Syntax Trees (ASTs) capture structural aspects of a

program. Some detection tools [6] compute similarity through ASTs.

Jsinspect [6], a tool for detecting JS code clones, uses the ASTs of

the parsed code. Jsinspect compares the similarity of nodes and

depths of ASTs. But it cannot detect Type III/IV clones. A previous

study [43] shows that AST-based tools work well for Type I/II clones

and detect Type III clones with a low threshold value. The precision

of AST-based tools is higher than textual/lexical-based tools [20].

Metric-based and PDG-based approaches are widely used for

clone detection. Based onmetrics computed fromASTs and PDGs [39],

metric-based approaches can achieve great efficiency and yet low

precision [20]. However, while we apply a metric-based approach

on WeChat’s repository of online mini games, the approach still

spends 1.3 hours to compare a program with more than 200,000

game program versions. A heap-graph-based approach [17] mea-

sures similarity by heap graphs’ isomorphism. JSCD(safe) [20], a

JS Clone Detector integrated in SAFE, uses Deckard and the LSH

algorithm (a metric-based algorithm). JSCD(safe) and the heap-

graph-based approach can detect Type III or IV clones but cannot

detect plagiarism involving multiple types of clones. In addition,

the detection problem is an NP-hard problem. The execution time

is too long even with approximate algorithms.

3 JSIDENTIFY FRAMEWORK
Our JSidentify framework includes three components (Filter, Sched-

uler, and Judger) and takes as input a mini-game program submit-

ted by developers. The Filter component in the framework pre-

processes the submitted program to produce its simplified code by

simplifying variable names and identifiers, compressing literals,

removing whitespaces and comments, and removing dead code

through static analysis. Then the Scheduler component applies the

included detection techniques in the priority list one by one on

the submitted program, by comparing its simplified code with the

simplified code of each repository program (from the given reposi-

tory of online mini games). The Scheduler stops until a technique

detects the submitted program to be plagiarism or until all tech-

niques are applied to compare the submitted program against each

repository program from the repository and no plagiarism is de-

tected by any technique. After being applied, a detection technique

produces similarity metric values between the submitted program

and each repository program. The Judger component then uses

the similarity threshold value specified for this detection technique

ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea Qun Xia et al.

to decide whether the submitted program plagiarizes an existing

repository program.

JSidentify includes multiple techniques in the priority list con-

structed via the mechanism described in Section 3.4. Sections 3.1-3.3

describe three techniques already included in JSidentify: the Win-

nowing Plus, Sewing, and Scene Tree techniques, respectively.

3.1 Winnowing Plus Technique
The Winnowing technique [47] adopted by MOSS achieves great

efficiency but low precision for plagiarism detection. For example,

MOSS on Java achieves only 10% precision [16], and our preliminary

study shows that MOSS on JS cannot detect Type II, III, IV, or hybrid

clones. To improve precision while enjoying great efficiency, we

improve the Winnowing technique to produce our Winnowing

Plus technique to pre-detect plagiarism (being placed on top of the

priority list).

In particular, we design multiple pre-processing techniques to ad-

dress some limitations of theWinnowing technique as incorporated

in MOSS. The use of MOSS requires the provision of values for size

parameters k (the length of character subsequence to form a word)

and w (the number of words to form a sliding window of words)

as follows. MOSS first treats each program under comparison as a

string s by removing spaces in the program. From s , MOSS produces

L as a list of words each of which consists of s’s consecutive charac-
ter subsequence of length k and starts from s’s ith character where

1 <= i <= (|s | −k+1). From the word list L, MOSS produces sliding

windows (of words) each of which is of w words and starts from

L’s ith word where 1 <= i <= (|L| −w + 1). MOSS then samples a

representative word from each sliding window of words to form a

representative-word vector. Based on the features consisting of the

representative-word vector, MOSS computes the similarity across

the programs under comparison to detect plagiarism. However,

the Winnowing technique performs poorly with code undergo-

ing either dead-code injection or advanced obfuscation operations

such as control flow flattening, nested function, and string array

encoding [4]. Thus, we design multiple pre-processing techniques

to make the technique more robust against obfuscations:

• Deobfuscate the detected obfuscated code.

• Normalize variable names to v0, v1, ... according to the oc-

currence order in the code.

• Normalize string constants and names of classes that are

instantiated at least once to sc0, sc1, ... and cn0, cn1, ..., re-
spectively, according to the occurrence order in the code.

• Eliminate semantics-lacking characters (blank, comments)

and remove dead functions (determined by analyzing func-

tion call relationship using the AST).

These four pre-processing techniques in our Winnowing Plus

technique improve the recall of the Winnowing technique by im-

proving its robustness to Type I, II clones, and a part of Type IV

clones. In general, the Winnowing Plus technique incurs the short-

est detection time among all the techniques currently within JSi-

dentify and is placed on top of the priority list.

3.2 Sewing Technique
Type III and IV clones are challenging to detect. Dead-code injection,

control flow flattening, nested function, and string array encoding

Figure 1: The overview of the Sewing technique

cannot be detected by text-based or other basic approaches [8, 9, 47].

Thus, we design our Sewing technique to compute similarity of

bytecode inspired by Needle [31]. For JS code, general approaches

explore detection in a high level of program representation (e.g.,

ASTs and PDGs) [6, 20]. Multiple approaches attempt to detect

clones in the heap [17] at runtime or in the machine code [29].

