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Abstract—Mutation testing has been used to assess and im-
prove the quality of test inputs. Generating test inputs to achieve
high mutant-killing ratios is important in mutation testing.
However, existing test-generation techniques do not provide
effective support for killing mutants in mutation testing. In
this paper, we propose a general test-generation approach,
called PexMutator, for mutation testing using Dynamic Symbolic
Execution (DSE), a recent effective test-generation technique.
Based on a set of transformation rules, PexMutator transforms
a program under test to an instrumented meta-program that
contains mutant-killing constraints. Then PexMutator uses DSE
to generate test inputs for the meta-program. The mutant-killing
constraints introduced via instrumentation guide DSE to generate
test inputs to kill mutants automatically. We have implemented
our approach as an extension for Pex, an automatic structural
testing tool developed at Microsoft Research. Our preliminary
experimental study shows that our approach is able to strongly
kill more than 80% of all the mutants for the five studied subjects.
In addition, PexMutator is able to outperform Pex, a state-of-the-
art test-generation tool, in terms of strong mutant killing while
achieving the same block coverage.

I. INTRODUCTION

In regression testing, generating high-quality test inputs

is a crucial issue. Although manually written test inputs

are valuable, they are often insufficient in guarding against

regression faults. Therefore, automatic test generation has been

used to generate test inputs to complement manually written

test inputs.

In the literature, various automatic techniques have been

proposed for test generation. Some techniques [4], [5], [24]

generate test inputs randomly; some techniques [12], [27], [28]

use code coverage as the test criterion and generate test inputs

to satisfy the test criterion; and some techniques [9], [18],

[20] use mutation testing as the test criterion and generate

test inputs to kill mutants. Note that using mutant killing

to guide automatic test generation has been shown to be

intractable [9]. Therefore, existing techniques use the concept

of weak mutation testing [16] to guide test generation, and thus

improve the probability of mutant killing (detailed information

about weak mutation testing is shown in Section II-A).

Among various test criteria aimed by automatic test-

generation techniques, mutation testing has been shown to

be an effective indicator for the quality of test inputs [1]. In

addition, mutation testing has been shown to be superior to

common code coverage in evaluating the effectiveness of test

inputs [11]. However, existing mutation-testing techniques face

various challenges in practice. One of the main challenges is

automatic test generation for mutant killing. Although there

are techniques [9], [18], [20] aiming to facilitate the process

of test generation towards mutant killing, they have two main

limitations. First, these techniques construct a whole constraint

system for each weak mutant killing1, making it costly to

generate test inputs for a large number of mutants. Second,

these techniques are based on solving statically constructed

constraint systems, not being able to handle programs with

complex data structures, non-linear arithmetic, or array index-

ing with non-constant expressions. These limitations cause the

existing mutant-killing-based test-generation techniques to be

inapplicable for real-world programs, and not to be widely

used in practice.

In this paper, we propose a general test-generation ap-

proach for mutant killing using Dynamic Symbolic Execu-

tion (DSE) [12], [27], [28], a recent effective test-generation

technique, and implement our approach as a tool called Pex-

Mutator. In general, PexMutator first transforms the original

program under test into a meta-program, which contains all

the weak-mutant-killing constraints inserted via instrumenta-

tion. More specifically, each constraint instrumented into the

meta-program is wrapped as a conditional statement, whose

execution takes the true or false branch according to whether

the constraint is satisfied or not. Then, PexMutator uses

Pex [28], a state-of-the-art DSE engine, to generate test inputs

for the meta-program. The DSE engine tries to generate test

inputs to cover all the branches in the meta-program. Test

inputs that cover the true branches of instrumented conditional

statements would satisfy the weak-mutant-killing constraints,

and thus weakly kill the corresponding mutants. Therefore,

the introduced weak-mutant-killing constraints in the meta-

program guide the DSE engine to generate test inputs to kill

the mutants automatically.

This paper makes the following main contributions:

• We propose a general approach that automatically gen-

erates test inputs to kill mutants via DSE. Our ap-

1Existing techniques conjunct one weak-mutant-killing constraint with the
constraint system of the original program to form a whole constraint system,
and then solve the whole constraint system to weakly kill a mutant.



proach generates a meta-program containing all the weak-

mutant-killing constraints, instead of the costly traditional

way of combining one weak-mutant-killing constraint

with constraints from the original program to form a

constraint system for one mutant at a time. Furthermore,

our approach generates test inputs via DSE, which is

more effective than previous test-generation techniques

for mutant killing in dealing with complex programs.

• We implement the proposed approach in a tool called

PexMutator as an extension for Pex [28], an automated

structural testing tool for .NET developed at Microsoft

Research. PexMutator has been released as open source

in our Pex Extensions project webpage2.

• We conduct a preliminary experimental study and show

that our approach is able to strongly kill more than 80%

of all the mutants for the studied subjects, and some-

times even achieves 100% killing ratio for non-equivalent

mutants. Furthermore, the experimental results also show

that PexMutator is able to strongly kill more mutants than

Pex, a state-of-the-art test-generation technique, while

achieving the same block coverage.

The rest of this paper is organized as follows. Section II in-

troduces background of mutation testing and DSE. Section III

illustrates our approach with examples. Section IV presents the

detailed implementation and the current status of PexMutator.

Section V reports our experimental study. Section VI presents

related work. Section VII concludes with future work.

