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FOCUS: Cloud Computing

Developer testing (also called 
unit testing) can help ensure the devel-
opment of high-quality cloud applica-
tions. However, unit testing normally 
can’t take into account all possible in-
puts because the input space is too large 
or even infinite. So, developers need cri-
teria to decide which test inputs to use 
and when to stop testing. Effective use 

of criteria such as structural-code cov-
erage can help reveal faults.

Manually writing test cases to 
achieve high structural coverage re-
quires developers to consider imple-
mentation details, making this task 
laborious and time-consuming. Also, 
developers sometimes have problems 
providing specific combinations of test 

inputs and cloud states to cover spe-
cific paths or blocks. To reduce the 
manual effort, they can employ auto-
mated test generation tools that use 
dynamic symbolic execution (DSE),1 
such as Pex (http://research.microsoft.
com/projects/pex), a constraint-solving 
technique based on path exploration. 
But these tools fail to generate high-
covering test inputs because they can’t 
generate a required cloud state or can’t 
control the cloud state.

Using stub cloud models could help 
alleviate these issues (see “Related 
Work” sidebar). With such models, de-
velopers can simulate a real cloud envi-
ronment with a fake stub that provides 
default or user-defined return values to 
cloud-related API method calls. How-
ever, these values won’t help achieve high 
structural coverage, and writing such a 
model requires much manual effort.

A parameterized cloud model ex-
tends a stub cloud model to enable gen-
eration of appropriate return values for 
covering different paths or blocks. Typ-
ically, a simple parameterized model 
would assume that every return value 
was possible as long as it could lead to 
a new path, even when this return value 
wasn’t feasible in a real cloud environ-
ment. Without reflecting the actual 
cloud environment’s logic or state con-
sistency, such a model could cause false 
warnings among reported failing tests.

To achieve high structural coverage 
for cloud applications while causing 
few false warnings, we’ve developed 
an approach that combines a simulated 
cloud model and DSE. It uses

•	 a test-driven-development (TDD) 
process of environmental modeling 
to simulate the cloud environment,

•	 a reusable cloud model to test cloud 
applications, and

•	 an automated technique that gener-
ates test inputs and cloud states.
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We’ve applied this approach success-
fully to several open-source cloud ap-
plications running in Microsoft’s Win-
dows Azure platform (www.microsoft.
com/windowsazure), which employs 
the platform as a service (PaaS) model.

Empirical Investigations
We studied 21 open-source Azure proj-
ects from CodePlex and Google Code 
(for a list, see our project website, 
https://sites.google.com/site/asergrp/
projects/cloud). Five of them included 
unit tests. We manually investigated 
the results from the Lokad Cloud proj-
ect because it includes three classes that 
heavily interact with the cloud environ-
ment and because testers have written 
test cases to check almost every method 
in them. The unit tests achieved 80 
percent block coverage for the class 
BlobStorageProvider, 79 percent for the class 
QueueStorageProvider, and 93 percent for 
the class TableStorageProvider.

We carefully inspected the blocks 
that these three classes didn’t cover. 
Of the 141 uncovered blocks, 78 per-
cent (111 blocks) weren’t covered be-
cause the existing test cases didn’t pro-
vide specific cloud states or program 

inputs. Whether the test-writing de-
velopers used a white-box approach to 
construct the test cases or not, most of 
those blocks weren’t covered because 
they required specific cloud states. Even 
when the test writers adopted the same 
coverage criterion as block coverage to 
generate the test cases, they generated 
the test cases manually. Different unit 
execution paths require different com-
binations of program inputs and cloud 
states, and developers can miss some 
combinations when writing test cases 
(including setting up cloud states).

The remaining 30 uncovered blocks 
weren’t covered either because no test 
case executed the method the block 
belonged to or because covering the 
block depended on other business logic. 

As our results show, generating test 
inputs and cloud states manually can 
prove challenging. In the next section, 
we use a real code example to illustrate 
similar challenges in automated testing.

