
Improving Effectiveness of Automated Software Testing

in the Absence of Specifications

Tao Xie

Department of Computer Science

North Carolina State University

Raleigh, NC 27695

xie@csc.ncsu.edu

Abstract

Program specifications can be valuable in improving the

effectiveness of automated software testing in generating

test inputs and checking test executions for correctness. Un-

fortunately, specifications are often absent from programs

in practice. We present a framework for improving effective-

ness of automated testing in the absence of specifications.

The framework supports a set of related techniques, in-

cluding redundant-test detection, non-redundant-test gener-

ation, test selection, test abstraction, and program-spectra

comparison. The framework has been implemented and em-

pirical results have shown that the developed techniques

within the framework improve the effectiveness of auto-

mated testing by detecting high percentage of redundant

tests among test inputs generated by existing tools, gener-

ating non-redundant test inputs to achieve high structural

coverage, reducing inspection efforts for detecting problems

in the program, and exposing behavioral differences during

regression testing.

1 Introduction

To reduce the laborious human effort in software testing,

developers can conduct automated software testing by using

tools to automate some activities in software testing. Soft-

ware testing activities typically include generating test in-

puts, running test inputs, and verifying test executions. De-

velopers can use some existing frameworks or tools such as

the JUnit testing framework [5] to write unit-test inputs and

their expected outputs. Then the JUnit framework can auto-

mate running test inputs and verifying actual outputs against

the manually written assertions. To reduce the burden of

manually creating test inputs, developers can use some ex-

isting test-input generation tools [1, 3, 11] to generate test

inputs automatically. After developers modify a program,

they can conduct regression testing by rerunning the exist-

ing test inputs in order to assure that no regression faults are

introduced. Even when expected outputs are not created for

the existing test inputs, the actual outputs produced by the

new version can be automatically compared with the ones

produced by the old version in order to detect behavioral

differences. There are two major challenges in automated

software testing:

Generate test inputs effectively. In testing object-

oriented problems, a test input typically consists of a se-

quence of method calls on the objects of the class; in-

puts for method calls consist of not only method arguments

but also receiver-object states, which are sometimes struc-

turally complex inputs, such as linked data structures that

must satisfy complex properties. Method sequences can be

generated to construct desired object states indirectly [11];

however, it is generally expensive to enumerate all possible

method sequences even given a small number of argument

values and a small bound on the maximum sequence length.

Verify test executions effectively. Test inputs can be

automatically generated but the expected outputs for gener-

ated test inputs often cannot be generated without specifica-

tions. When no expected outputs are available, developers

often rely on program crashes or uncaught exceptions [3]

as symptoms for unexpected behavior; however, it is lim-

ited in exploiting these generated test inputs by verifying

only whether the program crashes or throws uncaught ex-

ceptions. In regression testing, developers can compare the

actual outputs of a new version of the program with the ac-

tual outputs of a previous version; however, behavioral dif-

ferences between versions often cannot be propagated to the

observable outputs that are compared between versions.

Although specifications can be used to improve the ef-

fectiveness of generating test inputs and checking program

correctness when running test inputs without expected out-

puts, specifications often do not exist in practice. Our re-

search focuses on developing a framework for improving



effectiveness of automated testing in the absence of speci-

fications. The framework includes techniques and tools for

improving the effectiveness of generating test inputs and in-

specting their executions for correctness, two major chal-

lenges in automated software testing.

2 Framework

Figure 1 shows our framework for improving effective-

ness of automated testing. The framework consists of two

groups of components. The first group of components —the

redundant-test detector [14] and non-redundant-test genera-

tor [14, 15]— addresses the issues in generating test inputs.

The second group of components (the test selector [17], test

abstractor [18, 19], and program-spectra comparator [20])

infers program behavior dynamically in order to address the

issues in checking the correctness of test executions. The

second group of components further sends feedback infor-

mation to the first group to guide test generation [16].