II. BACKGROUND

A. Mutation Testing

Mutation testing [8], [14] is an intensively studied technique

for assessing and improving the quality of test inputs. In

mutation testing, the original program under test is mutated

to various faulty versions (known as mutants). Each mutant

includes one fault automatically seeded based on a set of

mutation operators, each of which is a rule for mutating a

statement of the original program into a faulty statement. The

statement in which mutation takes place is called a mutation

point. Since its first proposal, mutation testing has been a pop-

ular topic in software testing. Some researchers investigated

techniques to overcome challenges of using mutation testing to

assess the effectiveness of existing test suites [3], [13], [15],

[19], [26], [30], [31]. Some researchers used mutation testing

to automatically generate faulty versions to construct subjects

for software-testing experimentation [1], [2], [10]. Some

researchers investigated automatic techniques for generating

test inputs to kill mutants [9], [18], [20], [25].

We next illustrate one key notion in mutation testing: mutant

killing. In mutation testing, all the mutants are executed against

a set of test inputs. The mutants whose executions produce

different results (i.e., different final states) from those of the

original program are denoted as killed mutants. There might

be mutants that do not change the program’s overall semantics,

and thus cannot be killed by any test inputs. These mutants are

2http://pexase.codeplex.com/

called equivalent mutants. The quality of test inputs is reflected

by the number of mutants killed by the test inputs: the more

mutants killed, the more effective the test inputs are. In order

to kill a mutant, a test input should satisfy the following three

criteria [9], [22] (the program and its test suite are denoted

as P and T, respectively, and a mutant of P on statement S is

denoted as M):

Reachability. Mutant M is the same with program P except

the mutated statement S. Therefore, if S is not executed by a

test input t (t ∈ T), the execution of M against t will produce

the same result as that of P. That is, for any t (t ∈ T), if S

is not reached by t, t is assured not to kill M.

Necessity. For a test input t (t ∈ T) to kill mutant M, t

must cause different internal states on P and M immediately

after executing S. Otherwise, since all the other parts of M and

P are exactly the same, there will not be any different states

between P and M during the execution, and their final results

will be the same as well.

Sufficiency. For a test input t (t ∈ T) to kill mutant M, t must

lead to different final states for M and P. That is, the different

internal states caused by satisfying the necessity criterion must

be propagated through the program’s execution to the final

state and yield different results.

Due to the expensiveness of mutation testing, Howden

et al. [16] proposed the concept of weak mutation testing.

According to weak mutation testing, test inputs that satisfy the

reachability and necessity criteria are denoted as satisfying the

weak-mutation-testing criterion. As it has been shown to be

intractable to automatically generate test inputs that definitely

satisfy the sufficiency criterion [9], existing techniques mainly

adopt the concept of weak mutation testing and use the

reachability and necessity criteria to generate test inputs. That

is to say, the generated test inputs do not guarantee to kill

mutants, but improve the probability to kill mutants. In this

paper, our approach also adopts the reachability and necessity

criteria to generate test inputs. In summary, there are two types

of mutant killing:

Definition 2.1: A test input t weakly kills a mutant M, iff

t satisfies the reachability and necessity criteria in mutation

testing.

Definition 2.2: A test input t strongly kills a mutant M, iff

t satisfies the reachability, necessity, and sufficiency criteria

in mutation testing.

B. Dynamic Symbolic Execution (DSE)

DSE [12], [27], [28] is a technique used to automatically

generate test inputs that achieve high code coverage. DSE

executes the program under test for some given test inputs

(e.g., ones generated randomly), and at the same time performs

symbolic execution [6], [17] in parallel to collect symbolic

constraints obtained from predicates in branch statements

along the execution traces. The conjunction of all symbolic

constraints along a path is called a path condition. In test

generation, DSE is performed iteratively on the program

under test to increase code coverage. Initially, DSE randomly

chooses one test input from the input domain. Then, in each



iteration, after running each test input, DSE collects the path

condition of the execution trace, and uses a search strategy

to flip a branching node in the path. Flipping a branching

node in a path constructs a new path that shares the prefix

to the node with the old path, but then deviates and takes

a different path. Whether such a flipped path is feasible is

checked by building a constraint system. If a constraint solver

can determine that the constraint system is satisfiable within

the available resources, DSE generates a new test input that

will execute along the flipped path and achieve additional

code coverage. In this way, DSE is able to generate a set

of test inputs that achieve high code coverage. DSE has been

intensively studied and various practical techniques and tools

has been implemented (e.g., DART [12], CUTE [27], and

Pex [28]).

III. APPROACH OF PEXMUTATOR

PexMutator includes four main steps. First, PexMutator

generates mutants for the program under test. Second, PexMu-

tator generates corresponding weak-mutant-killing constraints

for each mutant. Third, PexMutator inserts all the generated

constraints to proper positions of the original program to

form a meta-program. Finally, PexMutator uses a DSE engine

to generate test inputs for the meta-program, so that the

generated test inputs are able to satisfy the weak-mutant-

killing constraints and thus weakly kill mutants. Next we

illustrate the detailed design of PexMutator.

A. Mutant Generation

Mutation-testing techniques generate mutants based on a set

of mutation operators. Each mutation operator defines a rule

for transforming the original program under test to mutated

programs, each of which contains a seeded fault. Researchers

have realized that a large set of mutation operators may cause

to generate too many mutants. The large number of mutants

may exhaust time or space resources without providing com-

parable benefits. Therefore, researchers start to find subsets of

mutation operators that can achieve approximately the same

effectiveness in indicating the quality of test inputs. Offutt et

al. [21], [23] found that five mutation operators (i.e., ABS,

AOR, ROR, LCR, and UOI) are approximately as effective as

all the 22 mutation operators of Mothra [7], a mutation-testing

tool. These five mutation operators are denoted as sufficient

mutation operators.

To generate test inputs efficiently, PexMutator uses the

five sufficient mutation operators in generating mutants. The

details of the five mutation operators are shown in Table I.