The Challenge of 
Automated Testing
Figure 1 illustrates the testing chal-
lenge. The code snippet is a simpli-
fied method with a unit test from 

PhluffyFotos, an open-source project 
(http://phluffyfotos.codeplex.com). 
The method DispatchMsg first acquires a 
CloudQueueClient from the storageAccount at 
line 3 and gets a list of all existing Mes-
sageQueues at line 4. It then fetches one 
message from each queue at line 6 and 
dispatches the message to another mes-
sage-processing method according to 
the type of each queue at lines 10–23. 
The flag success is true if the message has 
been successfully dispatched and pro-
cessed at lines 14 and 18. Finally, the 
method deletes the message at line 26 if 
success is true.

To write test cases to check this 
method, developers must first clean 
up the cloud to ensure that the old 
cloud state doesn’t affect the results. 
Then, they must prepare an appropri-
ate cloud state before execution. An il-
lustrative manually written test case at 
lines 31–47 first gets a reference of the 
CloudQueue PhotoQueue at line 37, cleans all 
the messages in the queue at line 40, 
inserts a new message into the queue at 
line 42, and then executes the method 
under test at line 44. The assertion at 
line 46 checks whether the message has 
been deleted.

Related Work
Testers use two general techniques for environment isolation: 
mocks and stubs.1 They use mocks mainly for behavior verifica-
tion and stubs mainly for state verification. Our approach primarily 
uses our cloud model for state verification. By analyzing all uses of 
actual cloud-related API methods for substitution, stub techniques 
can automatically generate stub methods that include behavior.2 
However, a stub object generally can’t reflect an object’s actual 
behavior, resulting in false warnings. In contrast, our cloud model 
can simulate the real cloud environment’s behavior.

MODA (Mock Object-Based Test Generation for Database 
Applications) automatically tests database applications, using a 
simulated database represented by tables.3 In contrast, our cloud 
model provides a simulated cloud environment, which is more 
complex than a database.

Microsoft’s local cloud emulator includes complex, sophisticat-
ed code logic, posing significant challenges for path exploration. 
Because our cloud model is much more abstracted and simplified, 
DSE-based tools such as Pex can achieve more effective code 
coverage.
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 However, if the developers want to 
cover all this method’s branches, they 
must provide various cloud states. In 
particular, to cover the true branch 
at line 8, at least one queue should be 
empty. To cover the true branch at line 

24, at least one example of the Photo-
Queue or PhotoCleanupQueue should exist in 
at least one message in the queue. For 
this relatively simple method under 
test, developers must expend nontriv-
ial effort to construct the cloud state. 

Covering some branches of a more 
complex method might require specifi c 
cloud states that can’t be easily con-
structed manually owing to the com-
plex execution logic.

Automated test generation tools 
usually must execute cloud-related API 
methods to collect information (by in-
strumenting these methods). Some 
tools, such as Pex, use symbolic execu-
tion to track the usage of the value a 
cloud-related API method returns. De-
pending on the subsequent branching 
conditions on the returned value, these 
tools execute the unit under test mul-
tiple times, using different values to ex-
plore new execution paths. However, 
directly applying these tools would fail 
because the return values of cloud-re-
lated API methods depend on the cloud 
environment’s state, which these tools 
can’t control, as we mentioned before.

Using stubs can isolate the unit un-
der test from the cloud environment; 
however, the developer still must sim-
ulate possible return values for each 
stub method. For example, developers 
manually provide a list CloudQueue as the 
return value of the method ListQueues(). 
A stub method lets tools such as Pex 
automatically generate various inputs 
and stub-method return values to ex-
plore different execution paths. How-
ever, such stubs generally can’t refl ect 
state changes of the cloud environ-
ment. For example, after the method 
DeleteMessage(msg) at line 26 in Figure 1 
executes, the message msg should be 
deleted from the queue, and the return 
value of method GetMessage() at line 46 
should be null. If a stub or fake object 
can’t capture this behavior, GetMessage() 
could return a non-null value even af-
ter DeleteMessage() has executed. Con-
sequently, this test case would fail in 
the assertion at line 46, causing a false 
warning.