2.1 Redundant-Test Detector

Existing unit-test-generation tools generate a large num-

ber of test inputs to exercise different sequences of method

calls in the interface of the class under test. Different com-

binations of method calls on the class under test result in a

combinatorial explosion of tests. Because of resource con-

straints, existing test-generation tools often generate differ-

ent sequences of method calls whose lengths range from

one [3] to three [11]. However, sequences of up-to-three

method calls are often insufficient for detecting faults or

satisfying test adequacy criteria. In fact, a large portion of

these different sequences of method calls exercise no new

method behavior; in other words, the tests formed by this

large portion of sequences are redundant tests. We have de-

fined redundant tests by using method-input values (includ-

ing both argument values and receiver-object states). When

the method-input values of each method call in a test have

been exercised by the existing tests, the test is considered as

a redundant test even if the sequence of method calls in the

test is different from the one of any existing test. We have

developed a redundant-test detector, which can post-process

a test suite generated by existing test-generation tools and

output a reduced test suite containing no redundant tests.

Our approach not only presents a foundation for existing

tools that generate non-redundant tests [2, 10] but also en-

ables any other test-generation tools [3, 11] to avoid gen-

erating redundant tests by incorporating the redundant-test

detection in their test generation process. Our experimental

results have shown the effectiveness of the redundant-test

detection tool: about 90% of the tests generated by a com-

mercial testing tool [11] are detected and reduced by our

tool as redundant tests.

Program 

execution 

info

Program

+

Test 

inputs

Test
generator

Test 

inputs

Redundant-test 

detector

Non-

redundant-test 

generator

Existing test 

generators

Test 

executor

Test

selector

Test

abstractor

Program

spectra

comparator

Test 

generation

Behavior 

inference

Feedback

Figure 1. Framework for improving effective-

ness of automated testing

2.2 Non-Redundant-Test Generator

Based on the notion of avoiding generating redundant-

tests, we have developed a non-redundant-test generator,

which explores the concrete or symbolic receiver-object

state space by using method calls (through normal program

execution or symbolic execution). The test generator based

on concrete-state exploration faces the state explosion prob-

lem. Recently, symbolic execution [8] has been used to di-

rectly construct symbolic states for receiver objects [7, 13];

however, the application of symbolic execution requires the

user to provide specially constructed class invariants [9].

Without requiring any class invariant, our test generator can

also use symbolic execution of method sequences to explore

the symbolic receiver-object states and prune this explo-

ration based on novel state comparisons (comparing both

heap representations and symbolic representations). Our

extension and application of symbolic execution in state

exploration not only alleviate the state explosion problem

but also generate relevant method arguments for method se-

quences automatically by using a constraint solver. Our

experimental results have shown the effectiveness of the

test generation based on symbolic-state exploration: it can

achieve higher branch coverage faster than the test genera-

tion based on concrete-state exploration.

2.3 Test Selector

Because it is infeasible for developers to inspect the ac-

tual outputs of a large number of generated tests, we have

developed a test selector to select a small valuable subset

of generated tests for inspection. These selected tests ex-

ercise new behavior that has not been exercised by the ex-



isting test suite. In particular, we use Daikon [4] to infer

program behavior dynamically from the execution of the

existing (manually) constructed test suite. We next feed in-

ferred behavior in the form of specifications to an existing

specification-based test-generation tool [11]. The tool gen-

erates tests to violate the inferred behavior. These violat-

ing tests are selected for inspection, because these violating

tests exhibit behavior different from the behavior exhibited

by the existing tests. Developers can inspect these violat-

ing tests together with the violated properties, equip these

tests with expected outputs, and add them to the existing

test suite. Our experimental results have shown that the se-

lected tests have a high probability of exposing anomalous

program behavior (either faults or failures) in the program.

2.4 Test Abstractor

Instead of selecting a subset of generated tests for in-

spection, our test abstractor summarizes and abstracts the

receiver-object-state transition behavior exercised by all the

generated tests. Because the concrete-state transition dia-

gram for receiver objects is too complicated for developers

to inspect, the test abstractor uses a state abstraction tech-

nique based on the observers in a class interface; these ob-

servers are the public methods whose return types are not

void. An abstract state for a concrete state is represented by

the concrete state’s observable behavior, consisting of the

return values of observer-method calls on the concrete state.

