
Quota-Constrained Test-Case Prioritization for Regression Testing of
Service-Centric Systems

Shan-Shan Hou1,2, Lu Zhang1,2,∗, Tao Xie3,∗, Jia-Su Sun1,2

1Key laboratory of High Confidence Software Technologies, Ministry of Education
2School of Electronics Engineering and Computer Science, Peking University, Beijing, 100871, China

{houss,zhanglu,sjs}@sei.pku.edu.cn
3Department of Computer Science, North Carolina State University,Raleigh, NC 27695

xie@csc.ncsu.edu

Abstract

Test-case prioritization is a typical scenario of regres-
sion testing, which plays an important role in software
maintenance. With the popularity of Web Services, integrat-
ing Web Services to build service-centric systems (SCSs)
has attracted attention of many researchers and practition-
ers. During regression testing, as SCSs may use up con-
stituent Web Services’ request quotas (e.g., the upper limit
of the number of requests that a user can send to a Web Ser-
vice during a certain time range), the quota constraint may
delay fault exposure and the subsequent debugging. In this
paper, we investigate quota-constrained test-case prioriti-
zation for SCSs, and propose quota-constrained strategies
to maximize testing requirement coverage. We divide the
testing time into time slots, and iteratively select and prior-
itize test cases for each time slot using Integer Linear Pro-
gramming (ILP). We performed an experimental study on
our strategies together with three other strategies, and the
results show that with the constraint of request quotas, our
strategies can schedule test cases for execution in an order
with higher effectiveness in exposing faults and achieving
total and additional branch coverage.

1 Introduction
Regression testing plays an important role in software

maintenance. With the popularity of Web Services, integrat-
ing Web Services to build service-centric systems (SCSs)
has become an important approach of software develop-
ment. As a result, testing (including regression testing) of
Web Services and SCSs have become a research focus in
software testing [2, 3, 10, 12, 16, 18, 19, 22].

Recently, Canfora and Di Penta [4] pointed out that the
challenges of testing (including regression testing) of Web

∗Corresponding author

Services and SCSs mainly lie in unique features of Web Ser-
vices, which are “on-line” software artifacts running on the
side of their providers. Thus, testers, who cannot own the
entities of Web Services, can request Web Services only
through the Internet. In testing frameworks of SCSs, Li
et al. [10] and Tsai et al. [17] proposed “off-line” testing,
which simulates constituent Web Services instead of actu-
ally invoking them during testing. With the cost of con-
structing simulation environments and the risk of losing pre-
cision in simulating real environments, “off-line” testing of
SCSs can avoid the uncontrollability brought by constituent
Web Services. Without inducing extra cost of simulation
and losing precision, another feasible way is to actually in-
voke constituent Web Services during testing SCSs. We call
this type of SCS testing as “on-line” testing.

For “on-line” testing, any constraints on the use of Web
Services imposed by the service providers may impact the
testing process. For instance, superfluous requests to Web
Services may bring heavy burden to the network, software,
and hardware of service providers, and even disturb service
users’ normal requests. In an extreme case, if the service
provider allows massive vicious requests to a Web Service
within a short time, the requests may congest the network
or even crash the service’s server. To address this issue,
providers of Web Services often impose some constraints
to avoid responding to superfluous Web Services requests,
such as constraints of network flux, storage usage, and re-
quest quotas. The request quota is a typical constraint,
which defines the upper limit of the number of requests that
a user is permitted to send to a Web Service during a certain
time range. If a user continues invoking a Web Service with
requests after running out of the request quota, the requests
will be ignored. Request quotas of some popular Web Ser-
vices are listed in Table 1.

In this paper, we consider the impact of request quotas on
“on-line” regression testing of SCSs. Regression testing is

Table 1. Request Quotas of Web Services
Web Services Request Quota
Amazon Historical Pricing
Web Service

60000 requests per user
per month

eBay Shopping Web Service
5000 requests per IP per
day

Yahoo! Web Search Web Ser-
vices

5000 queries per IP per
day per API1

Google SOAP Search API
1000 queries per license
key per day

often very time-consuming. For instance, the industrial col-
laborators of Elbaum et al. [7] reported that it costs seven
weeks to execute the test suite of one of their products. To
accelerate the regression testing process, testers need to ex-
ecute the test cases as intensively as possible. The intensive
execution in regression testing of SCSs may induce super-
fluous requests to their constituent Web Services. As a re-
sult, when testing SCSs, if certain constituent Web Services
run out of their request quotas, the execution of the remain-
ing test cases will be postponed. Therefore, fault exposure
and the subsequent debugging will also be delayed, and thus
the incurred cost will be increased.

To alleviate the impact of request quotas on regression
testing of SCSs, we propose to consider request quotas in
test-case prioritization. Below we adapt the definition of
the traditional test-case prioritization problem [15] to define
the problem of quota-constrained test-case prioritization for
regression testing of SCSs.