Addressing the Challenge
Given a unit of a cloud application 
under test, our approach models the 

1:   public void DispatchMsg()
2:   {
3:  var queueClient = this.storageAccount.CreateCloudQueueClient();
4:  foreach( var queue in queueClient.ListQueues() )
5:  {
6:   var msg = queue.GetMessage();
7:   bool success = false;
8:   if ( msg != null )
9:   {
10:    switch ( queue.Name )
11:    {
12:     case PhotoQueue:
13:      //Dispatch this message to create a thumbnail.
14:      success = true;
15:      break;
16:     case PhotoCleanupQueue:
17:      //Dispatch this message to clean up the photo.
18:      success = true;
19:      break;
20:     default:
21:      //Trace.TraceError("Unknown Queue found");
22:      break;
23:    }
24:    if ( success )
25:    {
26:     queue.DeleteMessage(msg);
27:    }
28:   }
29:  }
30:   }
31:   [TestMethod]
32:   public void DispatchMsg_Test()
33:   {
34:  //Setup
35  var storageAccount = CloudStorageAccount.DevelopmentStorageAccount;
36: var queueStorageClient = storageAccount.CreateCloudQueueClient();
37:  var queue = queueStorageClient.GetQueueReference( PhotoQueue );
38:  queue.CreateIfNoExist();
39:  //Clean message queue
40:  queue.Clear();
41:  //Prepare
42:  queue.addMessage(new CloudQueueMessage( “Message1” ));
43:  //Act
44:  DispatchMsg();
45:  //Assert
46:  Assert.IsNull(queue.GetMessage());
47:   }

FiguRE 1. A method under test with a unit test in the PhluffyFotos project. This � gure is 

based on an actual code example to illustrate the challenge of automated testing.
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cloud, transforms the code under test, 
generates test inputs and cloud states, 
and transforms the generated unit tests.

Modeling the Cloud
We construct a simulated cloud model 
and provide stub cloud API meth-
ods that simulate the corresponding 
API methods’ effect on the real cloud 
by performing the same operations 
on the cloud model. Our model cur-
rently focuses on providing simulated 
Azure storage services and classes 
in the Microsoft.WindowsAzure.StorageClient 
namespace, which provides interac-
tions with Windows Azure storage 
services. These services provide three 
kinds of storage:

• Queue storage transports messages 
between applications.

• Blob (binary large object) storage 
stores entities such as images, docu-
ments, and videos.

• Table storage provides structured 
storage that users can query to 
store collections of entities and 
properties.

To construct such a model, we care-
fully read API documents from the Mi-
crosoft Developer Network and code 
examples from open source projects. 
We use a TDD process in which we 
write stubs for different classes incre-
mentally on the basis of unit demand 
rather than writing all the stub storage 
services at once. Each stub class’s name 
starts with Stub and ends with its origi-
nal name. For example, we named the 
stub class for the class CloudQueue in our 
model StubCloudQueue. Each method re-
tains its original name.

We build up the three kinds of stor-
age on the basis of on C# generic col-
lections. We’ve written stubs for all 
the main classes and API methods in 
the three storage services. We simu-
late queue storage using an instance 
of List<StubCloudQueue>, in which we 
simulate each StubCloudQueue using an 

instance of List<StubCloudMessage>. We sim-
ulate blob storage using an instance of 
List<StubCloudBlobContainer> and simulate 
each StubCloudBlobContainer using an in-
stance of List<StubIBlobItem>. We simulate 
the table storage similarly.

Transforming the Code under Test
With the cloud model, we execute a 
unit under test with the simulated en-
vironment rather than the actual cloud 
environment. The code transformer 
redirects a unit under test to interact 
with the simulated environment. Pre-
processing the unit under test makes 
this process possible. Specifi cally, 
if the target unit under test refers to 
class A from the Microsoft.WindowsAzure.
StorageClient namespace, the code trans-
former redirects the reference to class 
StubA. When a method M of class A is in-
voked, the code transformer replaces 
the invocation with an invocation of 
the simulated method M of class StubA. 
Thus, the unit now interacts with our 
cloud model.