In Table I, op1 and op2 denote any operands that appear

in the program under test; α and β denote binary operators,

e.g., relational operators (whose complete set is denoted as

RO), arithmetic operators (whose complete set is denoted as

AO), or logical connectors (whose complete set is denoted

as LC); µ denotes a unary operator (whose complete set is

denoted as UO); ν denotes a absolute value inserted within

domain V . For example, the AOR (which denotes Arithmetic

Operator Replace) operator defines a rule for transforming an

TABLE I
SUFFICIENT MUTATION OPERATORS USED BY PEXMUTATOR.

Mutation Operators Mutation Rules

ABS op1 →
(Absolute Value Insertion) ∀ν, ν ∈ V, ν

AOR ∀α, α ∈ AO, op1 α op2 →
(Arithmetic Operator Replace) ∀β, (β ∈ AO) ∧ (β! = α), op1 β op2

LCR ∀α, α ∈ LC, op1 α op2 →
(Logical Connector Replace) ∀β, (β ∈ LC) ∧ (β! = α), op1 β op2

ROR ∀α, α ∈ RO, op1 α op2 →
(Relational Operator Replace) ∀β, (β ∈ RO) ∧ (β! = α), op1 β op2

UOI op1 →
(Unary Operator Insertion) ∀µ, µ ∈ UO,µ (op1)

TABLE II
CONSTRAINT-GENERATION RULES.

Mutation
Operators Constraint-Generation Rules

ABS op1 →
∀ν, ν ∈ V , op1 != ν

AOR ∀α, α ∈ AO, op1 α op2 →
∀β, (β ∈ AO) ∧ (β! = α), (op1 α op2) != (op1 β op2)

LCR ∀α, α ∈ LC, op1 α op2 →
∀β, (β ∈ LC) ∧ (β! = α), (op1 α op2) != (op1 β op2)

ROR ∀α, α ∈ RO, op1 α op2 →
∀β, (β ∈ RO) ∧ (β! = α), (!(op1 α op2) ∧ (op1 β op2)) ∨

((op1 α op2) ∧ !(op1 β op2))

UOI op1 →
∀µ, µ ∈ UO, op1 != µ (op1)

arithmetic operator into another one with the other part of the

program unchanged. Assume that we have a program p with a

statement s: sum = op1 + op2, the AOR operator generates

four mutants for p with s mutated to sum = op1 - op2, sum

= op1 * op2, sum = op1 / op2, and sum = op1 % op2,

respectively.

B. Mutant-Killing-Constraint Generation

After generating mutants for the program under test, Pex-

Mutator constructs corresponding mutant-killing constraints.

In mutation-testing-based test generation, solving strong-

mutant-killing constraints has been shown to be intractable [9].

Therefore, PexMutator constructs weak-mutant-killing con-

straints to guide test generation, i.e., PexMutator generates

constraints that if satisfied can guarantee the generated test

inputs to satisfy the reachability and necessity criteria, and

weakly kill the corresponding mutants.

For basic expressions, such as op1 > op2, in which op1

and op2 denote two operands for the relational operator >,

PexMutator generates a constraint for each mutant of the

expression. The rules for generating constraints for basic

expressions are shown in Table II. In the table, the used

symbols are defined in the same way with those of Table I. For

mutants generated by the ABS operator, PexMutator generates

constraints asserting that the inserted values are different

from the values of the original expressions; for mutants

generated by the AOR, LCR, and UOI operators, PexMutator

generates constraints asserting that the mutated expressions

derive different values from the ones derived by the original

expressions; for mutants generated by the ROR operator,



PexMutator generates constraints asserting that the mutated

conditional expressions have opposite values with the ones

derived by the original expressions. For example, op1 > op2

has a corresponding mutated expression op1 >= op2, then

PexMutator generates the following constraints for the this

mutant: ((op1 > op2) ∧ !(op1 >= op2)) ∨ (!(op1 >

op2) ∧ (op1 >= op2)).

For complex expressions that contain sub-expressions, such

as (op1 > op2) && (op3 > op4), PexMutator uses the

Depth-First-Search algorithm to generate mutant-killing con-

straints for each mutation point. The pseudo code for the

constraint-generation process is shown in Figure 1. As shown

in the figure, method GenCompConsts generates constraints

for expression exp, and returns consts as the generation

result. Line 1 initializes consts as an empty set. Line 2 checks

whether the input expression exp is in set Terminals (which

denotes a set of expressions that have no sub-expressions and

will not be mutated). If so, the algorithm returns to the upper

recursive level. Line 5 invokes method GenConsts, which

generates mutant-killing constraints for exp at its outermost

level (i.e., treating exp as a basic expression, and ignoring

mutants in its sub-expression(s)). Line 6 decides whether

exp is a unary operation. If so, PexMutator obtains its sub-

expression and recursively generates mutant-killing constraints

for its sub-expression. Line 10 decides whether exp is a

binary operation. If so, PexMutator obtains both its left and

right sub-expressions and recursively generates mutant-killing

constraints for its sub-expressions. Finally, Line 16 returns

the set of constraints consts as the generation result. For

example, when we use PexMutator to generate constraints

for (op1 > op2) && (op3 > op4), PexMutator first treats

op1 > op2 and op3 > op4 as terminal variables and gen-

erates constraints at the expression’s outermost level; then

PexMutator recursively generates constraints for op1 > op2

and op3 > op4, respectively.

C. Mutant-Killing-Constraint Insertion

Before inserting the generated constraints into the program

under test, PexMutator wraps the constraints up as executable

statements. In addition, PexMutator should insert the generated

constraints into proper positions of the original program under

test. Otherwise, the added constraints may cause syntactic

faults or derive different states from the original states at the

corresponding mutation points. As the constraint insertions

for mutants of conditional statements and non-conditional

statements are different. We next depict them separately.