But a JS game cannot be easily characterized by its heap data,

and collecting heap data at runtime can incur high cost for a JS

game. Approaches based on machine code do not support JS. Thus,

we utilize the JS engine within WeChat and design our Sewing

technique for JS bytecode. The Ignition interpreter in the JS engine

dynamically generates bytecode, and can collect runtime calling

relationship from the bytecode.

To compare two games Games 1 and 2, the Sewing technique

works in three steps. First, it translates each function of Games 1

and 2 in JS code into abstract bytecode. Second, it computes the

similarity across two abstract-bytecode functions pairwise across

Games 1 and 2. Third, it computes the similarity between Games

1 and 2 based on the Bytecode Function Graph (BFG) constructed

based on similarity of abstract-bytecode functions pairwise across

Games 1 and 2. Figure 1 shows the process of the Sewing technique.

3.2.1 Translation Process. As discussed in Section 2.1, generating

bytecode is a lazy process. We leverage a testing tool
1
adapted from

Google Monkey [2] to automatically run an online mini game and

generate its bytecode, with an example bytecode as follows:

1 StackCheck

2 Crea t eC l o su r e [0] , [0] , 0

3 S t a r r1

4 LdaGloba l [1] , [1]

5 S t a r r2

6 Ca l l Unde f i n edRec e i v e r 1 r1 , r2 , [3]

7 S t a r r0

8 Return

According to IR [3] for JS bytecode from Ignition, the abstraction

module in the Sewing technique converts the preceding bytecode to

“0000000100001 10100100101001000”. Figure 2 shows the translation

process for resulting in the abstract bytecode.

3.2.2 Computation of Function Similarity. To compute similarity

between two functions, the Sewing technique borrows ideas from

the Needle [31] and Winnowing [47] techniques. In particular,

1
In WeChat’s application setting, we set the running time of the testing tool as 5

minutes. Note that the testing tool needs to be applied on each repository game or

each submitted game only once, even when each repository game will be compared

against many submitted games over time.

JSidentify: A Hybrid Framework for Detecting Plagiarism Among JavaScript Code in Online Mini Games ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea

Figure 2: Translation process in the Sewing technique

the Sewing technique uses the Longest Common Subsequence

(LCS) [15] and k-gram [47] algorithms.

Consider that the length of a JS function f , denoted as | f |, is n,
indicating that f has n lines of bytecode t1, ..., tn . A window within

f is its code portion of the specified size s including consecutive

lines of bytecode. From f , we extract a sequence of sliding windows
s1, ..., sn−k+1, each of which, si , contains k consecutive lines of

bytecode ti , ti+1, ..., ti+k−1. Based on this notion, let us consider

two functions fi and fj where | fi | <= | fj |. We define the similarity

between the pair of functions fi and fj as
δ (fi , fj) =maxl ∈1,2, ..., |fj |−k+1 |LCS(fi , sl)|

Intuitively, δ (fi , fj) denotes the length of fi ’s longest common

subsequence (LCS) that is contained in the sliding windows ex-

tracted from fj . A larger similarity value indicates that more equiv-

alent instructions are similar.

Algorithm 1 shows the steps for computing similarity across

two functions fi and fj where | fi | <= | fj |. Note that in WeChat’s

application setting, we set k (the window size as the third parameter

of Algorithm 1) as | fi | (which ismin(| fi |, | fj |)) to find which part

of fj is cloned with fi .

Algorithm 1 Computation of function similarity

1: function Computation_of_function_similarity(fi , fj ,k)
2: set S = [[t1, ..., tk], ..., [t |fj |−k+1, ...t |fj |]]

3: set similarity = MIN_INT
4: set q = 0

5: repeat
6: set q = q + 1
7: LCSr esult = |LCS(S[q], fi)|
8: similarity =max(similarity, LCSr esult)
9: until q = | fj | − k + 1
10: return similarity
11: end function

Time complexity of calculating LCS (with binary search [28]) in

two strings whose maximum length is z isO(z ∗ loд(z)). We need to

compare fi against (n−k +1) sliding windows (i.e., k-grams) where

n is the number of lines in fj . So time complexity of computing

function similarity is O((n − k) ∗ n ∗ loд(n)). In Section 2.1, we

know that bytecode is collected for only those executed functions.

At runtime of a typical mini game, almost 1,000 functions can be

executed. After we remove duplicate functions and library functions

among the executed functions during the data pre-processing, there

are about 100 to 500 unique functions. We define the number of

unique functions as p. Time complexity of computing similarity

between all pairs of functions across two mini games is O(p2 ∗ (n −

k)∗n∗loд(n)) where p,n,k <= 500. In WeChat’s parallel computing

setting, our algorithm typically has the runtime cost of minutes

when being applied on all functions from two mini games.

3.2.3 Computation of Game Similarity. Based on δ (fi , fj) for each
pair of fi and fj from two games G1 and G2, respectively, we

compute the similarity between G1 and G2 via a weighted flow

network named Bytecode Function Graph (BFG) where each edge

(a,b) is labelled with its capacity value (denoted as capacity(a,b))
and weight value (denoted as weiдht(a,b). To construct the BFG,

we first construct two virtual nodes s and t to represent G1 and

G2, respectively. For each function fi in G1 and each function fj
in G2, we construct nodes in the BFG to represent these functions.

To simplify the illustration, we next use fi and fj to refer to their

corresponding nodes in the BFG, respectively.

