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Abstract—Regression testing is increasingly important with
the wide use of continuous integration. A desirable requirement
for regression testing is that a test failure reliably indicates a
problem in the code under test and not a false alarm from
the test code or the testing infrastructure. However, some test
failures are unreliable, stemming from flaky tests that can non-
deterministically pass or fail for the same code under test. There
are many types of flaky tests, with order-dependent tests being
a prominent type.

To help advance research on flaky tests, we present (1) a
framework, iDFlakies, to detect and partially classify flaky tests;
(2) a dataset of flaky tests in open-source projects; and (3) a study
with our dataset. iDFlakies automates experimentation with our
tool for Maven-based Java projects. Using iDFlakies, we build a
dataset of 422 flaky tests, with 50.5% order-dependent and 49.5%
not. Our study of these flaky tests finds the prevalence of two
types of flaky tests, probability of a test-suite run to have at least
one failure due to flaky tests, and how different test reorderings
affect the number of detected flaky tests. We envision that our
work can spur research to alleviate the problem of flaky tests.

I. INTRODUCTION

Regression testing is becoming increasingly important and

popular as both industry and the open-source community

widely adopt continuous integration (CI) [30], [49]. When

developers make changes to code, CI runs tests on the code

version with the changes to check whether the changes intro-

duce regressions. In an ideal world, failures from regression

tests would reliably signal faults in the developer’s latest

changes, be they in the code under test or the test code, and

every test failure would warrant investigation.

Unfortunately, some test failures may not be due to the latest

changes but due to so-called flaky tests. Previous work [20],

[38] defines flaky tests as tests that may non-deterministically

pass or fail even on the same version of the code under test.

Both practitioners and researchers are increasingly reporting

problems with flaky tests [5], [11], [12], [14], [20], [22], [34],

[36], [38], [40]–[43], [46], [53], [56], [57], including from

large organizations such as Facebook [25], Google [18], [19],

Huawei [32], Microsoft [26]–[28], and Mozilla [16]. A key

problem is that flaky tests lead to unreliable signals from CI

and can erode the trust of developers in their regression testing.

Flaky-test failures stem from a variety of causes, including

faults in the code under test, faults in the test code [38], or

unreliable testing infrastructure [32], [34]. Despite the false

alarms that flaky tests can raise, these tests can sometimes

detect real faults in the code under test and are therefore kept in

regression test suites. Frequent causes of non-determinism that

lead to flaky tests include concurrency, test-order dependency,

resource leaks, real time, network/IO issues, etc. [38].

Previous work [38], [46], [56] on flaky tests points out that

one substantial cause of flaky tests is the presence of test-

order dependencies. Such dependencies can make the same

tests (say, t1 and t2) pass when run in one order (say, t1
before t2) but fail when run in another order (say, t2 before

t1) because of some resource shared between the tests (e.g.,

the state in the main memory or on the file system). Following

prior work [56], we refer to flaky tests whose only source

of non-determinism is order dependencies as order-dependent

(OD) tests. Unlike other types of flaky tests whose causes

of non-determinism may be hard to control, OD tests can

deterministically pass or fail depending on the order in which

the tests are run [35]. We refer to all other types of flaky tests,

which are not OD tests, as non-order-dependent (NOD) tests.

One important obstacle to performing research on flaky

tests is obtaining a dataset of current flaky tests in real-

world projects, similar to datasets such as SIR [17] and

Defects4J [33] that enabled research studies on regression

testing, automated debugging, and program repair. Some prior

work studies only flaky tests from older code versions [14] or

focuses on only flaky tests that had been fixed [38]. Other work

does not classify flaky tests into OD or NOD tests, or performs

studies on only a relatively small number of projects [46], [56].

To offer a dataset of current flaky tests in real-world

projects, we develop a framework, called iDFlakies, for col-

lecting flaky tests from a large number of open-source projects,

and create a dataset of such flaky tests. The core of our

framework is our tool that can (1) detect flaky tests by

reordering and rerunning tests in a project and (2) partially

classify flaky tests as likely OD or NOD tests by checking

various test orders. Our current tool does not further classify

the causes of the flaky tests. We implement our tool as a Maven

plugin for Java projects that use JUnit tests. The tool offers

five configurations to run the tests and detect flaky ones. The

base configuration simply reruns the original order of the tests

many times to check whether the result of any test changes;

any test that passes and fails for the same code version in

the same test order is by definition a flaky, NOD test. The

other configurations reorder the test methods and classes to

focus on detecting OD tests, but these configurations can also

detect NOD tests along the way. Following Zhang et al. [56],

our tool reorders tests using random orderings or reversing

the original order of the tests. However, our tool differs from



Zhang et al.’s tool in that our tool’s random orderings do

not interleave test methods from different test classes. An

ordering that interleaves tests from test classes would not be

produced by popular testing frameworks, such as JUnit. Our

study (Section VI) shows that first randomizing the test classes

and then the test methods within each test class can detect the

most flaky tests overall.

In addition to our core tool, our framework offers automated

experimentation using our tool. In particular, our framework

takes a list of URLs of open-source Java projects and a commit

for each project, builds a Docker image for running each

project, and then runs our tool with a given set of config-

urations to detect flaky tests for each project. We wrap the

experimental runs into Docker images to increase the repro-

ducibility of our results. Furthermore, we make our framework

publicly available [7], allowing researchers to easier use our

tool in their research experiments on flaky tests.

We apply our framework on 683 projects, and limit the

cost of exploring different reordering configurations on them

by setting a time limit of up to 56 hours per project. Our

experiments find 82 projects with at least one flaky test and a

total of 422 flaky tests, of which 50.5% are classified as OD

and 49.5% as NOD, based on the observed runs. Moreover, a

developer running regression tests often cares not just whether

individual tests pass or fail but whether the entire test suite has

any test failure. We compute the probability that one run of

the test suite leads to flaky-test failures as the percentage of

our tool’s runs with at least one (flaky) test failure; we find the

probability to be as high as 50.0%. We also find that running

tests under random orders detects the most overall flaky tests,

and it has about the same probability to detect NOD tests as

running the tests in the same original order many times.