1) Constraint Insertion for Conditional Statements: For

a conditional statement with a corresponding set of gen-

erated constraints consts, PexMutator wraps each const

(const ∈ consts) as a conditional statement: if(const)

log.write("Mutant Killed");. The added log-writing

statement serves two purposes: first, the statement introduces

a new branch, enabling the DSE technique to generate test

inputs to cover the branch, thus satisfying the mutant-killing

constraint; second, the statement records the corresponding

weak mutant-killing information for further analysis.

Algorithm GenCompConsts(exp)

Input: A complex expression exp.

Output: A set of mutant-killing constraints consts for

the input expression

Begin

1: consts← ∅

2: if exp ∈ Terminals then

3: goto Line 16

4: end if

5: consts← consts ∪GenConsts(exp)
6: if exp ∈ UnaryOperations then

7: Expression sExp ← exp.subOperand

8: consts← consts ∪GenCompConsts(sExp)
9: end if

10: if exp ∈ BinaryOperations then

11: Expression rExp ← exp.leftOperand

12: Expression lExp ← exp.rightOperand

13: consts← consts ∪GenCompConsts(rExp)
14: consts← consts ∪GenCompConsts(lExp)
15: end if

16: return consts

End

Fig. 1. Generating constraints for complex expressions

The wrapped mutant-killing constraints for conditional

statements should be inserted to positions near mutation

points, so that these constraints can refer to states of the

mutation points. For conditional statements, there are three

positions near a mutation point: the position before both

the mutation point and the subsequent branch, the position

between the mutation point and the subsequent branch, and

the position after the mutation point and of the first position in

the subsequent branch. For the convenience of illustration, we

denote the three positions as “before”, “between”, and “after”,

respectively. PexMutator inserts constraints to the “before”

position, and the rule for inserting multiple constraints to the

“before” position of a conditional statement is for(constSta

in ConstStas) S ← {constSta;S}, where S is the mu-

tated statement and ConstStas is the corresponding set

of mutant-killing statements (generated by wrapping mutant-

killing constraints) of S. PexMutator does not insert constraints

to the “between” and “after” positions, because inserting

constraints into the “between” position causes syntactic faults

and inserting constraints into the “after” position could cause

the variables in the constraints to have different domains from

the corresponding variables at the mutation points.

For example, assume that we have a program under test p

depicted below:

read(a);

if (a >= 0)

{ do something; }

Further assume that we have a mutant of p, which mu-

tates if (a >= 0) to if (a > 0), and then the corre-

sponding mutant-killing constraint generated for this mu-



position “before”  position “between” position “after” 

read (a); 

if (((a >= 0) && !(a > 0)) 

|| (!(a >= 0) && (a > 0))) { 

log.write(“Mutant 

Killed”); 

}

if (a >= 0)  

{

do something; 

}

read (a); 

if (a >= 0)  

if (((a >= 0) && !(a > 0)) 

|| (!(a >= 0) && (a > 0))) {

log.write(“Mutant 

Killed”); 

}

{

do something; 

}

read (a); 

if (a >= 0)  

{

if (((a >= 0) && !(a > 0)) 

|| (!(a >= 0) && (a > 0))) {

log.write(“Mutant 

Killed”); 

}

do something; 

}

Fig. 2. Inserting constraints for a conditional statement

position “before”  position “after”  

 read (a); 

 read (b); 

 if (false || (a+b) != (a-b)) { 

   log.write(“Mutant Killed!”); 

 } 

 b = a + b; 

 return b; 

read (a); 

 read (b); 

b = a + b; 

if (false || (a+b) != (a-b)) { 

   log.write(“Mutant Killed!”); 

 } 

 return b; 

Fig. 3. Inserting constraints for a non-conditional statement

tant is ((a >= 0) ∧ !(a > 0)) ∨ (!(a >= 0) ∧ (a >

0)). Before inserting the constraint into the program under

test, PexMutator first wraps the constraint up as bellow:

if(((a >= 0) && !(a > 0)) || (!(a >= 0) && (a > 0)))

{ log.write("Mutant Killed"); }

As shown in Figure 2, there are three possible positions

for inserting the constraint into program p. It is obvious that

inserting the constraint to the “between” position causes a

syntactic fault (shown in the second column), while inserting

the constraint to the “after” position causes variable a in

the constraint to have a different domain with variable a at

the mutation point (shown in the third column). Therefore,

PexMutator inserts the constraint into the “before” positions,

as shown in the first column of Figure 2.

2) Constraint Insertion for Non-Conditional Statements:

For a non-conditional statement with a corresponding set of

constraints consts, wrapping constraints is more complex,

because mutated expressions may throw exceptions, causing

the subsequent part of the generated meta-program not to

be able to execute. For example, a constraint generated for

statement sum = op1 + op2 is ((op1 + op2) != (op1 /

op2)). If we just wrap the constraint following the process of

wrapping constraints for conditional statements, the wrapping

result would be

if ((op1 + op2) != (op1 / op2))

{ log.write("Mutant Killed"); }

We can find that if op2 is assigned with 0, an ex-

ception will be thrown and the subsequent part of the

generated meta-program will never be executed. To avoid

this problem, for a non-conditional statement with a

set of constraints consts (which are generated accord-

ing to mutants of the statement), PexMutator separates

exception-triggering conditions from the constraints and wraps

const (const ∈ consts) as: if(trigger || const)

log.write("Mutant Killed");, where trigger denotes

the exception-triggering condition for const. Note that when

there is no exception-triggering condition, trigger is as-

signed with false. The conditional expression if(trigger

|| const) does not execute const if the trigger is satis-

fied, preventing the meta-program from throwing exceptions.