For each function node fi in G1, we construct an edge (s, fi)with
capacity(s, fi) = | fi | andweiдht(s, fi) = 0. For each function node

fj in G2, we construct an edge (fj , t) with capacity(fj , t) = | fj |
andweiдht(fj , t) = 0. For each node fi in G1 and each node fj in
G2, we construct an edge (fi , fj) with capacity(fi , fj) = δ (fi , fj)

andweiдht(fi , fj) =
1

1+e−α ∗δ (fi ,fj)+β
as the sensitivity of embedding

derived with a logistic function. In WeChat’s application setting,

we configure α = 2 and β = 0.5. The higher possibility that a

function can be embedded into another (i.e., similar to each other),

the weight is closer to 1.

The similarity between G1 and G2 is defined as

δ (G1,G2) =
MaximumW eiдht F low (BFG)∑

i∈1,2, . . .,N |fi |
where BFG represents the BFG constructed from G1 and G2 as

described earlier, N represents the number of functions in G1, fi
represents each function in G1, and the algorithm for

theMaximumWeiдhtFlow function can be found elsewhere [12].

We can know that a large δ (G1,G2) indicates that more of G1’s

lines of bytecode can be embedded into G2. We set an empiri-

cal threshold ϵ to decide whether δ (G1,G2) represents plagiarism.

The time complexity of MaximumWeiдhtFlow in our setting is

O(max(capacity) ∗ N ∗M ∗ loд(N +M)), where N represents the

number of unique executed functions in G1, andM represents the

number of unique executed functions in G2. As discussed earlier,

we can know thatmax(capacity) <= 500 and mostly N ,M <= 500

for a mini game. In WeChat’s parallel computing setting, the total

time of computing both function similarity and game similarity

typically has the runtime cost of minutes when being applied on

two mini games.

3.3 Scene Tree Technique
In a game-engine-based implementation, a scene is defined as a

User Interface (UI) in a period of time of running a mini game,

and game code is designed in units of scenes. Plagiarism code may

undergo multi-type obfuscations (as described in Section 2.2), but

these obfuscations do not change the scenes substantially. Thus,

we design the Scene Tree technique to detect plagiarism. First, we

define features of a scene as a Scene Tree. The tree describes the

runtime data in the scene. Each node in the tree represents runtime

data (e.g., positions and invoked methods) of a component such

as a UI controller, sprite, and action. We next describe the two

ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea Qun Xia et al.

steps in the Scene Tree technique: tree construction and similarity

computation.

3.3.1 Tree Construction. The step of tree construction is to use

the mini-game engine (described in Section 2.1) to gather runtime

data for a mini game, and use the data to construct Scene Trees.

In particular, when running the mini game automatically with

a testing tool
2
adapted from Google Monkey [2], we gather the

runtime data from the game engine to construct Scene Trees. The

Scene Tree constructed for each scene contains multiple nodes.

The root node represents the entrance of the scene. At runtime,

the engine generates runtime data for components in the scene.

In the Scene Tree, we construct a node for each component in the

scene to store its data, e.g., positions and invoked methods. Then

we set these nodes as the children of the root node. When there is

a derivative component c based on a component p, the node for c
becomes the child node of the node for p in the Scene Tree.

3.3.2 Similarity Computation. Various tree comparison algorithms

have been proposed [21, 30]. In consideration of particularity of

the scene data, we propose a customized comparison technique for

Scene Trees as follows.

We first define the edit distance between two nodes n1,n2 as

δ (n1,n2) =max(a1,a2) − c where c is the number of the same data

across two nodes, a1 is the number of the data in n1, and a2 is the
number of the data in n2.

Then we compute the edit distance between two Scene Trees T1
and T2 as δ (T1,T2) =

∑
i , j δ (ni ,nj) where i and j are pairs of the

corresponding nodes in the same tree depth and positions acrossT1
andT2. Basically, to prevent precision loss, we just compute the edit

distance ofT 1 andT 2 by summing all the edit distances between the

corresponding nodes in the same tree depth and position between

T1 and T2.
Finally, we compute the similarity of G1 and G2 as follows. We

define e and f as the number of the Scene Trees in Games G1

and G2, respectively. We consider each Scene Tree as a node and

construct a bipartite graph [37] of G1 and G2. We set an empirical

threshold ϵ such that we construct an edge between two nodes

pairwise across G1 and G2 only if the two nodes’ edit distance is

<= ϵ . We use the Hungarian algorithm [37] to find the matching

number of the bipartite graph of G1 and G2, denoted as m. We

then compute the similarity of G1 and G2 as similarity(G1,G2) =
m/min(e, f). Figure 3 shows the process of constructing Scene Trees
and computing similarity in JSidentify.

The time complexity of comparing two games G1 and G2 is

O(q ∗w ∗ e ∗ f + (e + f) ∗ h), where q is the maximum number of

nodes in a Scene Tree from G1 and G2,w is the maximum number

of data in a Scene Tree node, e and f are the number of the Scene

Trees in two games G1 and G2, respectively, and h is the number

of edges in the bipartite graph. For a typical mini game, q <= 500,

w <= 20, and there are only tens of scenes (i.e., Scene Trees). In

WeChat’s parallel computing setting, our algorithm for computing

similarity of two games typically has the runtime cost of seconds.

2
In WeChat’s application setting, we set the running time of the testing tool as 5

minutes. Note that the testing tool needs to be applied on each repository game or

each submitted game only once, even when each repository game will be compared

against many submitted games over time.