Definition 1: Quota-constrained test-case prioritization
problem:
Given:

1. A service-centric system, denoted as S;

2. A test suite for S, denoted as T = {tci}, where 1 ≤
i ≤ m;

3. A group of Web Services that are constituents of S,
denoted as WS = {wsj}, where 1 ≤ j ≤ n;

4. The set of requirements for testing, such as code cov-
erage, denoted as R = {rk}, where 1 ≤ k ≤ l;

5. The request quotas of WS, denoted as WSQ =
{(qj , tj)}, where 1 ≤ j ≤ n. tj is a time range and qj

is the maximal number of requests to wsj that can be
processed during each period of tj ;

6. The Web Service invocation matrix, denoted as TW =
(twij), where 1 ≤ i ≤ m and 1 ≤ j ≤ n. twij is the
number of requests sent to wsj when executing test
case tci;

7. The testing requirement coverage matrix, denoted as
TR = (trik), where 1 ≤ i ≤ m and 1 ≤ k ≤ l. We

1Yahoo! Web Search Web Services include four Web Services, and an
API means a Web Service in this context.

define trik in Formula 1 as below.

trik =

{
1, if tci can cover rk,

0, otherwise
(1)

8. The set of all the different arrangements of all the test
cases in T that can satisfy the quota constraint, denoted
as PT ;

9. A cost function, denoted as f , that can be applied to
any test-case arrangement in PT to yield a cost value
for that arrangement;

Problem:
Find T ′ in PT , such that (∀T ′′)(T ′′ ∈ PT)(T ′′ 6=
T ′)[f(T ′) ≤ f(T ′′)].

In this paper, we propose an approach to the problem
defined in Definition 1. The basic idea is to extend the
traditional total and additional strategies in test-case prior-
itization [14, 15] to accomodate the constraint imposed by
request quotas. In traditional test-case prioritization, test
cases are selected one by one to maximize total or addi-
tional testing requirement coverage during each step. As re-
quest quotas are constraints over a time range, our approach
needs to select subsets of test cases that can satisfy the con-
straint imposed by the request quotas for a period of time.
Like traditional test-case prioritization, the aim of our test-
case selection is also to maximize total or additional testing
requirement coverage. To evaluate our approach, we per-
formed an experimental study by applying our approach for
regression testing of a system that integrates Web Services
with request quotas. The results demonstrate the effective-
ness of our approach.

The rest of this paper is organized as follows. Section
2 shows an example of our approach. Section 3 discusses
related research. Section 4 presents the details of our ap-
proach. Section 5 describes an experimental study. Section
6 further discusses some issues in our research. Section 7
concludes this paper.

2 Example
In this section, we use a simple stock-trading system

(SSTS) to illustrate how our approach can help regression
testing constrained by request quotas. SSTS is constructed
through integrating four Web Services, which are provided
by stock exchanges and telecommunication companies:
stock sell: sell stocks at the given price;
stock buy: buy stocks at the given price;
get price: get the current price of a stock;
trade info: send users a message about a successful trade;

Using SSTS, a user can customize a list of stocks that he
is interested in, point out which stocks he intends to sell or
buy, and set his anticipated deal price for each stock in the
list. SSTS monitors prices of the stocks in the user’s list. If
the price of a stock that the user intends to sell rises up to

class Stock {
public string code;
public float anticipated price;
public Boolean is sell;

}
void stock trade (Stock[] s){

for (int i=0; i < s.length; i++) {
if (s[i].is sell==true &&

get price(s[i].code) ≥ s[i].anticipated price){
stock sell;
trade info; }

if (s[i].is sell==false &&
get price(s[i].code) ≤ s[i].anticipated price){
stock buy;
trade info; }

}
}

Figure 1. Simple Stock-Trading System

the user’s anticipated price, the system will sell the stock
for the user and send a message to his mobile phone; if the
price of a stock that the user intends to buy falls down to the
user’s anticipated price, the system will buy the stock for the
user and also send a message to his mobile phone. Figure 1
illustrates the main body of the simple stock-trading system.

In our example, we consider the coverage of the four
branches, which are induced by the “if” statements, but
not the conditions in each branch. Thus, the testing re-
quirements of this example are four branches (denoted as
b1,b2,b3, and b4).

Supposing that we use four test cases (denoted as t1, t2,
t3, and t4) and the request quotas of stock sell, stock buy,
get price, and trade info are (100, 1 time unit), (150, 1 time
unit), (600, 5 time units), and (400, 5 time units), respec-
tively, the Web Service invocation matrix TW and testing
requirement coverage matrix TR are as follows.

TW=

50 40 100 90
20 120 150 140
90 0 110 90
30 0 50 30

 TR=

1 1 1 1
1 1 1 1
1 0 0 1
1 0 0 1

The subfigures (a) and (b) in Figure 2 show the total
number of covered branches (the vertical axis) correspond-
ing to the time units (the horizontal axis) for test execu-
tion orders (t1, t2, t3, t4) and (t1, t4, t3, t2), respectively.
For each execution order, test cases that can execute with-
out overflowing request quotas in each time unit are also
demonstrated. For example, in subfigure (a), after t1 is exe-
cuted in the first time unit, the available quota of stock buy
is 110. However, t2 will request stock buy 120 times.
Therefore, the execution of t2 is postponed to the second
time unit, in which the quota of stock buy is reset to 150.
Although (t1, t2, t3, t4) can achieve optimal total branch
coverage without quota constraints, the total branch cov-

0 1 2 3 4
0

2

4

6

8

10

12

(b)(a)

t2 t3 t1 t4 t3 t1,t4 t2

t1,t4,t3,t2t1,t2,t3,t4

To
ta
l N

um
be

r o
f C

ov
er
ed

 B
ra
nc

he
s

Time UnitTo
ta
l N

um
be

r o
f C

ov
er
ed

 B
ra
nc

he
s

Time Unit
0 1 2 3

0

2

4

6

8

10

12

Figure 2. Test Case Execution

erage was delayed when there are quota constraints.
With the preceding request quotas, we can achieve a bet-

ter execution order (t1, t4, t3, t2) by selecting as many test
cases as possible for each time unit, and prioritize them.
In subfigure (b), t1 and t4 are selected and prioritized as
(t1, t4) in the first time unit without overflowing request
quotas.