For example, the exception-triggering condition for constraint

((op1 + op2) != (op1 / op2)) is op2 == 0. PexMu-

tator generates the following conditional statement for the

constraint:

if((op2 == 0) || ((op1 + op2) != (op1 / op2)))

{ log.write("Mutant Killed"); }

When op2 is 0, PexMutator detects that the mutant is

weakly killed without throwing exceptions. The added log-

writing statement serves similar purposes with that of a

conditional statement.

Similar with conditional statements, mutant-killing con-

straints for non-conditional statements should also be inserted

to positions near the corresponding mutation points. For non-

conditional statements, there are two positions near a mutation

point: the position right before the mutation point, and the

position right after the mutation point. For the convenience

of illustration, we denote these two positions as “before” and

“after”, respectively. PexMutator inserts constraints to the “be-

fore” position, and the rule for inserting multiple constraints

to the “before” position of a non-conditional statement is the

same with that of a conditional statement: for(constSta in

ConstStas) S ← {constSta;S}, where S is the mutated

statement and ConstStas is the corresponding set of mutant-

killing statements (generated by wrapping mutant-killing con-

straints) of S. PexMutator does not insert constraints to the

“after” position because inserting constraints into the “after”

position could cause variables in the constraints to have

different values or states with the corresponding variables at

the mutation points, since the mutation points may change

the values or states of certain variables in the constraints (as

illustrated by the example in Figure 3).

D. Test Generation for the Meta-Program Using DSE

After transforming the original program under test to a

meta-program containing all mutant-killing constraints, Pex-

Mutator uses the DSE engine to generate test inputs for the

meta-program. The DSE engine tries to cover all the possible

paths, making the generated test inputs satisfy all the possible

mutant-killing constraints, and thus weakly kill the mutants.

Assume that we have a program under test as below:

void foo(int a, int b) {
if(a > 10)

return a-b;

else

return a; }



There are two mutation points in statements if(a > 0) and

return a-b. Normally, PexMutator generates mutant-killing

constraints for every mutant and inserts them into the original

program under test to obtain a meta-program. Here, to simplify

the illustration, we use three mutants of each mutation point

to generate the meta-program. The generated meta-program

is shown below, where the added conditional statements 1-3

are generated by mutant-killing constraints consts 1-3 of the

first mutation point, and the added conditional statements 4-6

are generated by mutant-killing constraints consts 4-6 of the

second mutation point3:

void foo(int a) {
if(((a>10) && !(a>=10)) || (!(a>10) && (a>=10))) //const1

log.write("Mutant a>=10 Killed");

if(((a>10) && !(a==10)) || (!(a>10) && (a==10))) //const2

log.write("Mutant a==10 Killed");

if(((a>10) && !(a!=10)) || (!(a>10) && (a!=10))) //const3

log.write("Mutant a!=10 Killed");

if(a > 10) {
if(false || (a-b)!=(a+b)) //const4

log.write("Mutant a+b Killed");

if(false || (a-b)!=(a*b)) //const5

log.write("Mutant a*b Killed");

if((b==0) || (a-b)!=(a/b)) //const6

log.write("Mutant a/b Killed");

return a-b;

} else

return a;

}

After the meta-program is available, PexMutator uses the

DSE engine to generate test inputs for the meta-program. As

shown in Section II-B, the DSE engine generates test inputs

to cover all the possible branches of the meta-program. The

generated test inputs cover the true branches of the added con-

ditional statements, thus satisfying mutant-killing constraints

and weakly killing mutants. For example, the test inputs

generated by the DSE engine for the preceding meta-program

cover the true branches of the six instrumented conditional

statements, satisfying consts 1-6 and weakly killing the six

mutants. As all the added mutant-killing constraints do not

change the state of the original program, the generated meta-

program has the same results with the original program if they

are provided with the same inputs. Therefore, the generated

test inputs for the meta-program can be directly used for the

original program under test to kill mutants.

IV. IMPLEMENTATION

We have implemented PexMutator as a tool for generating

test inputs for .NET applications. To test a program, PexMu-

tator first analyzes the program and transforms the program

under test to a meta-program based on the transformation rules

described in Section III, and then uses the DSE engine to gen-

erate test inputs for the meta-program toward mutant killing.

Next we briefly illustrate the implementation of PexMutator

including two steps.

1) Meta-program Generation: Meta-program generation is

the key part of PexMutator. Typically, there are two ways to

generate a meta-program: generating at the source level and

3To indicate which mutant is weakly killed, our implementation includes
the mutated expression in the written log message.

generating at the compiled-file level. Manipulating source code

could be tedious and fault-prone. In addition, the generated

meta-program is not immediately available for test generation.

Therefore, PexMutator generates the meta-program at the

compiled-file level directly. We developed PexMutator using

the Common Compiler Infrastructure (CCI)4, which provides

functionality for reading, writing, and manipulating Microsoft

Common Language Runtime (CLR) assemblies. PexMutator

reads the assemblies of the original program under test and

generates the corresponding meta-program in the form of

assemblies5. The code manipulation based on CCI makes the

generated meta-program less fault-prone. In addition, the gen-

erated meta-program can be directly used for test generation

without recompilation.

2) Test Generation via DSE: As a state-of-the-art DSE

engine, Pex [28] has been previously used internally at Mi-

crosoft to test core components of the .NET architecture and

has found serious faults [28]. PexMutator adopts Pex as its

test-generation engine. In testing a program, PexMutator first

transforms the original program to a meta-program, and then

uses the Pex engine to generate test inputs for the meta-

program.

PexMutation 1.1 has been released as an open source tool

in the Pex Extensions site6.

V. EXPERIMENTAL STUDY

In our study, we intend to investigate the following research

questions:

• How does PexMutator perform in generating test inputs

to strongly kill mutants?

• How does PexMutator compare with Pex in terms of

block coverage and mutant killing?