This paper makes the following main contributions:

Tool. We develop and make publicly available a tool to detect

flaky tests; our tool can be easily integrated into Maven

projects that use JUnit.

Framework. We present an end-to-end framework, iDFlakies,

that researchers can use to easily extend and apply our tool to

detect flaky tests and classify them into two types.

Dataset. We describe a collection of artifacts, including

Docker images and test-run logs, that we use to create the

dataset and detect flaky tests. iDFlakies and our artifacts are

publicly available [7].

Study. We present a study of flaky tests in open-source Java

projects. Our findings include the prevalence of OD and NOD

types of flaky tests and how to automatically detect these tests.

II. EXAMPLES OF FLAKY TESTS

We show two example flaky tests—one order-dependent

(OD) and one non-order-dependent (NOD)—that can non-

deterministically pass or fail when run on the same code.

A. Order-dependent (OD) test

OD tests are flaky tests that can pass or fail depending on

only the order in which the tests are run [56], i.e., OD tests

can be made to deterministically pass or fail by fixing the

1 public void assertIsShutdownAlready() {

2 shutdownListenerManager.new

InstanceShutdownStatusJobListener().dataChanged("/

test_job/instances/127.0.0.1@-@0", Type.

NODE_REMOVED, "");

3 verify(schedulerFacade, times(0)).shutdownInstance();

4 }

Fig. 1. An OD test from the Elastic-Job [3] project.

1 @Test(timeout=2000)

2 public void testIssue() throws Exception {

3 final int port = SocketUtil.getAvailablePort();

4 WebSocketServer server = new WebSocketServer( new

InetSocketAddress( port ) ) { ...}

5 ...

6 }

Fig. 2. An NOD test from the Java WebSockets [8] project.

order of tests [21]. Detecting OD tests is important in general,

because test frameworks can change the test order, even when

running all the tests, thereby causing the failures of OD tests

to affect developers. Moreover, techniques that shorten time

of regression testing—including test-suite reduction [48], [50],

[51], [54], test selection [15], [23], [37], [44], [45], [47], [52],

[55], and test parallelization [4]—select only a subset of tests

to run and could additionally expose failures of OD tests.

Figure 1 shows an example OD test that our tool

found in a project from our study. Elastic-Job [3] is

a popular Java project with over 4500 stars on GitHub

as of January 2019. The project contains an OD test

in its ShutdownListenerManagerTest class. The test,

assertIsShutdownAlready, is OD because its passing de-

pends on some tests not to run before it. This dependence

exists because Line 3 of assertIsShutdownAlready checks

whether an instance of a class variable is shut down, and the

instance is started by some other tests. The test passes by itself

or in orders where the tests that start the instance are run after

the OD test. However, the test fails when the tests that start

the instance, but do not shut it down, are run directly before

assertIsShutdownAlready.

B. Non-order-dependent (NOD) test

NOD tests are flaky tests that can pass or fail depending on

any reason other than solely on the order in which the tests are

run. Tests of this type are flaky due to concurrency, timeouts,

network/IO, etc. [38].

Figure 2 shows an example NOD test that our tool found in

a project from our study. Java WebSockets [8] is a popular Java

project with over 4800 stars on GitHub as of January 2019.

The project contains an NOD test in its Issue713Test class.

The test, testIssue, is NOD because it is given a timeout

on Line 1, and on some executions of the test, the setup of the

WebSocket server and the broadcasting of some messages take

so long that the test times out. However, in some executions,

even on the same machine, the test is able to finish, due to

differences in the load of the machine.

A test could be flaky depending on both the order of the tests

and some other non-deterministic cause(s). For example, a

flaky test may pass or fail only in a certain order, while always

passing or always failing in all other orders. We aim to classify



such tests as NOD, because unlike pure OD tests, the execution

results for these tests cannot be deterministically reproduced

in some order. However, our tool classifies tests based on the

observed runs, and if it does not encounter a relevant run, it

may mis-classify a test as OD when it depends on both the

test order and some other non-deterministic cause(s).

III. OUR TOOL

We develop a tool that detects flaky tests and classifies each

as either OD or NOD; our tool does not further classify the

NOD tests into more precise causes of flaky tests [38]. As

inputs, our tool conceptually takes a test suite, a configuration

for ordering the tests, and the number of times to run the test

suite based on the configuration. The available configurations

are described in Section III-A. As output, our tool produces the

detected flaky tests, the type of each flaky test (OD or NOD),

and the exact order in which each flaky test fails. To detect

flaky tests, our tool repeatedly runs the test suite based on the

configuration specified by the user. We refer to a single run

of the test suite as a round. The default configuration orders

the tests using random-class-method with 20 rounds. In our

evaluation, we find that the random-class-method configuration

detects the most flaky tests.

We implement our tool as a Maven plugin that can be

integrated into any project that builds using Maven and runs

tests using JUnit. A Maven project is organized into one or

more modules, and each module contains its own code and

tests. Like most Maven plugins, our tool runs separately on

each module. Our tool uses our own custom test runner to

control the order of running JUnit test methods, hence, our

tool can work on only Maven projects whose tests are written

using JUnit. There are three main steps in our tool. The setup

step checks whether all tests of a module pass; if not, our tool

stops further exploration for that module. If all tests pass, the

module proceeds to the next step. The running step runs the

module’s test suite based on the user-specified configuration

and the number of rounds. For each round that contains some

test failure(s), our tool performs the classification step. The

classification step reruns failing and passing orders of a test

to classify it as OD or NOD.