From this example, we can see that a test execution or-
der that can achieve optimal total branch coverage may not
achieve its goal when there is a quota constraint. Further-
more, with the constraint of quotas, we can divide the entire
regression testing period into a series of time slots and con-
sider test-case selection and prioritization in each time slot.
Following this idea, we propose a total strategy for quota-
constrained test-case prioritization. Similarly, we propose
an additional strategy, which uses a different strategy to se-
lect and prioritize test cases in each time slot.

3 Related Work
3.1 Test-Case Prioritization

Test-case prioritization [14] is a typical scenario of re-
gression testing. Rothermel et al. [14, 15] have developed
a family of approaches that prioritize test cases to increase
their effectiveness of meeting coverage goals at the state-
ment level, such as statement coverage and branch cover-
age, including total and additional strategies. Elbaum et
al. [5] considered coverage goals at the function level, and
developed a group of techniques with a coarse granularity,
in which they also considered the total and additional strate-
gies.

Recent research mainly focuses on practical issues in
test-case prioritization. Considering that the test costs and
fault severity may vary in practice, Elbaum et al. [6] and
Malishevsky et al. [11] proposed a new metric APFDC ,
which incorporates different test costs and fault severity, to
assess the effectiveness of prioritization. Kim and Porter [9]
and Walcott et al. [20] focused on resource-constrained test-
case prioritization. They attempted to find out prioritized
subsets of the original test suite, which can execute within
a given time budget. Kim and Porter [9] proposed an expo-
nential smoothing model, which considers testing history.

Walcott et al. [20] used a genetic algorithm to search for
prioritized subsets executed within a time limit.

Some research considers test-case prioritization and test-
suite reduction together. Jones and Harrold [8] investi-
gated both test-suite reduction and prioritization based on
the modified condition/decision coverage. Both Kim and
Porter [9] and Walcott et al. [20] considered reduction in
the process of test-case prioritization, as their approaches
can acquire a subset from the original test suite and priori-
tize only the selected test cases.

Different from existing research, in this paper, we con-
sider the impact of request quotas on test-case prioritiza-
tion in regression testing of SCSs. In fact, the issue consid-
ered in this paper comes from the characteristics of the sys-
tem under test, while issues considered in previous research
come from the requirements of the testing process. That is
to say, our approach can be complementary to previous ap-
proaches. Another main difference is that we rely on Integer
Linear Programming (ILP) [21] for test-case prioritization
in our approach. Note that, although both our approach and
the Bi-criterion approach [1] adopt ILP, there is no straight-
forward way to extend the Bi-criterion approach to address
the issue considered in our approach.

3.2 Regression Testing of Web Services
Some recent research focuses on the regression testing

of Web Services. Bruno et al. [3] proposed to use test cases
as contracts between service providers and users. Tarhini et
al. [16] developed a safe algorithm to select non-redundant
test sequences to detect modification-related faults. In this
paper, we focus on test-case prioritization in regression test-
ing of SCSs. No previous research on testing Web Services
or SCSs has addressed this issue.

4 Quota-Constrained Test-Case Prioritiza-
tion

In practice, time ranges of request quotas are usually
days, weeks, or months, which are much longer than the
execution time of one test case. Therefore, we do not con-
sider the execution time in test-case prioritization. In other
words, we consider the situation where request quotas are
the main constraint in this paper.

As mentioned earlier, the basis of our approach is to ex-
tend the traditional total and additional strategies for test-
case prioritization. As request quotas for different Web Ser-
vices are defined on the basis of different time ranges, we
need to divide the entire regression testing period into a se-
ries of time slots to align these time ranges. As a result, un-
like traditional test-case prioritization that selects test cases
one by one, our approach selects subsets of test cases for the
time slots one by one. To ensure that the selected test cases
can satisfy the request quotas for each time slot, we apply
the technique of Integer Linear Programming (ILP) [21] to
tackle such a test-case selection problem. After selecting a

(x, 2 days)
2 4 6 10 128 14 160

(y, 3 days)
3 6 9 12 150

5 10 150

Candidate
Set 2 4 6 10 128 14 160 3 5 9 15

(z, 5 days)

Figure 3. Time Slot Partition

subset of test cases for a given time slot, we can further pri-
oritize the selected test cases using traditional test-case pri-
oritization techniques. After test-case selection and prioriti-
zation for one time slot, our approach proceeds to test-case
selection and prioritization for the next time slot. Specifi-
cally, our approach employs an iterative process including
three main steps.

• Step 1: Time-slot partition (Section 4.1). We denote
the pth time slot as tsp = [bpp, epp], which represents
the period of time from the beginning point bpp to the
ending point epp. The beginning point of tsp+1 is the
ending point of tsp. The aim of time-slot partition is to
align different time ranges for different request quotas.

• Step 2: Test-case selection and prioritization for each
time slot (Section 4.2). For time slot tsp, we select test
cases that can both satisfy the constraint imposed by
request quotas and maximize total or additional testing
requirement coverage. After selecting test cases for
time slot tsp, we schedule them using traditional test-
case prioritization.

• Step 3: Information refreshing (Section 4.3). As the
request quotas, the testing requirement coverage, and
the set of remaining selectable test cases for tsp+1 de-
pend on which test cases have been selected in tsp, we
need to calculate such information for tsp+1 after test-
case selection and prioritization for tsp. We refer to
the calculation as information refreshing. After infor-
mation refreshing, we go back to Step 2 to select and
prioritize test cases for tsp+1.