The first research question is mainly concerned with the

effectiveness and efficiency of our approach in practice. We

further investigate the second research question for two main

reasons. First, PexMutator uses Pex to generate test inputs, and

therefore we want to evaluate the improvement of PexMutator

over Pex. Second, we want to compare the effectiveness of

test inputs generated by PexMutator and a state-of-the-art

test-generation technique (e.g., Pex). Here we evaluate the

effectiveness of test inputs in terms of both block coverage

and mutant killing.

A. Experimental Setup

We conducted our experiments on a PC with a 2.66GHz

Intel Pentium4 CPU and 2GB memory running the Windows

XP operating system. In the rest of this sub-section, we

present the subject programs (Section V-A1), supporting tools

(Section V-A2), and experimental procedure (Section V-A3)

of our experimental study.

4http://cciast.codeplex.com
5Note that PexMutator ignores the third-party assemblies invoked by the

the assemblies under test during meta-program generation.
6http://pexase.codeplex.com



TABLE III
SUBJECTS.

Subjects # Methods # Blocks #LOC

Sets 1 13 39

Searching 2 46 98

Numbers 10 104 306

Strings 7 167 285

Sorting 12 267 472

1) Subjects: Data Structures and Algorithms (DSA)7 is a

library implementing data structures and algorithms under the

.NET framework. To answer the research questions, we con-

duct our experimental study on all the algorithms in DSA. All

the algorithms in DSA form five subjects, each of which are

formed by algorithm source files and its supporting assemblies.

Subject Sets deals with a set-permutation algorithm. Subject

Searching deals with search algorithms. Subject Numbers

deals with number-calculation algorithms. Subject Strings

deals with string-manipulation algorithms. Subject Sorting

deals with various sorting algorithms (e.g., QuickSort,

BubbleSort, MergeSort, ShellSort and RadixSort).

These five subjects range from 13 blocks8 to 267 blocks. The

details for the five subjects are shown in Table III, in which

Column 1 lists the names of subjects; Columns 2-3 show the

number of methods and blocks in each subject, respectively;

and Column 4 lists the number of lines of code (denoted as

#LOC) in each subject, not counting empty lines or comment

lines. These statistics are based on source files rather than their

assemblies.

2) Supporting Tools: As the evaluation of strong mutant

killing requires the concrete execution of various mutants for

each subject. Therefore, besides PexMutator and Pex, in this

study, we also use GenMutants to generate various mutant

versions to evaluate the quality of test inputs in terms of strong

mutant killing. GenMutants is a mutant-generation tool based

on the five sufficient mutation operators for .NET applications.

Currently, it has been released as open source in our project

site9.

3) Experimental Procedure: Taking into account the ef-

ficiency issue, we compare PexMutator against Pex under

the same time constraints. For each subject, we set all the

other Pex exploration attributes to be large enough, leaving

the Timeout attribute to be controlled. We set the Timeout

attribute to be 1s, 5s, 10s, 20s, 40s for each subject. For

each combination of subjects and time constraints, we follow

the following procedure:

• First, we use PexMutator and Pex to generate test inputs

for the combination of a subject and a time constraint

separately. Each technique generates a corresponding set

of test inputs.

• Second, we run the two sets of test inputs (generated

by PexMutator and Pex, respectively) against the original

7http://dsa.codeplex.com/
8A block denotes a sequence of statements that have only one entrance and

one exit.
9http://pexase.codeplex.com/

subject under test to collect the block coverage achieved

by each set of test inputs.

• Third, we run the two sets of test inputs against the

meta-program generated by PexMutator, and record the

numbers of executed mutants and weakly killed mutants

for each set of test inputs.

• Finally, we run the two sets of test inputs against various

mutant versions of the original subject (generated by

GenMutants) to evaluate the effectiveness in terms of

strong mutant killing.

B. Results and Analysis

In this section, we present and analyze the experimental

results to answer our research questions. The detailed experi-

mental results are shown in Table IV. In the table, Column 1

lists the studied subjects; Column 2 lists the number of weak-

mutant-killing constraints generated in the meta-program of

each subject (i.e., the number of mutants of each subject);

Column 3 shows the time constraints; Columns 4-5 list the

code coverage (more specifically, block coverage) achieved by

Pex and PexMutator on each combination of subjects and time

constraints; Columns 6-7 list the number of mutants executed

by test inputs generated by Pex and PexMutator; Columns

8-9 list the number of mutants weakly killed by test inputs

generated by Pex and PexMutator; Columns 10-11 list the

number of mutants strongly killed by Pex and PexMutator;

and Columns 12-13 list the number of test inputs generated

by Pex and PexMutator, respectively.

1) RQ1: Performance of PexMutator: In this research

question, we are mainly concerned with the efficiency and

effectiveness of PexMutator in terms of mutant killing. As

shown in Column 11 of Table IV, for all the combinations

of subjects and time constraints, the test inputs generated by

PexMutator successfully strongly kill the majority of all the

mutants.

For better analysis, we further present the ratios of mutants

that are executed, weakly killed, and strongly killed by PexMu-

tator. In Figure 4, the ERate area denotes the ratio of executed

mutants to all the mutants, the WRate area denotes the ratio of

weakly killed mutants to all the mutants, and the SRate area

denotes the ratio of strongly killed mutants to all the mutants

(note that these three areas are overlapped). First, we observe

that, on all the 5 * 5 = 25 combinations, PexMutator is able

to generate test inputs to execute 98.86%, weakly kill 87.05%,

and strongly kill 80.00% of all the mutants on average. Second,

on the combinations with not too tight time constraints (i.e.,

greater than 1s), PexMutator achieves relatively stable and

better results: executing 100.00%, weakly killing 89.83%, and

strongly killing 83.40% of all the mutants on average. Note

that there are a number of equivalent mutants for every subject

and if we exclude these equivalent mutants, PexMutator could

achieve even higher strong-mutant-killing ratios. For example,

subject Searching has 9 equivalent mutants (determined by

manual inspection), and PexMutator is able to strongly kill

all its non-equivalent mutants (i.e., with 100% killing ratio on

non-equivalent mutants).