During the setup step, our tool checks whether all tests

pass in the original order. To determine this order, our tool

runs Maven’s unit-test plugin, Surefire [10], and collects the

test logs (that Surefire stores in .xml files). From these logs,

our tool extracts the original order in which Surefire ran

test classes and test methods within the classes. Even if the

tests pass with Surefire, they could fail with our plugin that

uses our custom test runner. Thus, our tool runs the tests

in the original order using our custom runner, and checks

if the result of every test is PASS or SKIP. SKIP indicates

that a developer intentionally ignores the test. A test could

fail in the original order due to being flaky but also due to

several other factors, including our testing environment being

wrong, our tool having limitations, or the code under test being

actually broken. We cannot easily distinguish these factors. In

an attempt to get all tests to pass, even in the presence of

some NOD tests, our tool runs the original order up to a user-

specified number of times (by default three). If every run has

some failing test(s), our tool currently discards the module. In

the future, we plan to improve how our tool handles failing

tests, e.g., it could remove failing tests from the test suite

and proceed with the remaining tests. In our evaluation, the

original order does pass for the majority of the modules (945

modules pass, 476 modules do not pass).

Figure 3 shows an example run of our tool, using the

random-class-method configuration and 8 rounds. In the setup

step, the tool runs the original order and all four tests pass. In

the running step, the tool runs these tests 8 times based on the

specified configuration. In the end, it detects two flaky tests:

an OD test t1 from ATest (ATest#t1) and an NOD test t3

from BTest (BTest#t3).

To classify each failed test, the classification step can rerun

two test orders: (1) the truncated failing order with all tests

from the failing order up to and including the failing test; and

(2) the truncated original order with all tests from the original

order up to and including the failing test. If the test fails in

the truncated failing order and passes in the truncated original

order, our tool classifies the test as OD. If the test passes in the

truncated failing order or fails in the truncated original order,

our tool classifies the test as NOD. The classification reruns

of the truncated failing order are critical to classify each test

as OD or NOD; when a test fails in an order different from

the original order (in which the test passed), the tool could

not immediately determine whether the test fails due to the

change in the order or due to some other flakiness. The reruns

of the truncated original order are not cost-beneficial, and in

our evaluation failed in only 3 of 7441 classification runs, so

we recommend that only truncated failing orders be run.

In our example, BTest#t3 fails in round 3. In the clas-

sification step, when rerunning the truncated failing order,

BTest#t3 passes. Therefore, the tool classifies BTest#t3 as

an NOD test, because it failed and passed in the same order. In

contrast, ATest#t1 fails in rounds 7 and 8. In round 7, when

rerunning the truncated failing order, ATest#t1 fails again,

and when rerunning the truncated original order, ATest#t1

passes. Therefore, the tool classifies ATest#t1 as an OD test.

Even if a test fails twice in the same order, it is no guarantee

that the test is really OD, because other factors could have

made an NOD test to fail twice. For example, the test shown

in Figure 2 could time out twice in a row due to the machine

load, independent of the test order. Our tool can recheck a

test failure again even if it previously classified the test. A

test classified as OD can be later reclassified as NOD in a

future round. However, a test classified as NOD can never be

reclassified as OD. In our example, the same test ATest#t1

fails in round 8 and is classified again as an OD test.

A. Configurations

Our tool has five configurations for ordering tests:

(1) original-order repeatedly runs the tests in the original

order and classifies any failing test as NOD. The configuration

cannot detect OD tests, because the order is always the same.



Fig. 3. A sample run of our tool using the random-class-method configuration with 8 rounds, detecting an OD test and an NOD test.

(2) random-class (RandomC) repeatedly runs test classes in a

random order but keeps methods in each class in the same

order as in the original order (e.g., orders 2 and 5 from

Figure 3). Maven Surefire can already randomize the order

of test classes, but it neither runs the test suite repeatedly nor

classifies flaky tests as OD or NOD.

(3) random-class-method (RandomC+M) repeatedly runs test

methods in a random order, hierarchically randomizing first

the order of the test classes and then the methods within test

classes but not interleaving methods from different classes.

Figure 3 illustrates this configuration.

(4) reverse-class (ReverseC) reverses the order of all test

classes from the original order but keeps the test methods

in the same order as the original order (e.g., order 5 from

Figure 3); our tool runs this configuration only once to limit

the time for experiments (although repeated runs could detect

some more NOD tests but no new OD tests).

(5) reverse-class-method (ReverseC+M) reverses the order of

all test classes and methods from the original order (e.g., order

8 from Figure 3); similar to reverse-class, this configuration

runs only once.

All configurations, except the original-order, reorder some

tests from the original order and can detect OD tests. For

these configurations, if the tool finds a failing test, it proceeds

to the classification step (Section III-B). The original-order

configuration skips the classification step because all failing

tests from this configuration are classified as NOD tests.

B. Classification

When our tool finds a test failure in an order (called failing

order) different from the original order (in which the test

passed), it needs to classify whether the test is OD or NOD.

For this classification, our tool can run the test again in the

failing order and in the original order. If the test both fails

again in the failing order and passes again in the original order,

our tool classifies the test as an OD test. Otherwise, our tool

classifies it as an NOD test.

The test classification can happen at two stages. When

a test fails for the first time, its classification is unknown,

so the classification step must be run. If the same test fails

later, its prior classification is known (OD or NOD), so one

need not run the classification step again. However, we allow

a certain percentage of failures to be rechecked, i.e., the

classification step is rerun although the prior classification is

known. If this percentage is 100%, the classification step runs

for every failing test, with a potential high runtime cost. If this

percentage is 0%, no test is rechecked, increasing the chance

to mis-classify some NOD tests as OD. If this percentage

is in between, then each failing test is selected with that

percentage to be rechecked. In our experimentation, we use

20% to control the runtime cost but still have some benefit

of increased accuracy. We find that 29 tests are first mis-

classified as OD tests and later re-classified as NOD tests. For

greater accuracy in classification, we recommend setting this

percentage to 100% when using our tool with spare machine

time available (e.g., overnight or over the weekend).