Figure 3: Overview of Scene Tree Construction and Compar-
ison in JSidentify
3.4 Constructing Priority List of Applying

Techniques
A key consideration in our hybrid framework is to deal with a

huge number of programs including substantially obfuscated code.

In addition, along the way of defending against plagiarism, more

and more techniques are proposed and added in our framework

in addition to the preceding three techniques (Sections 3.1, 3.2,

and 3.3). If we apply all the techniques (even in a parallel computing

setting), the running time can be long while consuming expensive

computing resources.

To improve efficiency while ensuring high effectiveness, we de-

tect plagiarism by applying the included techniques one at a time in

a priority list, and each applied technique compares the submitted

program with repository programs in a parallel computing setting.

In particular, the Scheduler (a component of JSidentify) applies a

technique X to attain the similarity between the submitted pro-

gram Y and repository programs. Based on the threshold value

specified for this technique, the Judger (a component of JSidentify)

determines whether the submitted program plagiarizes any exist-

ing repository program or not. If not, the Scheduler then applies

X ’s subsequent technique in the priority list. The Scheduler stops

until the Judger considers the submitted program to be plagiarism

or until all techniques are applied to compare the submitted pro-

gram against each repository program from the repository and no

plagiarism is determined by the Judger.

We construct the order in the priority list based on each included

technique’s detection gain, defined similar to gain computed by

information entropy in a general priority list. To compute the de-

tection gain for each included technique, we apply the technique

on the same large number of pairs of affirmatory plagiarism code

denoted asCC below, sampled from online mini games in WeChat’s

repository. Then we compute average similarity and average run-

ning time (of applying the technique for detection). We define the

technique’s detection gain as follows:

DetectionGain =
AvдSimilar ity

AvдRunninдT ime where

AvдSimilarity =
∑M ∗ (M−1)

i=1 Similar ity(CCi)
M ∗ (M−1)

AvдRunninдTime =
∑M ∗ (M−1)

i=1 RunninдT ime(CCi)
M ∗ (M−1)

where CC =< (C1,C2), (C1,C3), ..., (Ci ,C j)..., (CM ,CM − 1) >

i = 1, ...,M, j = 1, ..M − 1, i , j
A larger detection gain of a technique indicates that this tech-

nique tends to achieve higher detection recall and/or higher de-

tection efficiency, and this technique should be placed closer to

the top of the priority list. Note that the gain-computation time is

JSidentify: A Hybrid Framework for Detecting Plagiarism Among JavaScript Code in Online Mini Games ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea

just one-time effort, not needed when applying a technique on a

submitted program.

4 EVALUATIONS
We evaluate our JSidentify framework (we refer to JSidentify as an

approach in the rest of this section for ease of presentation) on both

plagiarism detection for JS online mini games and clone detection

for general JS code. In this section, we first introduce evaluation

setup and then discuss evaluation results.

4.1 Evaluation Setup
4.1.1 Evaluation Metrics. In our evaluations, we use the metrics of

recall, precision, and F1-score to assess JSidentify and other related

approaches under comparison. The recall metric is commonly used

in Information Retrieval (IR) research; in our setting, the recall is

the number of detected real plagiarism-case pairs divided by the

total number of real plagiarism-case pairs. In particular, we use

T to denote the number of plagiarism-case pairs detected by an

approach, F to denote the number of detected plagiarism-case pairs

that are actually not real ones, TP to denote the number of real

plagiarism-case pairs. The recall and precision metrics are defined

as below:

Recall = T−F
T P

Precision = T−F
T

We also use the F1-score metric to measure the overall effective-

ness of an approach:

F1-score = 2∗Precision∗Recall
Precision+Recall

4.1.2 Related Approaches Under Comparison. Due to the high eval-

uation cost, we first collect an initial set of related state-of-the-art

approaches and compare their effectiveness on clone detection,

and then select the most effective ones for being used as related

approaches under further comparison in our evaluations.

In particular, our initial set of five related state-of-the-art ap-

proaches includeMOSS [47], JSCD(safe) [20], Jsinspect [6], jscpd [5],

and the JS version for an approach of detectingAndroidmalware [18,

19] based on PDGs and User Interfaces (UIs); we refer to the last

approach as JSMalware in the rest of this paper. To set a desirable

threshold value for each approach, we apply each approach on

samples fromWeChat’s repository of online mini games by varying

similarity threshold values to observe how the precision, recall,

and F1-score vary. For each approach, we set the threshold value

using which the approach can achieve the highest F1-score overall

(if the highest F1-score can be achieved using multiple threshold

values, among these threshold values we set the threshold value

using which the approach can achieve the highest precision).

For the initial screening of the related approaches, we choose an

open-source JS project named math.js (https://mathjs.org/), which

includes 103,334 lines of code with most of its functional code

included in a JS file. We obfuscate it to synthesize its clones with

each of the six obfuscation operations (as listed in Columns 2-7

of Table 1) provided by two obfuscation tools: obfuscator [4] and

UglifyJS [10]. To synthesize a clone, we apply twice each of the

six obfuscation operations on randomly chosen places in math.js.

In particular, for each of the six obfuscation operations, we first

apply obfuscator with this operation on a randomly chosen place in

math.js, and upon the resulting math.js, we further apply UglifyJS

with the same operation on one more randomly chosen place to

produce the final clone.