TABLE IV
EXPERIMENTAL RESULTS.

Subjects #Consts Time (s) Block Coverage (%) #Executed Mutants #Weak-killed Mutants #Strong-killed Mutants #Test inputs
Pex PexMutator Pex PexMutator Pex PexMutator Pex PexMutator Pex PexMutator

1 100.00 91.00 31 31 25 23 24 20 4 3
5 100.00 100.00 31 31 25 28 24 25 4 5

Sets 31 10 100.00 100.00 31 31 25 28 24 25 4 5
20 100.00 100.00 31 31 25 28 24 25 4 5
40 100.00 100.00 31 31 25 28 24 25 4 5

1 95.65 95.65 75 75 58 57 58 57 16 17
5 95.65 95.65 75 75 66 66 66 66 19 23

Searching 75 10 95.65 95.65 75 75 66 66 66 66 19 24
20 95.65 95.65 75 75 66 66 66 66 19 24
40 95.65 95.65 75 75 66 66 66 66 19 24

1 95.19 94.23 261 261 229 225 206 204 45 56
5 99.04 99.04 288 288 258 263 238 259 50 88

Numbers 288 10 99.04 99.04 288 288 258 263 238 259 50 89
20 99.04 99.04 288 288 258 263 238 259 50 92
40 99.04 99.04 288 288 258 263 238 259 50 93

1 92.22 86.23 310 293 262 244 203 196 51 51
5 100.00 100.00 343 343 306 311 266 276 86 111

Strings 343 10 100.00 100.00 343 343 309 311 266 276 96 119
20 100.00 100.00 343 343 309 311 266 276 97 122
40 100.00 100.00 343 343 309 311 266 276 100 123

1 95.13 96.63 420 420 352 355 271 286 58 69
5 98.88 99.63 440 440 376 389 314 336 72 98

Sorting 440 10 99.63 99.63 440 440 384 391 327 342 79 109
20 99.63 99.63 440 440 384 391 327 342 80 130
40 99.63 99.63 440 440 384 391 327 343 81 134
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Fig. 4. The performance of PexMutator

In summary, PexMutator is able to strongly kill more than

80% of all the mutants for the studied subjects, and sometimes

even achieves 100% killing ratio on non-equivalent mutants.

2) RQ2: Comparison of PexMutator with Pex: First, we

compare PexMutator with Pex in terms of strong mutant

killing. As shown in Columns 10-11 of Table IV, the four

combinations on which Pex outperforms PexMutator all have

the time constraint 1s. We suspect the reason to be that the

time constraint 1s is too tight for PexMutator to explore a

complex meta-program. With time constraints greater than 1s,

PexMutator is able to show stable performance and strongly

kills more mutants than Pex on four of all the five subjects (i.e.,

except subject Searching). On the four subjects (excluding

Searching), PexMutator is able to outperform Pex by 4.37%

in strong-mutant-killing ratios. Although the improvement

TABLE V
ONE-WAY ANOVA RESULT.

DF SS MS F p

Model 1 0.0150 0.0150 8.5542 0.0065

Error 30 0.0525 0.0018

Total 31 0.0675

does not seem substantial, we consider it a valuable improve-

ment: most mutants are killed as long as they are executed,

so that Pex, a state-of-the-art code-coverage-based engine,

is able to kill most of them, leaving only a few hard-to-

kill mutants. The equal effectiveness of PexMutator and Pex

on Searching demonstrates this point: all the 9 mutants

of Searching that cannot be killed by Pex are equivalent

mutants, making it impossible for PexMutator to make any

improvement. In addition, we perform the one-way ANOVA

on strong-mutant-killing ratios by Pex and PexMutator on the

four subjects (which have some non-equivalent mutants that

cannot be strongly killed by Pex) with time constraints greater

than 1s. The analysis results are shown in Table V, where SS

is the abbreviation of Sum of Squares, DF is the abbreviation

of Degrees of Freedom, MS is the abbreviation of Mean

Square, F represents the statistical F-value, and p represents

the calculated p-value. According to Table V, p-value is

0.0065, and much smaller than the significant level, which is

set to be 0.05. Therefore, PexMutator performs significantly

better than Pex for the significant level of 0.05. In summary,

PexMutator further kills mutants that are hard to kill, and the

improvement made by PexMutator is valuable.

Second, the mechanism of PexMutator is to introduce addi-

tional mutant-killing constraints to the original program under



test to form a meta-program, and the numerous introduced

constraints may make the DSE engine to focus on generating

test inputs for mutant-intensive parts (which contain more

mutants than normal parts) of the program while ignoring the

overall code coverage (such as block coverage). Therefore,

we further compare PexMutator with Pex in terms of block

coverage. As shown in Columns 4-5 of Table IV, among all the

25 combinations of subjects and time constraints, PexMutator

is able to achieve as high block coverage as Pex in 22 combina-

tions. The only 3 combinations on which PexMutator does not

perform well in terms of block coverage are three subjects with

the time constraint 1s (i.e., <Sets, 1s>, <Numbers, 1s>,

and <Strings, 1s>). We can conclude that PexMutator may

struggle in mutant-intensive areas and compromise overall

block coverage with very tight time limits (e.g., with the time

constraint 1s). However, as long as the time constraint is not

very tight, PexMutator is able to achieve competitive overall

block coverage compared with Pex.

In summary, PexMutator is able to outperform Pex sig-

nificantly in terms of strong mutant killing, while holding

competitive overall block coverage. In addition, we observe

that although the code-coverage-based technique (e.g., Pex)

is able to achieve relatively high mutant-killing ratios, it still

cannot kill some hard-to-kill mutants.