4.1 Time-Slot Partition
The basic rationale of time-slot partition is that each Web

Service will not reset its quota for a client within one time-
slot range. Therefore, we consider multiples of the range
for each Web Service quota. Let us consider the following
example. Supposing that the quotas of three Web Services
are {(x,2 days), (y, 3 days),(z, 5 days)}, we enumerate the
multiples of 2, 3 and 5, and mark them on the candidate set
axis in Figure 3. To determine the borders of each time slot,
we consider each pair of nesting multiples. Thus, the series
of time slots are [0, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 8], and
so on.

Algorithm TS Partition
Input: WSQ = {(q1, t1), (q2, t2), ..., (qn, tn)}

the number of anticipated time slots s
Output: s time slots ts1, ts2,..., tss

Begin
ts1 = [0, ep1], where ep1 = min(t1, t2, ..., tn)
p = 1
do

for each tj in WSQ do
cand tj = ((epp/tj) + 1) ∗ tj

end
epp+1 = min(cand t1, cand t2, ..., cand tn)
tsp+1 = [epp, epp+1]
p + +

until p ≥ s
End

Figure 4. Algorithm of TS Partition

Formally, we present the algorithm of time-slot parti-
tion in Figure 4. The beginning point of the first time slot
is 0. The ending point of the first time slot is the small-
est value of all the ranges in WSQ (shown in Figure 4).
The beginning point of tsp is the ending point of tsp−1.
In order to determine the ending point of the time slot
tsp = [epp−1, epp], we construct a candidate set including
time points that are greater than epp−1 and are multiples of
time ranges in WSQ. The minimal one in the candidate set
is epp.

4.2 Test-Case Selection and Prioritization
We iteratively select and prioritize test cases for the time

slots. There are two tasks for each time slot: selecting test
cases that can maximize the coverage performance goal and
execute without overflowing quotas; and prioritizing the
selected test cases using traditional test-case prioritization
strategies.

Like other test-case prioritization techniques [5, 14], we
propose two strategies: the quota-constrained total strategy
and the quota-constrained additional strategy. The quota-
constrained total strategy selects test cases covering maxi-
mal total testing requirements, irrespective of requirement-
coverage duplication of different test cases. The quota-
constrained additional strategy takes the requirement-
coverage duplication into consideration, and selects test
cases covering maximal additional not-yet-covered testing
requirements. We describe our total and additional strate-
gies in Section 4.2.1 and Section 4.2.2, respectively.

When selecting test cases for a time slot, the basic idea
of our strategies is to model our test-case selection as an
Integer Linear Programming (ILP) problem [21].

4.2.1 Quota-Constrained Total Strategy
Our quota-constrained total strategy first selects a subset of
test cases maximizing testing requirement coverage while
satisfying the constraint of request quotas, and then pri-

oritizes selected test cases using the traditional total strat-
egy [14, 15].

As selected test cases can consume request quotas, the
request quotas vary in different time slots. Thus, we use
AWSQp = {awsqpj} (1 ≤ j ≤ n) to denote the available
request quota in time slot tsp. The details of our ILP model
for time slot tsp are described as follows.

(1)The Decision Variables
The decision variables of the ILP model are a Boolean

vector, denoted as X = (xi), where 1 ≤ i ≤ m. Variable
xi represents whether test case tci is selected in time slot
tsp. Specifically, we define xi in Formula 2 as below.

xi =

{
1, if tci is selected to execute in tsp,

0, otherwise
(2)

For the example in Section 2, we select {t1, t4} in time
slot [0, 1]. Thus, we use (1, 0, 0, 1) to denote this situation.

(2)The Constraint System
The constraint system of this model is a group of inequal-

ities, each of which describes the request quota of a Web
Service. The jth inequality indicates that in the time slot,
the number of the requests sent to Web Service wsj when
executing the selected test cases should not be over its avail-
able request quota. Formally, we describe these inequalities
in Formula 3 as below.

m∑

i=1

twij ∗ xi ≤ awsqpj (3)

In our example in Section 2, for time slot [0, 1], the con-
straint system of this selection is in Formula 4 as below.

50x1 + 20x2 + 90x3 + 30x4 ≤ 100
40x1 + 120x2 ≤ 150

100x1 + 150x2 + 110x3 + 50x4 ≤ 600
90x1 + 140x2 + 90x3 + 30x4 ≤ 400

(4)

(3)The Objective Function
In the time slot, the goal of our quota-constrained to-

tal strategy is to maximize testing requirement coverage
without considering the duplication of coverage among test
cases. Therefore, we define the objective function to yield
the maximal testing requirement coverage for the selected
test cases. The objective function is in Formula 5 as below.

max
m∑

i=1

(
l∑

k=1

trik) ∗ xi (5)

In the objective function, the coefficient of variable xi is∑l
k=1 trik, which represents the sum of the testing require-

ments covered by test case tci. For the example in Section

2, the objective function for time slot [0, 1] is depicted in
Formula 6 as below.

max (4x1 + 4x2 + 2x3 + 2x4) (6)

By solving the preceding ILP model, we can select a sub-
set of test cases. Then our quota-constrained total strategy
prioritizes the selected test cases using the traditional to-
tal strategy. For the example in Section 2, testing require-
ment coverage is actually branch coverage. Therefore, our
approach selects {t1, t4} for the first time slot, and further
prioritizes them as the order of running t4 after t1.

4.2.2 Quota-Constrained Additional Strategy
Our quota-constrained additional strategy first selects a sub-
set of test cases that can maximize covered testing require-
ments while satisfying the constraint of request quotas, and
then prioritizes the selected test cases using the traditional
additional strategy [14, 15]. Specifically, we model test-
case selection of the quota-constraint additional strategy in
a time slot tsp as follows.