If our tool ever classifies a test as NOD, including during

rechecking, it overall classifies the test as NOD, even if some

classifications were OD. In other words, the tool classifies as

NOD all tests that fail non-deterministically for some order,

even if they fail largely deterministically in other orders and

thus have characteristics of both types of flaky tests. Many

NOD tests fail in more than one round (in our evaluation, 125

out of 209 NOD tests fail more than once), so even if the test

is incorrectly classified as OD in one round, later rechecking

can likely correctly re-classify the test as NOD.

C. Rounds and timeouts

Our tool can be set to run for a specified number of rounds

(Rounds) for each module of a project, a specified amount

of time (Timeout) for an entire project, or the minimum of

the two (Both). We expect that developers would use Rounds,

because they know how long their test suite runs, but we

used Both in our large-scale experiments, because we did

not know a priori how long various test suites run. Rounds:

Given a number of rounds, the tool runs each module for

that number of rounds before proceeding to the next module.

Section VI-D discusses the trade-off between running mod-

ules “depth-first” vs. “breadth-first”. Timeout: Given a total

amount of time, the tool computes the number of rounds to



Fig. 4. Overview of the iDFlakies framework.

run as ⌊Ttimeout/Toriginal⌋, where Toriginal is the time the original

order took to run the entire project. Both: Given both a number

of rounds and a timeout, our tool first calculates the number

of rounds as for Timeout, and then chooses the minimum of

that calculated number and the given number of rounds.

IV. IDFLAKIES FRAMEWORK

In addition to our core tool, we also develop a framework,

iDFlakies, for using the tool on various projects. At a high

level, the framework takes as input a list of project URLs

and commits, and outputs a database with various information

including how long a module’s test suite takes to run, in which

configurations a module’s test suite is run, and the OD and

NOD tests detected for each configuration. Figure 4 shows an

overview of the framework. It has three main steps: (1) setup

of the projects, (2) running our tool on the projects to detect

flaky tests, and (3) summarizing the results for the user. The

code for all three steps is publicly available [7].

A. Setup step

Given a list of project URLs and Git SHAs corresponding

to a commit for each project, our framework first constructs

a Docker image [2] for each project and commit pair. Each

image provides an isolated environment for each project and

eases the reproduction of our experimentation. Our Docker

images are also publicly available [7].

Our framework first builds a base Docker image on top of

Ubuntu 16.04 by installing the basic necessary software such

as Git, Java, and Maven. In particular, our framework currently

uses Java 8 and Maven 3.5.4. On top of this base Docker

image, the framework builds a Docker image for each project

by cloning the version of the project’s repository specified by

the commit SHA. The framework then builds the commit SHA

and runs its tests, specifically with mvn clean install

-DskipTests -fn -B followed by mvn test -fn -B. Our

framework aims to run as many modules as possible, and the

-fn option instructs Maven to not stop at the first failing

module but still execute the other modules. Modules that fail

mvn test do not proceed to the running step.

B. Running step

The running step runs our tool for each project in its own

Docker container. The framework starts up a Docker con-

tainer for each Docker image and first modifies the project’s

pom.xml files (the build configuration files for a Maven

project) to include our Maven plugin. Next, the framework

determines the number of rounds to run our tool; in the

Timeout or Both modes (Section III-C), the framework finds

the time that Maven took to run all the tests in the setup

step and uses that time to compute the number of rounds.

The framework then proceeds to run our tool for each tool

configuration that the user specified.

C. Summarizing step

While the running step logs various information from the

projects into log files, the summarizing step parses these logs

to create a SQL database. The database contains several tables

that allow easily querying the details for each module, for all

modules of a project, or even across projects. The user can

obtain information such as the time a module’s test suite takes

to run, the various configurations the module was run with, the

number of rounds that our tool runs for each configuration, the

rounds that contain at least one failing test and the names of

those failing tests, the results of the classification steps, which

round detected which flaky test, and whether each test was

classified as OD or NOD. All of the logs used to create the

database are also saved, including test orders, test results, stack

traces of failed tests, output from tests, and build output. More

details about the database and logs are on our website [7].

V. STUDY SETUP

All projects in our study are Java projects that build with

Maven [9] and use JUnit. We check whether a project builds

with Maven by looking for a pom.xml file at the root of

the project’s repository. We collected the projects from three

sources: (1) 44 projects from recent related work [14], [46],

(2) 150 most popular Java projects from GitHub [6] up until

October 2018, and (3) 500 most popular Java projects from

GitHub that were updated within the month of November

2018. We determine the popularity of GitHub projects using

the number of stars.

The projects from related work [14], [46] are prominent Java

projects that have flaky tests. Instead of using the same, mostly

old, versions of the projects used in the prior work [14], [46],

we use a more recent version, because we may report the flaky



tests that we detect to the project developers, and researchers

may want to study not-yet-fixed flaky tests, e.g., such that

tools for automated fixing do not overfit to the history. In total,

we use 44 projects from the two papers [14], [46]. When we

union those projects with the top 150 most popular projects

from GitHub, we obtain 183 projects that contain a total of

2921 modules and 1880362 tests.

We break our projects into two sets, comprehensive and ex-

tended. The comprehensive set includes all 183 projects from

sources (1) and (2), and we evaluate all five configurations of

our tool on these 183 projects. We find random-class-method

to be the most effective configuration for detecting flaky tests.

The extended set includes all of the projects from source (3),

and to limit the cost of our experimentation, we evaluate only

the random-class-method configuration on these projects. The

extended set consists of 500 projects disjoint from the projects

from the comprehensive set. These 500 projects contain a total

of 2250 modules and 93722 tests. The extended set has fewer

tests than the comprehensive set although the extended set has

more projects, because it has relatively smaller projects.

Of all 5171 modules from the 683 projects, iDFlakies is

able to explore 945 modules for flaky tests. iDFlakies cannot

explore the other 4226 modules (from 597 projects) because

462 modules could not be built by Maven, 2830 modules

do not declare JUnit as a dependency in its pom.xml file or

have no tests, 476 modules’ tests do not pass in any of three

rounds in the original order, and 458 modules encounter some

limitations of our tool. We plan to improve the tool to handle

more modules in the future.