Generating Test Inputs and Cloud States
The test generator incorporates Pex 
to generate both test inputs and cloud 
states for a unit under test. Specifi -
cally, Pex generates values for not only 
symbolic program inputs but also sym-
bolic cloud states. The generated values 

for symbolic cloud states include vari-
ous storage items (such as containers, 
blobs, messages, and queues) to be 
inserted into the simulated cloud be-
fore test execution. Pex produces a fi -
nal suite in which each test includes a 
test input and a cloud state (our proj-
ect website includes an illustrative ex-
ample, in which we explain how our 
approach works step-by-step). Figure 
2 shows the algorithm for generating 
queue storage states.

To ensure that Pex can choose a 
valid value for each storage item’s fi eld, 
we add various constraints. For exam-
ple, if we test a cloud application us-
ing the DevelopmentStorageAccount, the URI 
address for any blob container should 
be http://127.0.0.1:10000/devstoreac-
count1/containerName. Pex will choose 
only the name for each container, mak-
ing the URI address fi eld valid. We use 
a similar algorithm to generate blob 
storage states.

However, the algorithm to gener-
ate table storage states differs slightly. 
A real cloud table can store instances 
of TableServiceEntity from different sub-
classes of TableServiceEntity, but in most 
open source projects, each cloud table 
stores instances of TableServiceEntity from 
only a specifi c subclass of TableServiceEn-
tity. So, we restrict each StubCloudTable to 
store instances from only one subclass 

1.   N <– Pex chooses the total number of StubCloudQueues (0 to MAX)
2.   QueueList <– Initiallize QueueStorage using an instance of List< StubCloudQueue > (N)
3.   for i from 0 to N
4.     StubCloudQueuei <– Create a new instance of StubCloudQueue
5.  Pex chooses values for each �eld in StubCloudQueuei

6.  M <– Pex chooses the total number of StubCloudMessages (0 to MAX) to be inserted into StubCloudQueuei

7.  for j from 0 to M
8.   StubCloudMessagesij <– Create a new instance of StubCloudMessage
9.   Pex chooses values for each �eld in StubCloudMessagesij

10.   StubCloudQueuei. MessageList.MessageAdd(StubCloudMessagesij)
11.  end for
12.  QueueList.Add(StubCloudQueuei)
13.    end for

FiguRE 2. The algorithm for generating queue storage states. This algorithm describes how 

the entire QueueList is initialized with symbolic values. 
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of StubTableServiceEntity. (All user-defined 
types of table service entity are in-
herited from the class TableServiceEntity, 
which is similar to database schema but 
much simpler). Such simplification lets 
Pex easily generate table storage states 
without losing much applicability.

Transforming Generated Unit Tests
Although our cloud model can simu-
late cloud storage’s basic behavior, 
it can’t provide a cloud application 
with the actual cloud’s execution en-
vironment. To gain high confidence 
on code correctness, we must test 
the code with either a local emulated 
cloud environment or the actual cloud 
environment. In addition, for regres-
sion testing or third-party reviewers’ 
requirements, we must provide a gen-
eral format of our generated unit tests, 
which could set up cloud states for the 
emulated or actual cloud environment 
before execution.

The test transformer transforms 
a generated unit test and a generated 
cloud state into a general unit test. 
Specifically, it converts a cloud state 
created by the test generator to a se-
quence of real cloud-related API meth-
ods that could construct the same 
state in the emulated or actual cloud 
environment.

Testing Our Approach
We conducted unit testing to ensure 
our cloud model’s correctness. For each 
method, we wrote a number of unit 
tests (see our project website). Each test 
passes using either the real cloud or our 
simulated cloud. Although our simu-
lated cloud can’t replace a local cloud 
emulator that provides a cloud appli-
cation with an execution environment, 
it can simulate the basic behavior of 
cloud storage.

We applied our approach to the 
PhluffyFotos project because its code 
frequently interacts with cloud stor-
age services. We focused on testing the 
units that interact with the cloud. In 

total, we tested 17 methods, and our 
approach achieved 76.9 percent block 
coverage. In contrast, Pex achieved 
only 6.87 percent block coverage with-
out using our cloud model.

We also applied our approach to two 
other open source projects. It increased 
block coverage from 74.3 to 100 per-
cent on the AzureMembership project 
and from 50 to 91.6 percent on the disi-
box project. Our project website shows 
the details of our testing results.