(1)The Decision Variables
Beside the Boolean vector X = (xi) introduced in Sec-

tion 4.2.1, we further introduce another Boolean vector
denoted as Y = (yk), where 1 ≤ k ≤ l. Variable yk

(1 ≤ k ≤ l) represents whether test cases selected in the
time slot can cover testing requirement rk. Specifically, we
define yk in Formula 7 as below.

yk =

{
1, if selected test cases in tsp cover rk,

0, otherwise
(7)

For the example in Section 2, if t1 is selected according
to the preceding model for time slot [0, 1], the correspond-
ing vectors are X = (1, 0, 0, 0) and Y = (1, 1, 1, 1).

(2)The Constraint System
The constraint system consists of two groups of inequal-

ities. Similar to the quota-constrained total strategy, each
inequality in the first group describes the request quota of a
Web Service. Thus, we use the inequalities in Formula 3 as
the first group.

In the second group, the kth inequality indicates that if
the kth testing requirement is satisfied, at least a test case
that can cover rk is selected. Formally, we define the second
group of inequalities in Formula 8 as below.

m∑

i=1

trik ∗ xi ≥ yk (8)

For the example in section 2, the second group of in-
equalities for time slot [0, 1] is in Formula 9 as below.

x1 + x2 + x3 + x4 ≥ y1

x1 + x2 ≥ y2

x1 + x2 ≥ y3

x1 + x2 + x3 + x4 ≥ y4

(9)

(3)The Objective Function
In the time slot, the goal of our quota-constrained addi-

tional strategy is to maximize the number of covered test-
ing requirements no matter how many times each of them
is covered. Therefore, we define the objective function to
yield the maximal number of covered testing requirements.
Specifically, the objective function is in Formula 10 as be-
low.

max
l∑

k=1

yk (10)

In the example in Section 2, the objective function for
our quota-constrained additional selection in time slot [0, 1]
is in Formula 11 as below.

max (y1 + y2 + y3 + y4) (11)

By solving the second ILP model, we can select a subset
of test cases for time slot tsp. For the example in Section
2, our approach selects {t1}, which can cover all the four
branches.

Note that, in time slot tsp, although the test cases se-
lected according the preceding model can achieve max-
imal testing requirement coverage, they may not use up
the request quotas for time slot tsp. Under the constraint
of the remaining request quotas, we may select more test
cases, which cannot increase testing requirement coverage
but may be helpful for exposing faults.

To deal with this issue, we continue to select more test
cases under the constraint of the remaining request quotas.
We refer to this selection as the second-phase selection and
the preceding selection as the first-phase selection. As the
maximal testing requirement coverage has been achieved,
the objective of the second-phase selection should be based
on a strategy other than maximizing the number of covered
testing requirements. We resort to the total strategy for the
second-phase selection, and we model this selection prob-
lem as an ILP problem similar to the one described in Sec-
tion 4.2.1. The main differences are as follows. First, the
available Web Service quotas are not those for time slot tsp,
but the remaining request quotas after subtracting the quo-
tas used by test cases selected in the first phase. Second, in
the second phase, we no longer consider test cases already
selected in the first phase.

For the example in Section 2, {t1} is selected in the first
phase for time slot [0, 1] and the remaining quota is (50, 110,
500, 310). In the second-phase selection, {t4} is selected.

After the two phases of selection, we further prioritize all
selected test cases using traditional additional strategies [14,
15].

4.3 Information Refreshing
After test-case selection and prioritization in time slot

tsp, our approach considers time slot tsp+1. To acquire the

input information for time slot tsp+1, we need to refresh the
following information for our ILP models. First, in time slot
tsp+1, we no longer consider test cases already selected in
time slot tsp and previous time slots. Second, for the first-
phase selection in the quota-constrained additional strategy,
we no longer consider testing requirements that test cases
selected in time slot tsp and previous time slots have cov-
ered. Third, in time slot tsp+1, we calculate the available
quotas as follows. For Web Service wsj , whose quota is
(qj , tj), if the starting point of time slot tsp+1 is a multi-
ple of its time range tj , we set the available quota of wsj

for tsp+1 as qj . This situation denotes that we can use the
full quota of wsj again in tsp+1. If the starting point of
time slot tsp+1 is not a multiple of the time range of wsj ,
the available quota of wsj for tsp+1 is the remaining quota
by subtracting the quota used by executing test cases se-
lected in tsp from the available quota of tsp. This situation
denotes that we can use only the remaining quota of wsj in
tsp+1. For the problem in Definition 1, the time complexity
of each information refreshing process is O(m ∗ (n + l)).

5 Experimental Study
We conducted an experimental study to evaluate the ef-

fectiveness of our approach. We applied quota-constrained
test-case prioritization on an SCS (Section 5.1), and com-
pared the experimental results of our approach with other
approaches (Section 5.2). We further discuss threats to va-
lidity (Section 5.3).

5.1 Experimental Setup

5.1.1 Subject
In this experimental study, we use a Travel Agent system
(abbreviated as TA), which can have two kinds of users:
users who plan independent travel and users who intend to
join tour groups. There are 12 Web Services with 17 meth-
ods in TA. These Web Services can be classified into the
following four groups. The first group provides general ser-
vices, such as queries for the calendar and the weather. The
second group is those published by travel agencies that pro-
vide group-trip services, such as queries for tour itineraries,
queries for prices, and trip arrangement. The third group
is those published by the government of tourism cities,
which provides services such as queries for local tourist
attractions, queries for hotels, and hotel reservations. The
last group are Internet banking services providing balance
querying, transition, online payment, and so on. All the
preceding Web Services are collected from a graduate Web
Services course at Peking University, and they are deployed
on web server Tomcat 5.0 with SOAP engine Axis 1.4. We
construct TA by writing a main program in Java, which has
36 branches and requests the preceding Web Services using
the dynamic invocation interface.