C. Threats to Validity

Threats to internal validity are concerned with uncontrolled

factors that may also be responsible for the results. In our

study, the main threat to internal validity is the possible faults

in the implementation of our aproach and result analysis. To

reduce this threat, we implement our approach based on two

state-of-the-art tools from Microsoft Research: CCI and Pex.

Furthermore, we reviewed all the code that we produced to

assure its correctness.

Threats to external validity are concerned with whether the

findings in our study are generalizable for other situations.

In our study, the main threat to external validity is the

subjects used in our study. To reduce this threat, we conducted

experiments on all the algorithms in a .NET library named

DSA. However, they still may not be representative for other

programs.

Threats to construct validity are concerned with whether

the measurement in our study reflects real-world situations. In

our study, the main threat to construct validity is the way we

measure the effectiveness of generated test inputs. To reduce

this threat, we use widely used criteria (i.e., block coverage

and the number of strongly killed mutants) to evaluate the

effectiveness of test inputs.

VI. RELATED WORK

A. Mutation Testing

Mutation testing [8], [14] is a fault-based testing approach,

which has been shown to be an effective indicator for the

quality of test inputs [1]. In addition, mutation testing has been

shown to be superior to common code coverage measurements

in evaluating the effectiveness of test inputs [11]. Since the first

proposal, mutation testing has been intensively studied. Some

researchers investigated techniques to overcome the challenges

of using mutation testing to measure the effectiveness of

existing test suites (e.g., work by Budd et al. [3], Wong and

Mathur [30], Mresa et al. [19], Hierons and Harman [15],

Zeller et al. [13], [26], and Zhang et al. [31]). Some researchers

used mutation testing to automatically produce faulty versions

to construct subjects for software-testing experimentation (e.g.,

Briand et al. [2] Andrews et al. [1], and Do et al. [10]).

There are also researchers using mutation testing as the test

criterion and investigating automatic techniques for generating

test inputs to satisfy the criterion (e.g., work by Offutt et al. [9],

[20], Liu et al. [18] and Papadakis et al. [25]).

B. Automatic Test Generation

Automatic test generation can be depicted as automatically

generating test inputs that satisfy certain test criteria. Vari-

ous automatic techniques have been proposed. For example,

Chen et al. [4], Pacheco et al. [24], and Ciupa et al. [5]

proposed random techniques to generate test inputs, and their

techniques are based on random algorithms. Clarke et al. [6]

and King [17] proposed test generation techniques using code

coverage as the test criterion, and their techniques are based

on symbolic execution, which generates test inputs by solving

symbolic constraints statically extracted from code. Godefroid

et al. [12], Sen et al. [27], and Tillmann et al. [28] devel-

oped techniques based on dynamic symbolic execution (DSE),

which combines concrete execution and symbolic execution to

generate test inputs to achieve code coverage. Offutt et al. [9],

[20] and Liu et al. [18] used mutant killing as the test criterion

and their techniques are based on solving statically constructed

constraints to kill mutants.

In this paper, we focus on automatically generating high-

quality test inputs. As mutant killing has been shown to be

an effective indicator for effectiveness of test inputs [11],

our PexMutator automatically generates test inputs based on

mutant killing. Although there are techniques [9], [18], [20]

aiming to facilitate the process of test generation towards

mutant killing, these techniques face challenges when being

applied on real-world applications. To support effective and

efficient mutation killing, we propose our general PexMutator

approach. First, PexMutator inserts all the mutant-killing con-

straints into the original program under test to form a meta-

program, instead of the costly traditional way of conjoining

one mutant-killing constraint with the original program for

one mutant at a time. Second, PexMutator generates test

inputs using a state-of-the-art DSE engine, Pex, which is

more effective than previous test-generation techniques used

for mutant killing. The efficient meta-program generation and

the state-of-the-art Pex engine enable PexMutator to conduct

test generation for real-world programs, which most existing

test-generation tools for mutation testing can hardly handle.

Concurrently and independently as our work, Papadakis

et al. [25] also developed an approach that uses DSE to

facilitate mutation testing. Our PexMutator is different from

their approach in the following main ways. First, PexMutator



directly introduces mutant-killing constraints into the program

under test, while their approach follows the concept of mutant

schemata [29] and adds internal checks to the mutant schemata

to produce meta-program source code. Second, PexMutator

operates on assemblies rather than source code (focused by

their approach), making PexMutator applicable when conduct-

ing mutation testing on libraries without source code.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a general approach that

automatically generates test inputs to kill mutants via Dynamic

Symbolic Execution (DSE). Although there are previous tech-

niques that generate test inputs to kill mutants, our approach

is more efficient and effective, making our approach appli-

cable to real-world programs for mutant killing, which most

existing techniques can hardly handle. We have implemented

the proposed approach in a tool called PexMutator as an

extension for Pex [28], an automated structural testing tool

for .NET developed at Microsoft Research. Our preliminary

experimental study shows that PexMutator is able to strongly

kill more than 80% of all the mutants for the studied subjects.

In addition, PexMutator outperforms Pex in terms of strong

mutant killing while holding the same block coverage.

In future work, we plan to address two main issues. First, the

current version of PexMutator introduces as many constraints

as mutants of the program under test into the corresponding

meta-program, making it expensive for the DSE engine to

generate test inputs for a large number of branches. We plan to

investigate techniques that generate constraints that enable to

weakly kill multiple mutants, thus reducing the number of total

generated constraints while keeping the same effectiveness.

Second, the subjects used in this paper are relatively small,

and we plan to extend our experimental study to more and

larger real-world .NET applications to evaluate the scalability

of PexMutator.
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