In summary, among the 945 modules that iDFlakies can

explore, it detects 38 modules (from 31 projects) with at least

one OD test and 82 modules (from 63 projects) with at least

one NOD test, for a union of 111 modules (from 82 projects)

with at least one OD or NOD test (and some modules have

both OD and NOD tests). Our project website [7] provides

more details for all projects used in our study.

VI. STUDY RESULTS

The main goal of our study is to detect flaky tests in open-

source projects and to compare the configurations that one

could use to detect these tests. More specifically, our study

addresses the following main research questions:

RQ1: What is the breakdown of OD and NOD tests in open-

source projects?

RQ2: What is the probability of a round (test-suite run)

containing at least one flaky-test failure?

RQ3: What ordering configurations detect the most flaky tests?

The reason for RQ1 is to understand which types of flaky

tests are more prevalent among those detected in open-source

projects. The reason for RQ2 is to understand how often flaky

tests impact developers’ development cycle and to illustrate

the need for better solutions to detect flaky tests. The reason

for RQ3 is to help developers understand the potential trade-

offs of different ordering configurations and better utilize their

resources (e.g., developers’ time and machine resources) in

detecting flaky tests.
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Fig. 5. Probability of a configuration to detect at least one flaky test.

As described in Section V, our dataset contains two sets:

for comprehensive, we run all five configurations on the 183

projects; for extended, we run only the random-class-method

configuration on the 500 projects. RQ1 (Section VI-A) uses

both sets of our dataset, while RQ2 and RQ3 (Sections VI-B

and VI-C, respectively) use only the comprehensive set, be-

cause they compare the configurations.

A. RQ1. Breakdown of flaky-test types

Our evaluation detects a total of 422 flaky tests from 111

modules in 82 projects. Of 422 flaky tests, 213 (50.5%)

are classified as OD tests and 209 (49.5%) as NOD tests,

based on the observed runs. While the overall percentage

of OD tests is slightly higher than the percentage of NOD

tests, the two are rather close. Note that our study heavily

focuses on randomizing test orders to detect OD tests, because

automatically distinguishing/classifying OD tests from NOD

tests can be done fairly well. Section VI-C describes the

breakdown of the flaky tests detected for each test reordering

configuration. The projects in our study likely have many more

NOD tests that could be detected by changing some aspects of

our experiments. For example, running multiple test suites in

the same machine (not each in its own machine) would allow

competing for machine resources to more likely cause failures

of NOD tests.

B. RQ2. Probability of a round containing a flaky-test failure

The probability that an individual flaky test fails—measured

as the ratio of the number of rounds in which a test fails over

the number of rounds in which the test was run—varies a lot,

from under 1% to over 50% in our experiments. In practice, a

developer running tests usually cares not about individual tests



but the status of the entire test suite, i.e., whether all the tests

pass or some fail. Given this concern, we study the probability

of a round failing, i.e., containing at least one flaky-test failure.

Figure 5 shows for each configuration the percentage of failing

rounds further broken down into the percentages for rounds

that contain at least one OD or NOD test.

The percentage of failing rounds can be calculated assuming

the test failures to be either (1) correlated with one another or

(2) independent of one another. If failures are correlated, then

rounds with multiple failures affect the percentage as much

as rounds with one failure. If failures are independent, then

one round with multiple failures could have been multiple

rounds with fewer failures per round. Due to the difficulty

of precisely determining whether failures are independent, we

compute percentages for round failures simply based on the

observed rounds. Namely, we compute the percentages as the

ratio of the number of rounds where one or more flaky tests

fail over the total number of rounds for each configuration

(but only for modules that have flaky tests). If a failing round

contains both OD and NOD tests, then that round counts as

one for both types of flaky tests as well as for “Any”.

Figure 5 visualizes the results. We see that the reverse-class-

method configuration has the highest probability of producing

a failing round, 50.0% overall probability of detecting one or

more flaky tests just from running one round. More precisely,

reverse-class-method has a 46.8% probability of producing

a failing round due to OD tests and a 5.3% probability of

producing a failing round due to NOD tests. For quickly

determining whether a test suite may contain flaky tests, our

results suggest that the developers should run the reverse-class-

method configuration. We also find that developers who run

their tests only in the Maven-specified, original order have a

low overall probability of producing a failing round, 2.7%.

Of particular interest are the percentages of rounds that fail

due to OD tests for random-class and random-class-method.

Intuitively, an OD test can fail because either a “bad” test is

run before it or a “good” test is not run before it. Consider the

case where an OD test fails due to some “bad” test(s) running

before the OD test and “polluting” the shared state, causing

the OD test to start running in an undesirable state [12], [13],

[24]. Assume that there is one such polluting test and one OD

test. Given a uniformly random ordering of the tests, there is

a 50% probability of the polluting test to be ordered before

the OD test. If there are more polluting tests, the probability is

even higher that at least one polluting test runs before the OD

test. However, with the exception of the reverse-class-method

configuration having a 46.8% probability of a failing round,

our reordering configurations have the percentages much lower

than 50%. These low percentages suggest that the test suite

has some “cleaner” tests, which clean the polluted state such

that the OD test can then run successfully, and these cleaner

tests are frequently ordered to run between the polluting test(s)

and the OD test.

The other case is a missing “good” test: if an OD test needs

another test to run before it to set up a desirable state for that

OD test, then not having that set up test run before the OD test

causes the OD test to fail. The probability of failure should

be again 50% unless there are many tests that can set up the

OD test. We plan to further explore the notions of “bad” and

“good” tests in the future.