In order to evaluate the effectiveness of our approach, we
seeded 24 faults in the source code of TA’s main program,

Table 2. Level Values
Level L1 L2 L3 L4 L5
Value 10000 20000 30000 40000 50000

including wrong constants and variables, and faults in arith-
metic, logical, and relational operators.

5.1.2 Test Suites
We used two test suites in our experimental study. The first
test suite was generated by a white-box test generation en-
gine called JUnitFactory2, which is operated by Agitar Soft-
ware Inc. JUnitFactory examined the source code of TA
(excluding the Web Services) to generate test cases. We
call this test suite as TS-1 consisting of 489 test cases. The
second one is a black-box test suite, which was randomly
generated. We call the second test suite as TS-2 consisting
of 1000 test cases.

In this study, we considered test-case prioritization tech-
niques on the basis of branch coverage. The branch cov-
erage ratios of both TS-1 and TS-2 are 100%. The fault-
exposure ratios of the faults seeded in TA of both TS-1 and
TS-2 are also 100%.

5.1.3 Request Quotas
As the Web Services used in our experimental study are
not commercial Web Services, we have to generate request
quotas for them. Because providers of Web Services are
in charge of the quotas of their Web Services, the quotas
should not be specific to a particular SCS. Therefore, we
can generate request quotas without considering how our
TA system uses the Web Services. To make the generated
request quotas as close to reality as possible, we considered
the following issues in generating quota for each Web Ser-
vice.

First, the average quota in our experimental study should
be about the same as the average quota of commercial Web
Services. Specifically, we define a measure named level,
which denotes the sum of one-day quotas of the 12 Web
Services. As different commercial Web Services may have
quite different quotas, we considered five levels of one-day
overall quotas in our experimental study. Table 2 lists the
values for the five levels. The average one-day quota for
one Web Service in our experimental study ranges from 800
to 4000.

Second, we considered the evenness of the distribution
when generating request quotas for each level of overall
quotas. Supposing that for a certain level value, the one-
day quotas of the 12 Web Services are q1, q2, ... q12,
a measure unevenness is defined as the ratio between
max(q1, ..., q12) to min(q1, ..., q12). In our experimental
study, for each level, we generated four groups of request
quotas with different unevenness values 2, 4, 6, and 8.

2http://www.junitfactory.com/

Third, as request quotas of Web Services are mainly de-
fined on the basis of days, weeks or months, we randomly
chose 1, 7, or 30 as the time range for a Web Service. For
a Web Service whose time range is 7 or 30 days, we used 7
or 30 times of the generated one-day quota as its quota for
its time range.

5.1.4 Studied Approaches
As our experimental study is based on branch cov-
erage, we considered the following five approaches:
quota-constrained total branch (QCTB) strategy, quota-
constrained additional branch (QCAB) strategy, traditional
total branch (TB) strategy, traditional additional branch
(AB) strategy, and random prioritization (abbreviated as
Ran). The details of TB and AB strategies are described
elsewhere [5, 14] . We employed IBM’s SYMPHONY [13]
for solving the modeled ILP problems.

5.2 Results and Analysis
As mentioned in Section 5.1.3, for each level value, we

generated four groups of request quotas with four differ-
ent unevenness values. In this study, the experimental re-
sult for each level is actually the average result of the four
groups of request quotas. Furthermore, in random prioriti-
zation, we randomly generated 10 test execution orders for
each test suite. For each quota, the result of Ran is the aver-
age value of the 10 execution orders.

5.2.1 Effectiveness of Achieving Branch Coverage
In traditional test-case prioritization, the aims of the total
and additional branch strategies are to always achieve max-
imal total and additional branch coverage during the test-
ing. However, when there is a constraint imposed by request
quotas, these two strategies may not achieve their goals.

Figure 5 shows the comparison results between the tradi-
tional total branch (TB) strategy and our quota-constrained
total branch (QCTB) strategy on the two test suites. In Fig-
ure 5, the horizontal axis denotes days of regression test-
ing, and the vertical axis denotes the total branch coverage
for each day, which is the ratio of the branch coverage of
the executed test cases to that of the entire test suite. From
the figure, we can see that with the same level (denoted as
the same symbol on lines), the total branch coverage of our
QCTB (denoted as a solid line) is always higher than that
of TB (denoted as a dash line) for each test suite. The re-
sult indicates that our QCTB strategy is a better strategy
for achieving total branch coverage under quota constraints
than the traditional TB strategy.

In Figure 5, the total branch coverage of most strate-
gies increases very slowly on the 7th and 30th days. Some
portions of the coverage lines are almost plateaus, such as
QCTB-L5 and TB-L3 for TS-2 on the 7th day. We suspect
that it is because some request quotas’ time ranges are de-
fined as 7 and 30 days in Section 5.1.3. Such request quotas
probably have been used up by test cases selected during the

0 5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

Days

To
ta

l B
ra

nc
h

C
ov

er
ag

e

Days

Total Branch Coverage for TS-1

Total Branch Coverage for TS-2

To
ta

l B
ra

nc
h

C
ov

er
ag

e

 TB-L1 TB-L2 TB-L3 TB-L4 TB-L5
 QCTB-L1 QCTB-L2 QCTB-L3 QCTB-L4 QCTB-L5

Figure 5. Total Branch Coverage

first several days of the time ranges. Therefore, on the 7th
and 30th days, which are the last days of the time ranges,
few test cases are selected due to the lack of request quotas.