Table 1 shows the similarity levels between the original math.js

and its synthesized clones, as reported by the five related approaches

along with JSidentify. In general, the similarity levels reported by

the five related approaches are undesirably much lower than the

ones reported by JSidentify. JSidentify reports high similarity levels

(4 greater than 90% and 2 around 80%) for all the 6 synthesized

clones, and JSCD(safe) and Jsinspect report >= 80% similarity lev-

els for 4 and 3 out of the 6 synthesized clones, respectively, while

the remaining MOSS, jscpd, and JSMalware perform undesirably,

which report >= 80% similarity levels for 0, 1, and 1 clones out of

the 6 synthesized clones, respectively.

According to the results, we select three approaches: JSCD(safe),

Jsinspect, and MOSS, as our final set of related approaches under

further comparison in our evaluations. JSCD(safe) and Jsinspect

report relatively high similarity levels, much higher than the ones

reported by the remaining related approaches. Jsinspect uses an

algorithm based on ASTs, and JSCD(safe) uses one based on PDGs.

To compare against a representative related approach using a text-

based algorithm, we also include MOSS as our additional related

approach under comparison, even given that it demonstrates low

effectiveness.

4.1.3 Evaluation Datasets and Setting. For the evaluation on de-

tecting plagiarism among WeChat online mini games, we randomly

select 100 pairs of plagiarism games in WeChat’s repository of pla-

giarism games, and then select 200 non-plagiarism games
3
, each

of which has been manually confirmed not to be involved in a pla-

giarism case. Finally, we conduct all pair combinations among the

preceding 400 games (i.e., pairing each of the 400 games with each

of the remaining 399 games) to form the final 400 ∗ 399 pairs as our

evaluation dataset.

For the evaluation on detecting clones among general JS code,

we choose 10 well-known, classic JS projects with different sizes

and different functionalities in GitHub such as JS Math and JS JSON.

These projects range from approximately 1K to 10M LOC. For each

project, we randomly obfuscate multiple functions in the project

with hybrid plagiarism types (i.e., applying all six obfuscation op-

erations) discussed in Section 2.2 to synthesize the project’s clone.

The 10 pairs of the original project and its synthesized project clone

constitute our evaluation dataset.

We conduct our evaluations in WeChat’s detection environment

with Intel(R) Xeon(R) Gold 61xx CPU and 16GB RAM. We repeat

our evaluations at least three times and the variation of the ob-

served evaluation results is less than 5%. For each approach’s basic

parameter setting, we set default values for general parameters (e.g.,

α = 2 and β = 0.5 in the Sewing technique).

4.2 Plagiarism Detection for Online Mini
Games

We compare JSidentify with the three related approaches MOSS,

Jsinspect, and JSCD(safe) by applying them on the evaluation dataset

described in Section 4.1.3. Because the similarity threshold values

3
Some of these 200 games also show relatively high similarity between each other.

https://mathjs.org/

ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea Qun Xia et al.

Table 1: Similarity levels (between math.js and its clones synthesized with each of six obfuscation operations) reported by
JSidentify and five related approaches

Detectors Identifier

Modifications

Dead Code

Injection

Control Flow

Flattening

String

Splitting

Nested

Function

String Array

Encoding

JSidentify 99.1% 99.7% 83.5% 96.5% 79.6% 93.2%

MOSS 77.5% 25.4% 6.0% 0.0% 23.3% 15.1%

jscpd 94.4% 41.2% 9.2% 0.0% 5.1% 0.0%

Jsinspect 95.7% 93.2% 30.5% 87.1% 5.1% 25.1%

JSCD(safe) 96.8% 99.9% 64.7% 95.3% 17.4% 96.4%

JSMalware 89.5% 45.3% 55.1% 7.0% 3.5% 1.3%

Table 2: The best F1-score result (across all the threshold
values) and average detection time of JSidentify and three
related approaches in plagiarism detection for online mini
games

Detectors Recall Precision F1-score Avg De-

tection

time

JSidentify 100.0% 99.1% 99.54 % 13.6s/pair

Jsinspect 68.0% 78.0% 72.65 % 5.7s/pair

JSCD(safe) 61.0% 89.0% 72.18 % 81.3s/pair

MOSS 100.0% 50.0% 66.77 % 1.2s/pair

used by different approaches to determine plagiarism are different,

we compute the metric values of precision, recall, and F-1 score

with respect to the similarity threshold value ranging from 0 to

1 with interval of 0.1. Figure 4 shows the evaluation results. The

results show that JSidentify achieves the best effectiveness in preci-

sion and recall no matter what threshold value is set. MOSS also

achieves great precision but suffers from the lowest recall. When

the threshold value is set as low, each approach achieves high recall.

However, low precision achieved by an approach makes it not appli-

cable in practice. When the threshold value is increased, the recall

achieved by an approach tends to become lower; however, being

able to handle Type IV clones, JSidentify still achieves relatively

high recall when the threshold value is relatively high. Column 4

of Table 2 shows the best F-1 score results (and their corresponding

recall and precision in Columns 2 and 3) across all the threshold

values. In summary, JSidentify achieves the best evaluation results.

We also measure average detection time for each approach, as

listed in the last column of Table 2. The results show that JSCD(safe)

spends on average 81.3 seconds per game pair to detect plagiarism,

whereas JSidentify spends on average 13.6 seconds per game pair.

Despite being higher than the average detection time of MOSS and

Jsinspect, JSidentify’s average detection time is still reasonable in

WeChat’s application setting.