C. RQ3. Configurations detecting most flaky tests

Table I shows the breakdown of the number of flaky tests

detected by the different configurations for each project from

our comprehensive set. The table shows the breakdown for

both OD and NOD tests, except for the original order that

can detect only NOD tests. The table also shows the number

of rounds run for the original-order and random-class-method

configurations; the number of rounds for random-class is

similar to the number for random-class-method. While these

numbers would be ideally the same, there are various reasons

for different numbers, including timeouts, tool crashes, and

repeated experiments. The numbers of rounds for reverse-

class-method and reverse-class are much lower; in fact, our

tool runs each of those two configurations for only one round

in one experiment, but we performed multiple experiments

while developing our tool and kept most of the logs to provide

the largest dataset for analysis of flaky tests.

OD tests: As shown in Table I, among all configurations, the

random-class-method detects the greatest number of unique

OD tests, 162 (i.e., 88.0% of all OD tests detected across

all configurations). This result matches our expectations: ran-

domly reordering test methods provides the most reordering

flexibility among configurations, giving more opportunities for

different reorderings to expose OD tests. In general, Table I

shows that reordering test methods rather than just test classes

helps with detecting flaky tests; both random-class-method

and reverse-class-method detect more flaky tests than random-

class and reverse-class, respectively (while the corresponding

configurations explore a similar number of rounds).

Considering that the random-class-method configuration

runs many more rounds than the reverse-class-method config-

uration, it is expected that random-class-method detects more

(OD and NOD) flaky tests. Indeed, the reverse-class-method

configuration detects only 47 OD tests (25.5% of all OD tests

detected across all configurations). Interestingly, the reverse-

class-method configuration detects 4 tests not detected by

the random-class-method configuration. However, the random-

class-method configuration detects 119 tests not detected

by the reverse-class-method configuration. As a result, we

strongly recommend developers to first run the reverse-class-

method configuration once to quickly detect a portion of the

OD tests and then use the random-class-method configuration

to detect more OD tests.

Overall, we find that the random-class-method configuration

performs the best, although the other configurations also

sometimes detect flaky tests not detected by random-class-

method. Our findings suggest that it is desirable to research

new approaches that can help quickly find the test orders that

would detect the most OD tests. Such new approaches could

be substantially better than randomly selecting test orders, and

we plan to explore them in the future.



TABLE I
THE NUMBER OF FLAKY TESTS THAT EACH CONFIGURATION DETECTS IN THE COMPREHENSIVE SET. “ALL” IS THE NUMBER OF UNIQUE TESTS.

Original RandomC RandomC+M ReverseC ReverseC+M All

Project Slug - Module Round NOD OD NOD Round OD NOD OD NOD OD NOD OD NOD All

activiti/activiti 88 0 0 0 66 20 0 0 0 0 0 20 0 20

alibaba/fastjson 67 0 12 0 158 13 2 3 0 4 0 13 2 15

apache/hadoop - m1 14 0 0 0 14 2 0 18 10 0 0 20 10 30
- m2 14 0 22 1 7 22 1 0 0 0 0 22 1 23
- m3 15 0 1 0 10 1 0 1 0 1 0 1 0 1
- m4 15 1 0 0 14 2 0 0 0 4 7 6 8 14

apache/hbase 14 1 0 0 13 0 1 0 0 0 1 0 1 1

apache/incubator-dubbo - m1 32 0 0 1 53 0 0 0 0 0 0 0 1 1
- m2 33 0 2 7 76 4 2 0 0 1 0 4 9 13
- m3 39 0 0 0 37 1 0 0 0 1 0 1 0 1
- m4 42 0 1 0 91 4 0 0 0 2 0 4 0 4
- m5 47 0 0 0 38 3 0 0 0 0 0 3 0 3
- m6 131 2 0 0 49 0 0 0 0 0 0 0 2 2

apache/jackrabbit-oak 16 0 0 0 14 2 0 0 0 2 0 2 0 2

apache/struts 114 0 0 0 342 4 0 0 0 0 0 4 0 4

crawlscript/webcollector 4140 1 0 1 16503 0 1 0 0 0 0 0 1 1

doanduyhai/achilles 356 0 0 0 278 0 1 0 0 0 0 0 1 1

dropwizard/dropwizard 76 0 0 1 248 1 1 0 0 0 0 1 1 2

elasticjob/elastic-job-lite - m1 288 2 0 0 839 0 0 0 0 0 0 0 2 2
- m2 307 3 0 0 826 0 1 0 0 0 0 0 3 3
- m3 335 0 2 0 815 7 1 0 0 2 0 7 1 8

google/jimfs 42 1 0 0 108 0 0 0 0 0 0 0 1 1

jfree/jfreechart 166 0 0 0 290 1 0 0 0 0 0 1 0 1

jodaorg/joda-time 206 1 0 0 146 0 0 0 0 0 0 0 1 1

kevinsawicki/http-request 2317 0 0 0 2013 28 0 0 0 28 0 28 0 28

knightliao/disconf 344 0 0 0 1359 0 1 0 0 0 0 0 1 1

looly/hutool 842 0 0 0 650 0 1 0 0 0 0 0 1 1

orbit/orbit 35 0 0 1 123 0 0 0 0 0 0 0 1 1

oryxproject/oryx 60 1 0 0 131 0 1 0 0 0 0 0 1 1

querydsl/querydsl 14 3 0 0 0 0 0 0 0 0 0 0 3 3

spotify/helios 25 1 0 1 71 0 1 0 0 0 0 0 1 1

spring-projects/spring-boot - m1 8 1 0 0 12 0 0 0 0 0 0 0 1 1
- m2 12 0 0 0 13 2 0 0 0 2 0 2 0 2

square/otto 815 1 0 0 3243 0 0 0 0 0 0 0 1 1

square/retrofit - m1 87 0 0 2 331 0 2 0 0 0 0 0 2 2
- m2 87 0 0 4 331 0 5 0 0 0 0 0 7 7

tootallnate/java-websocket 666 21 0 30 1653 0 47 0 0 0 1 0 52 52

undertow-io/undertow 15 0 0 4 65 1 3 0 0 0 0 1 4 5

wildfly/wildfly 10 0 0 0 35 44 0 0 0 0 0 44 0 44

wro4j/wro4j 34 0 0 0 116 0 2 0 0 0 0 0 2 2

Total 11968 40 40 53 31181 162 74 22 10 47 9 184 122 306

NOD tests: Table I and Figure 5 show that most configurations

have similar probability to detect NOD tests. The percentages

for the two reverse configurations differ from the other config-

urations, but these two configuration have much fewer rounds

and thus by chance could have much higher or lower prob-

abilities. Even if some configuration has a higher probability

to detect at least one failure in a round, it may be repeatedly

detecting the same NOD tests. A benefit of rerunning original-

order is that every failure is immediately known to be an NOD

test. In contrast, failures from randomized orders need to be

classified using the classification step of our tool.