For the comparison between the traditional additional
branch (AB) strategy and our quota-constrained additional
branch (QCAB) strategy, the result is similar to the preced-
ing comparison between TB and QCTB. Our QCAB strat-
egy always outperforms the traditional AB strategy for each
test suite and each quota level. Due to space limit, we omit
the figure that shows the comparison results between AB
and QCAB.

5.2.2 APFD
The average percentage of faults detected (APFD) met-
ric [15] is a widely adopted metric in evaluating test-case
prioritization techniques. This metric is based on the in-
crease of the number of executed test cases. When the time
required for executing a test suite is long, Elbaum et al. [5,6]
propose to calculate the fault exposure ratio with the in-
crease of time, such as days or hours. In this paper, we
refer to this APFD metric as the time-based APFD. In our
experimental study, the time for executing a test suite can be
very long due to the quota constraints. Therefore, we adopt
the time-based APFD in our experimental study.

We depict a line to show the fault exposure ratio (vertical
axis) versus the fraction of the time consumed (horizonal
axis), and define the APFD value as the area enclosed by
the line and the horizonal axis. Supposing that the test suite
execution requires m days and the fault exposure ratio on
ith day is fi, we formally present the time-based APFD in
Formula 12. ∑m

i=1 (fi−1 + fi)
2m

(12)

L1 L2 L3 L4 L5
0.75

0.80

0.85

0.90

0.95

1.00
APFD for TS-1

A
PF

D

Level

 Ran
 TB
 AB
 QCTB
 QCAB

Figure 6. APFD for TS-1

L1 L2 L3 L4 L5
0.75

0.80

0.85

0.90

0.95

1.00
APFD for TS-2

A
PF

D

Level

 Ran
 TB
 AB
 QCTB
 QCAB

Figure 7. APFD for TS-2

Using the preceding APFD metric, we show the results
of Ran, TB, AB, QCTB, and QCAB for test suite TS-1 and
TS-2 in Figures 6 and 7, respectively. The time-based APFD
values (vertical axis) for different quota levels (horizonal
axis) are illustrated. These figures demonstrate the follow-
ing trends.

First, both our QCTB and QCAB strategies outperform
the other three strategies for both test suites at all the five
levels. The APFD values of our QCTB and QCAB are com-
parable. Compared with Ran, TB, and AB strategies, our
QCAB improves APFD values with 4.49%, 11.28%, and
4.83% on average, respectively.

Second, neither TB nor AB can always outperform the
Ran strategy for both test suites at all the five levels. We
suspect that the reason might be that the quota constraints
can affect TB and AB more than the random strategy. The
TB strategy always tries to execute test cases covering more
branches earlier, and it is very likely to result in executing
test cases consuming more request quotas earlier. There-
fore, there may be significant delays during the early stages
of regression testing.

5.2.3 Time Cost of Test-Case Prioritization
We performed our study on a 2.26G Hz Pentium 4 1GB
RAM system running Windows XP Professional. For our
QCTB and QCAB, each column of Table 3 lists the aver-
age time cost of test-case prioritization in minutes for each
level. The result demonstrates the following trends. First,

Table 3. Average Time Cost of Prioritization
Time (mins) L1 L2 L3 L4 L5

QCTB 7.75 6.67 5.92 2.67 2.01
TS-1 QCAB 9.13 8.05 6.50 3.67 3.12

QCTB 29.51 16.12 9.13 6.75 5.25
TS-2 QCAB 40.22 28.00 9.58 7.25 5.74

with the relaxing of the quota constraints, the time cost of
both our QCTB and QCAB are decreasing. Second, in each
test suite, compared with QCTB, the time cost of QCAB is
consistently higher. We suspect that it is because QCAB im-
ports more variables and constraints to the ILP model, and
has the second-phase selection. Third, compared with TS-1,
the time cost of TS-2 is much higher. In fact, the size of TS-2
is twice the size of TS-1, which induces more complex ILP
computation with more decision variables and constraints.

5.3 Threats to Validity
In our experimental study, there are three main threats

to external validity. First, we use only one subject sys-
tem. The particular characteristics of the subject system
may have effect on our experimental results, which may
not be generalized to other SCSs. To reduce this threat,
we plan to evaluate our approach using several other SCSs
in future work. Second, different quota values may in-
duce various experimental results. To reduce this threat, we
used different groups of request quotas with different level
and unevenness values, and all these quotas are similar to
those of existing commercial Web Services. Third, the sub-
ject system and the used Web Services are implemented in
Java. Our experimental results may not be generalized to
other situations. To reduce this threat, we plan to do more
experiments using large-sized SCSs with Web Services run-
ning on different platforms.

6 Discussion
6.1 Execution Time of Test Cases

We do not consider the execution time of test cases in our
approach. In fact, in situations where the execution time of
test cases needs to be considered, we can adjust our mod-
els by incorporating into the constraint system another in-
equality, which denotes that the sum of execution time of
the selected test cases should not be longer than the length
of the corresponding time slot. In an extreme case, if the re-
quest quota of a Web Service is not enough for executing a
test case, it is necessary to refactor the test case into several
smaller test cases that can satisfy the request quota.

6.2 Limitation
Our approach aims to facilitate regression testing of

SCSs that are composed of Web Services with only quota
constraints. Besides request quotas, service providers may
impose other constraints on the use of Web Services. There-
fore, our approach may not be applicable or effective when

constraints other than request quotas exist. However, ex-
cept those Web Services without constraints, request quotas
are the most popular constraint for existing Web Services.
As a result, our approach should be applicable and effective
for many existing SCSs. In future work, we plan to further
investigate test-case-prioritization techniques that can deal
with regression testing of SCSs integrating Web Services
with various kinds of constraints mentioned in Section 1.