4.3 Clone Detection for General JS Code
Because there are no game engines in general JS code, this evalua-

tion assesses JSidentify without including the Scene Tree technique.

Considering the influence of threshold values, for an approach

Figure 4: Recall and precision with different threshold val-
ues in plagiarism detection by JSidentify and three related
approaches for online mini games

assessed in this evaluation, we adopt the threshold value used to

achieve the best F1-score result (as shown in Table 2).

Because we set the resulting clone project (synthesized via ob-

fuscation operations) as the plagiarism case in the 10 project pairs,

we can ensure the ground-truth cases. Table 3 shows the detec-

tion results of the 10 project pairs. The results show that JSidentify

achieves the best effectiveness results. Moreover, JSCD(safe) reaches

80.0% recall and precision in clone detection for general JS code.

JSCD(safe) achieves great effectiveness for online mini games too as

shown in Table 2. However, Jsinspect achieves only 40.0% recall and

57.1% F1-score in clone detection for general JS code, in contrast to

its high effectiveness in plagiarism detection for online mini games.

Figure 5 shows the detection time of JSidentify and the three

related approaches. The results show that JSidentify spends afford-

able detection time with scalability up to 10 million LOC. But when

dealing with 10 million LOC, the detection time of JSidentify is not

affordable in practice. Still, this result demonstrates JSidentify’s

very good scalability already. In contrast, JSCD(safe) cannot pro-

duce results even for 10 million LOC, because it adopts a graph

isomorphism algorithm with high time complexity. Compared to

other approaches, JSidentify does not spend the shortest detection

JSidentify: A Hybrid Framework for Detecting Plagiarism Among JavaScript Code in Online Mini Games ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea

Table 3: Recall, precision, and F1-score of JSidentify and
three related approaches in clone detection for general JS
code

Detector Recall Precision F1-score

JSidentify 100.0% 100.0% 100.0%

JSCD(safe) 80.0% 80.0% 80.0%

Jsinspect 40.0% 100.0% 57.1%

MOSSM 20.0% 100.0% 33.3%

Figure 5: Detection time of JSidentify and three related
approaches in projects with different LOCs (the detection
time’s reaching 10000 seconds indicates that the approach
is unable to finish the detection within 10000 seconds)

time, but it can detect various plagiarism cases. While MOSS spends

the shortest detection time, it focuses on only limited textual clones.

4.4 Summary of Evaluation Results
JSidentify achieves the best recall, precision, and F1-score for gen-

eral or mini-game JS plagiarism. The detection time of JSidentify

is not the shortest, longer than the detection time of Jsinspect and

MOSS, because of substantial time required by some included tech-

niques such as the Sewing technique in JSidentify. In summary,

JSidentify achieves the best effectiveness (the best recall, precision,

and F1-score) for detecting JS plagiarism, with affordable detection

time.

5 DISCUSSION
In 2018, plagiarism games accounted for 21% of online mini games

in WeChat, a popular messenger app with over 1 billion monthly

active users. Currently there are already more than 200,000 game

versions for tens of thousands of online mini games in WeChat’s

repository. After we deploy JSidentify, JSidentify has conducted 1.5

billion comparisons (between a submitted game and a repository

game version) during its deployment period of about 11 months.

JSidentify can scale to comparing a mini game (averagely 10,000

LOC) against more than 200,000 game versions in WeChat’s repos-

itory, to effectively conduct plagiarism detection in averagely 6

minutes. Thanks to JSidentify, the proportion of plagiarism games

has dropped to 4% so far, indicating that JSidentify is indispensable

in the daily operations of online mini games in WeChat.

However, given that plagiarists can continue to obfuscate code

for further attempting to escape the detection by JSidentify, detect-

ing plagiarism code in JS is still a long-standing challenge for our

ongoing and future work, with three example aspects listed below.

First, JSidentify integrates various techniques only loosely by

prioritizing the applications of these techniques in order to re-

duce the detection time. To achieve higher effectiveness and effi-

ciency, we plan to design techniques to tightly integrate various

techniques [48] by getting the best of these techniques without

suffering from their respective weaknesses.

Second, JSidentify achieves low precision when an online mini

game under detection includes code from third-party libraries such

as code from the game engine. In such situations, the similarity

between the online mini game and a repository game can be high.

Existing approaches cannot handle these situations effectively. To

address this limitation, we maintain a collection of code from third-

party libraries (typically used by online mini games) collected from

various sources. Based on code matching against this collection

during pre-processing, we can remove or tag common code from

third-party libraries and ignore it during plagiarism detection.

Third, JSidentify incurs higher detection time when the num-

ber of online mini games in WeChat’s repository increases over

time. With more and more online mini games being uploaded to

WeChat, massive data pose a major system challenge. Over time,

the existing storage system has suffered from a rapid decline of

file I/O write/read speed, and if the number of online mini games

continues to rise, the system may spend a lot of time to fetch a pro-

gram from the storage system. To address scalability issues faced

by the storage system, we plan to adopt a new file system with high

scalability.

In addition, for an upcoming program under detection, before

going through JSidentify’s detection with relatively high cost, we

plan to first apply a much faster but less robust approach to effi-

ciently match the program against our collection of programs with

plagiarism, e.g., based on simple string hashing of the program

code. If the program under detection is a duplicate of an already

detected program with plagiarism, this faster approach can succeed

and we can skip the application of JSidentify.