Detection of many NOD tests from randomized orders

(and the reverse-class-method classification) shows that the

classification step is important for properly classifying a flaky

test as an OD test or an NOD test. Of the 122 NOD tests

in our comprehensive set, we find that our tool classifies 91

as NOD tests using the classification step; the remaining 31

unique NOD tests need no classification step because our tool

classifies them as NOD using the original-order configuration.

For NOD tests detected by both original-order and random-

class-method, we compare the probability of a round detecting

the test but find no generalizable differences. Specifically, a

Wilcoxon signed-rank test shows that the probabilities are

statistically different, with p < 0.05, for the (26) tests in the

comprehensive set but not statistically different from the (33)

tests including both comprehensive and extended sets. We plan

to explore in the future whether running the tests in different

reorderings leads to differences that can more easily expose

flakiness in the NOD tests due to various causes.

Our results suggest that simply rerunning tests in the

original order where they pass is not a good configuration

for detecting flaky tests—it cannot detect any OD test, and it

does not have a much higher probability to detect even NOD

tests. It is better to reorder the tests to increase the probability

of detecting any type of flaky tests, not just OD tests. In

our experiments, the randomizing configurations, along with

the classification step, detect more NOD tests than rerunning

the tests many times in the same original passing order (but



with the caveat that randomizing configurations had more

rounds). Our tool currently cannot further analyze or classify

the cause of flakiness for these NOD tests; we leave that topic

as important future work.

D. Discussion

Running iDFlakies: Currently, our tool runs tests in a multi-

module Maven project in a depth-first manner: given a user-

specified number of rounds (or a user-specified timeout from

which the tool calculates the number of rounds), our tool first

runs that number of rounds for one module before proceeding

to the next module. An alternative would be breadth-first:

our framework would first run our tool on every module

once before running our tool on every module again for the

second round, and so on. However, breadth-first would invoke

our tool, and consequently Maven, each time it needs to run

through all modules for one round. Invoking our tool and

Maven adds extra overhead in checking what modules exist,

what needs to be rebuilt, what the tests are, etc. Comparing

advantages and disadvantages of depth-first and breadth-first,

depth-first avoids the extra overhead of invoking Maven multi-

ple times and more closely matches the usual Maven approach

to plugins, with a plugin finishing work on a module before

proceeding to the next module. The disadvantage is that depth-

first requires knowing the number of rounds, so our tool can

finish running tests for one module before proceeding to the

next one. The advantage of breadth-first is that it allows for the

usage scenario where a developer runs the framework with no

a priori timeout, running overnight or whenever a machine

has idle time. The developer can then stop the framework

at any time and receive all the flaky tests detected. The

disadvantage of breadth-first is the extra overhead needed for

Maven. Currently, we do not know which way of running

modules is faster and provides more benefits in terms of

detecting more flaky tests; we plan to implement breadth-first

and compare empirically with depth-first in the future.

Regression testing: Our tool runs tests in many different or-

ders aiming to detect the most flaky tests. However, rerunning

tests takes a long time and is worth doing only if a developer

is purposefully trying to detect a substantial number of flaky

tests and has the resources for this task. Another way to use

the findings from our study (e.g., that changing the order of

the tests increases the chances of detecting flaky tests) is to

incorporate the reorderings with continuous integration and

regression testing. The developer can run the tests in different

orders after every change when tests are naturally rerun as part

of the development process, and flaky-test detection from our

tool would effectively come “for free”. In fact, we find that

8 of the 683 projects from our study already configure their

Surefire (setting the option runOrder to random) to run test

classes (but not test methods) in random order.

First failure: Our framework counts all tests that fail during

a failing round as flaky tests. However, multiple flaky tests

that fail in the same failing round can all be failing due to the

same root cause. As such, multiple flaky tests can all be fixed

in the same way, and the number of fixes may be smaller than

the number of flaky tests. For example, in a run with multiple

failing tests, all failing tests may be classified as OD, but the

tests after the first failure simply depend on the first failing

test. When that first failing test is fixed, these later OD tests

may also all be fixed. We plan to explore automated debugging

of OD tests in the future.

Ratio of types of flaky tests: Our results show that the

percentages of flaky tests classified as OD and NOD are

quite close (50.5% and 49.5%, respectively). However, prior

work [38] classifying fixed flaky tests found a much lower

percentage of flaky tests being OD, 12%. Our tool uses random

orderings to focus on detecting OD tests. Our tool likely

misses many NOD tests and can be improved by adding more

variations to test runs in order to detect more NOD tests.

FixMethodOrder: We find that 23 of the OD tests detected by

our tool are in test classes annotated with @FixMethodOrder.

This annotation indicates that the test methods in a test class

must run in a certain order, e.g., in the ascending order

based on the test-method names. Our tool still detects and

reports such OD tests although running them through JUnit

would not reorder the tests. However, it is still beneficial to

explore different orderings of test methods in such annotated

test classes. First, it could be that there are actually no

dependencies among the tests, so the annotation is no longer

needed and can be removed. Second, it is important to still

detect OD tests to help developers know which exact ones

are OD. For example, we observe that while our tool detected

several OD tests in @FixMethodOrder-annotated test classes

from the Activiti/Activiti project [1] at commit SHA

b11f757a, the developers introduced a patch that removed

the ordering of such dependencies and the @FixMethodOrder

annotation in a later commit SHA, 5a1cb8ae.