The abstract states and transitions among them are used to

construct succinct state transition diagrams for developers

to inspect. Our evaluation has shown that the abstract-state

transition diagrams can help discover anomalous behavior,

debug exception-throwing behavior, and understand normal

behavior in the class interface.

2.5 Program-Spectra Comparator

In regression testing, comparing the actual outputs of

two program versions is limited in exposing the internal be-

havioral differences during the program execution, because

internal behavioral differences often cannot be propagated

to observable outputs. A program spectrum is used to char-

acterize a program’s behavior [12]. We propose a new class

of program spectra, called value spectra, to enrich the exist-

ing program spectra family, which primarily includes struc-

tural spectra (such as path spectra [6, 12]). Value spectra

capture internal program states during a test execution. A

deviation is the difference between the value of a variable

in a new program version and the corresponding one in an

old version. We have developed a program-spectra com-

parator that compares the value spectra from an old version

and a new version, and uses the spectra differences to detect

behavior deviations in the new version. Furthermore, value

spectra differences can be used to locate deviation roots,

which are program locations that trigger the behavior devi-

ations. Inspecting value spectra differences can allow de-

velopers to determine whether program changes introduce

intended behavioral differences or regression faults. Our

experimental results have shown that comparing value spec-

tra can effectively expose behavioral differences between

versions even when their actual outputs are the same, and

value spectra differences can be used to locate deviation

roots with high accuracy.

2.6 Feedback Loop

Dynamic behavior inference requires a good-quality test

suite to infer behavior that is close to what shall be de-

scribed by a specification (if it is manually constructed).

On the other hand, specification-based test generation can

help produce a good-quality test suite but requires specifi-

cations, which often do not exist in practice. There seems

to be a circular dependency between dynamic behavior in-

ference and (specification-based) test generation. To exploit

the circular dependency and alleviate the problem, we pro-

pose a feedback loop between behavior inference and test

generation. The feedback loop starts with an existing test

suite (constructed manually or automatically) or some exist-

ing program runs. By using one of the behavior-inference

components (the test selector, test abstractor, or program-

spectra comparator), we first infer behavior based on the

existing test suite or program runs. We then feed inferred

behavior to a specification-based test-generation tool or a

test-generation tool that can exploit the inferred behavior to

improve its test generation. The new generated tests can

be used to infer new behavior. The new behavior can be

further used to guide test generation in the subsequent it-

eration. Iterations terminate until a user-defined maximum

iteration number has been reached or no new behavior has

been inferred from new tests. This feedback loop provides

a means to producing better tests and better approximated

specifications automatically and incrementally. In addition,

the by-products of the feedback loop are a set of selected

tests for inspection; these selected tests exhibit new behav-

ior that has not been exercised by the existing tests.

3. Conclusion

We have proposed a framework for improving effective-

ness of automated testing in the absence of specifications. A

set of techniques and tools have been developed within the

framework. First, we have defined redundant tests based

on method input values and developed a tool for detecting

redundant tests among automatically generated tests; these

identified redundant tests increase testing time without in-

creasing the ability to detect faults or increasing develop-



ers’ confidence on the program under test. Second, we

have developed a tool that generates only non-redundant

tests by executing method calls symbolically to explore the

symbolic-state space. Symbolic execution not only allows

us to reduce the state space for exploration but also gener-

ates relevant method arguments automatically. Third, we

have used Daikon [4] to infer behavior exercised by the ex-

isting tests and fed the inferred behavior in the form of spec-

ifications to a specification-based test generation tool [11].

Developers can inspect those generated tests that violate

these inferred behavior, instead of inspecting a large num-

ber of all generated tests. Fourth, we have used the returns

of observer methods to group concrete states into abstract

states, from which we construct succinct observer abstrac-

tions for inspection. Fifth, we have defined value spectra to

characterize program behavior, compared the value spectra

from an old version and a new version, and used the spectra

differences to detect behavior deviations in the new version.