6 CONCLUSION
In this paper, we have presented JSidentify, a novel framework

for detecting plagiarism cases in WeChat’s online mini games. We

have illustrated three JSidentify techniques proposed based on

different levels of code abstraction. JSidentify applies the included

techniques in the constructed priority list one by one to reduce

overall detection time. Our evaluation results show that JSidentify

outperforms other existing related approaches and achieves the

best precision and recall within affordable detection time when

detecting plagiarism among online mini games and clones among

general JS programs. Our deployment experience of JSidentify has

ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea Qun Xia et al.

also shown that JSidentify is indispensable in the daily operations

of online mini games in WeChat.

REFERENCES
[1] 2020. Cocos2d game engine. http://www.cocos2d.org/.

[2] 2020. Google Monkey. https://developer.android.com/studio/test/monkey.

[3] 2020. Ignition compiler. https://v8.dev/blog/ignition-interpreter.

[4] 2020. JavaScript Obfuscator Tool. https://obfuscator.io/.

[5] 2020. jscpd. https://github.com/kucherenko/jscpd.

[6] 2020. Jsinspect. https://github.com/danielstjules/jsinspect.

[7] 2020. LayaAir game engine. https://github.com/layabox/LayaAir.

[8] 2020. PMD’s copy/paste detector. http://pmd.sourceforge.net/pmd-5.0.5/cpd-

usage.html.

[9] 2020. Simian–similarity analyser. http://www.harukizaemon.com/simian/index.

html.

[10] 2020. UglifyJS. https://github.com/mishoo/UglifyJS.

[11] 2020. V8 compiler. https://v8.dev/.

[12] RK Ahujia, Thomas L Magnanti, and James B Orlin. 1993. Network Flows: Theory,

Algorithms, and Applications. New Jersey: Pentice-Hall (1993).
[13] Arutyun Avetisyan, Shamil Kurmangaleev, Sevak Sargsyan, Mariam Arutunian,

and Andrey Belevantsev. 2015. LLVM-based code clone detection framework. In

Proc. Computer Science and Information Technologies (CSIT). 100–104.
[14] Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens Krinke, and Ettore Merlo.

2007. Comparison and evaluation of clone detection tools. IEEE Transactions on
Software Engineering (TSE) 33, 9 (2007), 577–591.

[15] Lasse Bergroth, Harri Hakonen, and Timo Raita. 2000. A survey of longest

common subsequence algorithms. In Proc. International Symposium on String
Processing and Information Retrieval (SPIRE). 39–48.

[16] Elizabeth Burd and John Bailey. 2002. Evaluating clone detection tools for use

during preventative maintenance. In Proc. IEEE International Workshop on Source
Code Analysis and Manipulation (SCAM). 36–43.

[17] Patrick PF Chan, Lucas CK Hui, and Siu-Ming Yiu. 2012. Heap graph based

software theft detection. IEEE Transactions on Information Forensics and Security
(TIFS) 8, 1 (2012), 101–110.

[18] Kai Chen, Peng Liu, and Yingjun Zhang. 2014. Achieving accuracy and scalability

simultaneously in detecting application clones on Android markets. In Proc.
International Conference on Software Engineering (ICSE). 175–186.

[19] Kai Chen, PengWang, Yeonjoon Lee, XiaoFengWang, Nan Zhang, Heqing Huang,

Wei Zou, and Peng Liu. 2015. Finding unknownmalice in 10 seconds: Mass vetting

for new threats at the Google-Play scale. In Proc. USENIX Security Symposium
(USENIX Security). 659–674.

[20] Wai Ting Cheung, Sukyoung Ryu, and Sunghun Kim. 2016. Development nature

matters: An empirical study of code clones in JavaScript applications. Empirical
Software Engineering (ESE) 21, 2 (2016), 517–564.

[21] Hung Chim and Xiaotie Deng. 2007. A new suffix tree similarity measure for

document clustering. In In Proc. International Conference on World Wide Web
(WWW). 121–130.

[22] Mihai Christodorescu, Somesh Jha, Sanjit A Seshia, Dawn Song, and Randal E

Bryant. 2005. Semantics-aware malware detection. In Proc. IEEE Symposium on
Security and Privacy (S&P). 32–46.

[23] Georgina Cosma and Mike Joy. 2008. Towards a definition of source-code plagia-

rism. IEEE Transactions on Education (TOE) 51, 2 (2008), 195–200.
[24] Neil Davey, Paul Barson, Simon Field, Ray Frank, and D Tansley. 1995. The de-

velopment of a software clone detector. International Journal of Applied Software
Technology (IJAST) (1995).

[25] Stéphane Ducasse, Matthias Rieger, and Serge Demeyer. 1999. A language in-

dependent approach for detecting duplicated code. In Proc. IEEE International
Conference on Software Maintenance (ICSM). 109–118.

[26] Arnaldo Hernandez and Arnoldo Hernandez. 1989. Just-In-Time manufacturing:
A practical approach. Prentice Hall Englewood Cliffs, NJ.

[27] Rosco Hill and Joe Rideout. 2004. Automatic method completion. In Proc. IEEE
International Conference on Automated Software Engineering (ASE). 228–235.

[28] Costas S Iliopoulos and M Sohel Rahman. 2008. New efficient algorithms for the

LCS and constrained LCS problems. Information Processing Letters (IRL) 106, 1
(2008), 13–18.

[29] Yoon-Chan Jhi, XinranWang, Xiaoqi Jia, Sencun Zhu, Peng Liu, and DinghaoWu.