VII. THREATS TO VALIDITY

Our tool and framework may contain faults that could have

affected our results. To mitigate such threat, we implement

extensive logging for our framework and manually investigate

a sample of logs generated on a variety of projects. We are

more confident in our core tool but less confident in the

summarizing step of the framework due to its complexity.

The exact results of our study, namely the flaky tests de-

tected and their rate of failures, may not be easily reproducible

due to the nature of our experimentation using random orders

and the nature of flaky tests non-deterministically passing and

failing. We attempt to mitigate this threat by logging the

(random) orders in which our tool runs the tests so that others

can reproduce the flaky-test behavior by running the same

orders. The logs for all rounds are publicly available [7].

Our classifications of flaky tests into OD or NOD tests may

occasionally be incorrect. For example, an NOD test could

fail due to a timeout or network issue, and rerunning in the

classification step could lead to it failing again in the same

order, misleading our tool to classify the test as an OD test.

We attempt to mitigate this threat by having the framework

recheck a substantial number of flaky tests’ classifications.



Moreover, the actual number of flaky tests in the projects

we study may be (much) higher than what we report. We

likely miss some NOD flaky tests. Also, we currently run only

unit tests from mvn test and not integration tests from mvn

verify because the latter can take much longer.

Our findings that random-class-method detects the most

flaky tests among all configurations that we study may not

generalize to projects other than those we study. We attempt

to mitigate this threat by obtaining a sizable number of popular

Java projects from GitHub and prior studies. Nevertheless,

projects written in other languages, or even Java projects not

using Maven or JUnit, may not yield similar results. We use

the number of stars on GitHub to obtain popular Java projects,

but they may not be representative of the test suites in all Java

projects.

VIII. RELATED WORK

Luo et al. [38] performed an extensive study of flaky tests

by looking through historical commits with fixed flaky tests

and classified these tests into several types, including OD

tests. OD tests were among the top three causes of flaky tests,

with 12% of the fixed flaky tests being OD. Labuschagne et

al. [34] studied regression testing in continuous integration

and encountered many flaky tests as well, reporting that 13%

of the historical failed builds rerun on Travis CI are due to

flaky-test failures. Gao et al. [22] studied system tests and

found that 96% of test failures can be due to flaky tests and

that the same tests can have as much as 184 lines of code-

coverage difference between runs. Others [29], [39] also report

non-deterministic code coverage.

There is a growing body of work on detecting flaky tests.

Our work follows Zhang et al. [56] who detected OD tests

through random ordering of all test methods in the test suites,

with follow-up work [35] that also reported NOD tests through

rerunning the same order of tests many times. We also rely

on random ordering to detect flaky tests and on reruns to

classify them into OD and NOD tests. However, unlike Zhang

et al. [56], we build our dataset across a much larger number

of projects (683 projects vs. 4 projects). Furthermore, our

random-class-method configuration does not interleave the test

methods across different test classes, respecting how JUnit

actually runs tests. Our results still confirm Zhang et al.’s

finding that running a high number of randomized orders can

detect more OD tests than running once the reverse order.

Gyori et al. [24] proposed the PolDet technique for detecting

tests that “pollute” the state such that tests that run after

polluters may have different outcomes. PolDet can proac-

tively report potential test-order dependencies before they

even occur, because no other test in the current test suite

may actually depend on the polluted state. Dually, Huo and

Clause [31] studied tests with brittle assertions that depend

on the values derived from inputs not controlled by the tests

themselves. Such tests can be order-dependent on other tests

that conceptually pollute the state that affects the test with

the brittle assertions. Bell et al. [13] proposed to monitor

test executions to dynamically detect test dependencies, but

these dependencies may not necessarily lead to different test

outcomes if tests run in different orders. Building on that work,

Gambi et al. [21] developed a technique to more precisely

detect test dependencies and used it to find different test orders

to manifest OD tests. They reported 27 previously unknown

OD tests; we report 213 OD tests and also 209 NOD tests. In

future work, we can leverage the ideas from Gambi et al. [21]

to detect OD tests faster.

Palomba and Zaidman [46] considered the relationship

between code smells and flaky tests, reporting that fixing

certain types of code smells can also fix certain flaky tests.

They reported finding flaky tests through reruns and classifying

them into the types introduced by Luo et al. [38]. Palomba

and Zaidman reported 11% of flaky tests to be OD and a

large number of flaky tests from a small number of projects.

However, they did not provide us the logs of test runs from

their experiments, and thus we cannot directly compare their

results against ours or investigate the differences.

Bell et al. [14] leveraged code evolution and code coverage

to determine whether new test failures between two commits

are due to flaky tests; they automatically detected flaky tests

that cover no changed parts of the code but have a different

outcome from the last time the tests run. In contrast, we detect

flaky tests through reruns on the same commit, but instead of

just running the tests in the Maven-specified order, we apply

various configurations to reorder the tests. Both Palomba and

Zaidman [46] and Bell et al. [14] released datasets of flaky

tests but for older code versions; our dataset [7] is for the most

recent code versions, includes classification of flaky tests into

OD and NOD, and contains a collection to artifacts to help

others reproduce these flaky tests.

IX. CONCLUSION

We have presented our iDFlakies framework, which auto-

mates experimentation to detect and partially classify flaky

tests using our tool for Maven-based Java projects with JUnit

tests. We have applied our framework on 683 projects. We

provide a dataset of 422 flaky tests that we then use for our

study on flaky tests. From our dataset, 50.5% of flaky tests are

OD, while 49.5% are NOD, based on the observed runs. We

also find that running the random-class-method configuration

can detect the most flaky tests overall. Both our framework

and dataset are publicly available [7], and we hope that they

can help involve more researchers in the topic of flaky tests,

e.g., to develop better techniques to detect flaky tests, reduce

non-determinism or even fix it altogether, label test failures as

flaky or not, or prevent future flaky tests.
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