We have further used value spectra differences to locate de-

viation roots. Finally, putting behavior inference and test

generation together, we can construct a feedback loop be-

tween these two types of dynamic analysis, starting with an

existing test suite (constructed manually or automatically)

or some existing program runs. The feedback loop produces

better tests and better approximated specifications automat-

ically and incrementally.

4. Acknowledgments

I would like to thank my Ph.D. advisor, David Notkin,

and my collaborators in my Ph.D. research: Darko Marinov,

Amir Michail, Wolfram Schulte, and Jianjun Zhao.

References

[1] Agitar Agitator 3.0, 2005. http://www.agitar.com/.

[2] C. Boyapati, S. Khurshid, and D. Marinov. Korat: auto-

mated testing based on Java predicates. In Proc. Interna-

tional Symposium on Software Testing and Analysis, pages

123–133, 2002.

[3] C. Csallner and Y. Smaragdakis. JCrasher: an automatic ro-

bustness tester for Java. Software: Practice and Experience,

34:1025–1050, 2004.

[4] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.

Dynamically discovering likely program invariants to sup-

port program evolution. IEEE Trans. Softw. Eng., 27(2):99–

123, 2001.

[5] E. Gamma and K. Beck. JUnit, 2003. http://www.

junit.org.

[6] M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi.

An empirical investigation of the relationship between spec-

tra differences and regression faults. Journal of Software

Testing, Verification and Reliability, 10(3):171–194, 2000.

[7] S. Khurshid, C. S. Pasareanu, and W. Visser. Generalized

symbolic execution for model checking and testing. In Proc.

9th International Conference on Tools and Algorithms for

the Construction and Analysis of Systems, pages 553–568,

April 2003.

[8] J. C. King. Symbolic execution and program testing. Com-

mun. ACM, 19(7):385–394, 1976.

[9] B. Liskov and J. Guttag. Program Development in Java:

Abstraction, Specification, and Object-Oriented Design.

Addison-Wesley, 2000.

[10] D. Marinov and S. Khurshid. TestEra: A novel framework

for automated testing of Java programs. In Proc. 16th IEEE

International Conference on Automated Software Engineer-

ing, pages 22–31, 2001.

[11] Parasoft Jtest 4.5, 2003. http://www.parasoft.

com/.

[12] T. Reps, T. Ball, M. Das, and J. Larus. The use of program

profiling for software maintenance with applications to the

year 2000 problem. In Proc. 6th ESEC/FSE, pages 432–449,

1997.

[13] W. Visser, C. S. Pasareanu, and S. Khurshid. Test input gen-

eration with Java PathFinder. In Proc. 2004 ACM SIGSOFT

International Symposium on Software Testing and Analysis,

pages 97–107, 2004.

[14] T. Xie, D. Marinov, and D. Notkin. Rostra: A framework

for detecting redundant object-oriented unit tests. In Proc.

19th IEEE International Conference on Automated Software

Engineering, pages 196–205, Sept. 2004.

[15] T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra:

A framework for generating object-oriented unit tests using

symbolic execution. In Proc. 11th International Conference

on Tools and Algorithms for the Construction and Analysis

of Systems, pages 365–381, April 2005.

[16] T. Xie and D. Notkin. Mutually enhancing test generation

and specification inference. In Proc. 3rd International Work-

shop on Formal Approaches to Testing of Software, volume

2931 of LNCS, pages 60–69, 2003.

[17] T. Xie and D. Notkin. Tool-assisted unit test selection based

on operational violations. In Proc. 18th IEEE International

Conference on Automated Software Engineering, pages 40–

48, 2003.

[18] T. Xie and D. Notkin. Automatic extraction of object-

oriented observer abstractions from unit-test executions. In

Proc. 6th International Conference on Formal Engineering

Methods, pages 290–305, Nov. 2004.

[19] T. Xie and D. Notkin. Automatic extraction of sliced object

state machines for component interfaces. In Proc. 3rd Work-

shop on Specification and Verification of Component-Based

Systems, pages 39–46, October 2004.

[20] T. Xie and D. Notkin. Checking inside the black box: Re-

gression testing by comparing value spectra. IEEE Trans-

actions on Software Engineering, 31(10):869–883, October

2005.