2011. Value-based program characterization and its application to software pla-

giarism detection. In Proc. International Conference on Software Engineering(ICSE).
756–765.

[30] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. 2007.

Deckard: Scalable and accurate tree-based detection of code clones. In Proc.
International Conference on Software Engineering (ICSE). 96–105.

[31] Yanyan Jiang and Chang Xu. 2018. Needle: Detecting code plagiarism on student

submissions. In In Proc. ACM Turing Celebration Conference - China (TURC).
27–32.

[32] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. 2002. CCFinder: A

multilinguistic token-based code clone detection system for large scale source

code. IEEE Transactions on Software Engineering (TSE) 28, 7 (2002), 654–670.
[33] Saruhan Karademir, Thomas Dean, and Sylvain Leblanc. 2013. Using clone

detection to find malware in Acrobat files. In Proc. Conference of the Center for
Advanced Studies on Collaborative Research (CASCON). 70–80.

[34] Raminder Kaur and Satwinder Singh. 2014. Clone detection in software source

code using operational similarity of statements. SIGSOFT Softw. Eng. Notes 39, 3
(June 2014), 1–5.

[35] Miryung Kim, Vibha Sazawal, David Notkin, and Gail Murphy. 2005. An empirical

study of code clone genealogies. In Proc. European Software Engineering Conference
held jointly with 13th ACM SIGSOFT International Symposium on Foundations of
Software Engineering (ESEC/FSE). 187–196.

[36] Jens Krinke. 2001. Identifying similar code with program dependence graphs. In

Proc. Working Conference on Reverse Engineering (WCRE). 301–309.
[37] HaroldW Kuhn. 1955. The Hungarian method for the assignment problem. Naval

Research Logistics (NRL) 2, 1-2 (1955), 83–97.
[38] Jingyue Li and Michael D Ernst. 2012. CBCD: Cloned buggy code detector. In

Proc. International Conference on Software Engineering (ICSE). 310–320.
[39] Chao Liu, Chen Chen, Jiawei Han, and Philip S Yu. 2006. GPLAG: Detection

of software plagiarism by program dependence graph analysis. In Proc. ACM
International Conference on Knowledge Discovery and Data Mining (SIGKDD).
872–881.

[40] Jean Mayrand, Claude Leblanc, and Ettore Merlo. 1996. Experiment on the

automatic detection of function clones in a software system using metrics. In

Proc. IEEE International Conference on Software Maintenance (ICSM). 244–253.
[41] Dhavleesh Rattan, Rajesh Bhatia, and Maninder Singh. 2013. Software clone

detection: A systematic review. Information and Software Technology (IST) 55, 7
(2013), 1165–1199.

[42] Chanchal K Roy and James R Cordy. 2007. A survey on software clone detection
research. Technical Report 2007-541. School of Computing Queen’s University at

Kingston, Ontario, Canada.

[43] Chanchal K Roy and James R Cordy. 2009. A mutation/injection-based automatic

framework for evaluating code clone detection tools. In Proc. IEEE International
Conference on Software Testing, Verification, and Validation Workshops (ICST).
157–166.

[44] Chanchal K Roy, James R Cordy, and Rainer Koschke. 2009. Comparison and

evaluation of code clone detection techniques and tools: A qualitative approach.

Science of Computer Programming (SCP) 74, 7 (2009), 470–495.
[45] Sukyoung Ryu and Sukyoung Ryu. 2017. Analysis of JavaScript programs: Chal-

lenges and research trends. ACM Computing Surveys (CSUR) 50, 4 (2017), 1–34.
[46] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K Roy, and Cristina V

Lopes. 2016. SourcererCC: Scaling code clone detection to big code. In Proc.
International Conference on Software Engineering (ICSE). 1157–1168.

[47] Saul Schleimer, Daniel S Wilkerson, and Alex Aiken. 2003. Winnowing: Local

algorithms for document fingerprinting. In Proc. ACM SIGMOD International
Conference on Management of Data (SIGMOD). 76–85.

[48] Abdullah Sheneamer, Swarup Roy, and Jugal Kalita. 2018. A detection framework

for semantic code clones and obfuscated code. Expert Systems with Applications
(ESA) 97 (2018), 405–420.

[49] Leonardo Humberto Silva, Daniel Hovadick, Marco Tulio Valente, Alexandre

Bergel, Nicolas Anquetil, and Anne Etien. 2016. JSClassFinder: A tool to detect

class-like structures in JavaScript. arXiv preprint arXiv:1602.05891 (2016).
[50] Pengcheng Wang, Jeffrey Svajlenko, Yanzhao Wu, Yun Xu, and Chanchal K Roy.

2018. CCAligner: A token based large-gap clone detector. In Proc. International
Conference on Software Engineering (ICSE). 1066–1077.

http://www.cocos2d.org/
 https://developer.android.com/studio/test/monkey
https://v8.dev/blog/ignition-interpreter
https://obfuscator.io/
https://github.com/kucherenko/jscpd
https://github.com/danielstjules/jsinspect
https://github.com/layabox/LayaAir
http://pmd.sourceforge.net/pmd-5.0.5/cpd-usage.html
http://pmd.sourceforge.net/pmd-5.0.5/cpd-usage.html
http://www.harukizaemon.com/simian/index.html
http://www.harukizaemon.com/simian/index.html
https://github.com/mishoo/UglifyJS
https://v8.dev/