7 Conclusion
Testing SCSs may induce plenty and intensive invoca-

tions of Web Services. Therefore, request quotas of Web
Services can be a big constraint for testing SCSs. In this pa-
per, we proposed quota-constrained test-case prioritization
for regression testing of SCSs. In particular, we proposed
two strategies that aim at maximizing the total and the ad-
ditional testing requirement coverage with the constraint of
request quotas. In our approach, we divide the testing time
into time slots, and iteratively select and prioritize test cases
for each time slot using ILP.

We performed an experimental study on our strategies
together with the random strategy, the traditional total strat-
egy, and the traditional additional strategy. The results show
that compared with other strategies, our new strategies can
schedule test cases for execution with higher effectiveness
of achieving total or additional branch coverage and expos-
ing faults with the constraint of request quotas.

Acknowledgments. This research is sponsored by the Na-
tional Basic Research Program of China under Grant No.
2002CB312000, and the High-Tech Research and Develop-
ment Program of China under Grant No.2006AA01Z189,
2007AA010301, 2006AA01Z156, and 2006AA01Z175, and the
National Science Foundation of China No. 90718016. Tao Xie’s
work is supported in part by NSF grant CCF-0725190.

References

[1] J. Black, E. Melachrinoudis, and D. Kaeli. Bi-criteria mod-
els for all-uses test suite reduction. In Proc. International
Conference on Software Engineering, pages 106–115, 2004.

[2] J. Bloomberg. Testing web services today and tomor-
row. The Rational Edge E-zine for the Rational Community,
2002.

[3] M. Bruno, G. Canfora, M. Di Penta, G. Esposito, and
V. Mazza. Using test cases as contract to ensure service
compliance across releases. In Proc. International Confer-
ence on Service Oriented Computing, pages 87–100, 2005.

[4] G. Canfora and M. Di Penta. Testing services and service-
centric systems: Challenges and opportunities. IT Profes-
sional, 8(2):10–17, 2006.

[5] S. Elbaum, A. Malishevsky, and G. Rothermel. Prioritizing
test cases for regression testing. In Proc. International Sym-
posium on Software Testing and Analysis, pages 102–112,
2000.

[6] S. Elbaum, A. Malishevsky, and G. Rothermel. Incorporat-
ing varying test costs and fault severities into test case pri-
oritization. In Proc. International Conference on Software
Engineering, pages 329–338, 2001.

[7] S. Elbaum, A. Malishevsky, and G. Rothermel. Test case
prioritization: A family of empirical studies. IEEE Transac-
tions on Software Engineering, 28(2):159–182, 2002.

[8] J. A. Jones and M. J. Harrold. Test-suite reduction and prior-
itization for modified condition/decision coverage. In Proc.
International Conference on Software Maintenance, pages
92–101, 2001.

[9] J. M. Kim and A. Porter. A history-based test prioritization
technique for regression testing in resource constrained en-
vironments. In Proc. International Conference on Software
Engineering, pages 119–129, 2002.

[10] Z. Li, W. Sun, Z. B. Jiang, and X. Zhang. BPEL4WS unit
testing: Framework and implementation. In Proc. Interna-
tional Conference on Web Services, pages 103–110, 2005.

[11] A. Malishevsky, J. R. Ruthru, G. Rothermel, and S. Elbaum.
Cost-cognizant test case prioritization. Technical report, De-
partment Computer Science and Engineering of University
of Nebraska, 2006.

[12] A. J. Offutt and W. Xu. Generating test cases for web ser-
vices using data perturbation. ACM SIGSOFT Software En-
gineering Notes, 29(5):1–10, 2004.

[13] T. Ralphs and M. Guzelsoy. The SYMPHONY callable li-
brary for mixed integer programming. In Proc. INFORMS
Computing Society Conference, pages 61–73, 2005.

[14] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold.
Test case prioritization: an empirical study. In Proc. Inter-
national Conference on Software Maintenance, pages 179–
188, 1999.

[15] G. Rothermel, R. J. Untch, and C. Chu. Prioritizing test
cases for regression testing. IEEE Transactions on Software
Engineering, 27(10):929–948, 2001.

[16] A. Tarhini, H. Fouchal, and N. Mansour. Regression test-
ing web services-based applications. In Proc. International
Conference on Computer Systems and Applications, pages
163–170, 2006.

[17] W. T. Tsai, C. Fan, and Y. Chen. DDSOS: A dynamic dis-
tributed service-oriented simulation framework. In Proc.
Annual Simulation Symposium, pages 160–167, 2006.

[18] W. T. Tsai, R. Paul, W. Song, and Z. Cao. Coyote: An XML-
based framework for web services testing. In Proc. Interna-
tional Symposium on High Assurance Systems Engineering,
pages 173–174, 2002.

[19] W. T. Tsai, R. Paul, Y. Wang, C. Fan, and D. Wang. Ex-
tending WSDL to facilitate web services testing. In Proc.
International Symposium on High Assurance Systems Engi-
neering, pages 171–172, 2002.

[20] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S.
Roos. Time aware test suite prioritization. In Proc. Interna-
tional Symposium on Software Testing and Analysis, pages
1–11, 2006.

[21] H. Williams. Model Building in Mathematical Program-
ming. John Wiley, New York, 1993.

[22] W. Xu, A. J. Offut, and J. Luo. Testing web services by XML
perturbation. In Proc. International Symposium on Software
Reliability Engineering, pages 257–266, 2005.