Currently, our approach has two 
main limitations. First, the underlying 
constraint solver’s lack of power limits 
the ability to generate test inputs and 
cloud states. If the constraint solver 
can’t solve a certain path constraint, 
our approach can’t generate test in-
puts or cloud states to cover that path. 
Second, our approach works only on 
cloud applications that adopt the PaaS 
model. To provide substantial empirical 
evidence, we must apply our approach 
to more cloud applications to evaluate 
our model and approach’s validity and 
effectiveness.

Lessons Learned
During the development of our cloud 
model, we learned several lessons that 
might prove helpful to other developers. 

Stateful vs. Stateless Cloud Model
By employing a stateful cloud model, 
we assume that other clients or pro-
cesses haven’t modified the cloud con-
currently. However, some might argue 
that a simplistic, stateless cloud model 
is enough and that any return value of a 
cloud-related API method should prove 
valid, considering that other clients or 
processes can concurrently manipulate 
the cloud. Also, a stateless cloud model 
is much easier to construct.

We should conduct thorough test-
ing that includes all possible scenarios. 
However, in practice, developer test-
ing focuses mostly on realistic common 
scenarios, which a stateful cloud model 
represents. 

TDD
After we test a new program unit, we 
extend our cloud model with that unit’s 
new behavior and then retest the unit. 
Some generated test inputs and cloud 
states failed initially, so we manually 
investigated the reported failures. Some 
failures resulted from the cloud mod-
el’s insufficiency. In such cases, we im-
proved the cloud model on the basis of 
the failures.

Faults in the cloud application code 
can cause another type of failure. How-
ever, we haven’t found any real faults 
in the well-tested applications we 
investigated.

Testable API Method Alternatives
We’ve found that developers often com-
bine methods from other API librar-
ies—such as ADO.NET (ActiveX Data 
Objects for .NET) and System.Linq—
with Azure API methods (for example, 
methods that access the cloud state). 
Such methods from other API librar-
ies aren’t quite testable—that is, Pex 
will have trouble exploring them ow-
ing to their method implementations’ 
high complexity. For example, a com-
mon way to make a query to a table 
storage service is to invoke IQueryable<T>.
Where<T>(Func<TSource, bool>), which returns 
the query results, but this method isn’t 
quite testable.

We’ve observed that for some API 
methods, alternative methods exist that 
are functionally equivalent in the con-
text in which the unit under test used 
them and that might be more testable. 
For example, because our cloud model 
implements the table service using 
List<MockTableEntity>, one alternative way 
to access the table service storage is 
IEnumerable<T>.Where<T>(Func<TSource, bool>).
ToList(), which is more testable because 
its implementation is simpler. Instead of 
spending nontrivial effort to construct 
a sophisticated model for these API 
methods, we substitute their call sites 
with those of more testable alternatives. 
Our project website lists API methods 
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that the open source cloud application 
we investigated used frequently, along 
with alternatives.

A lthough we’ve applied our ap-
proach to Windows Azure 
cloud applications, it’s ap-

plicable to any cloud application that 
adopts the PaaS model. You could also 
use it to construct different cloud mod-
els. In addition, our approach can em-
ploy other test generation tools and 
techniques.

We plan to conduct more unit test-
ing on our cloud model and select more 
cloud applications for further evalua-
tion. We also plan to continue compil-
ing our list of untestable API methods 
and their behaviorally equivalent alter-
natives. This list could help developers 
improve the effectiveness of unit test-
ing with our approach. In addition, we 
plan to extend our cloud model to more 
closely imitate the actual cloud envi-
ronment, such as simulating classes in 
the Microsoft.WindowsAzure.ServiceRuntime and 
Microsoft.WindowsAzure namespaces.

Acknowledgments
US National Science Foundation grants 
CCF-0725190, CCF-0845272 (and its CiC 
Supplement), CCF-0915400, and CNS-
0958235; US Army Research Offi ce grant 
W911NF-08-1-0443; National Natural Sci-
ence Foundation of China grants 60973044, 
60736015, and 61021062; and the 973 Pro-
gram of China (2009CB320702) supported 
this research.

reference
  1. P. Godefroid, N. Klarlund, and K. Sen, 

“DART: Directed Automated Random Test-
ing,” Proc. 2005 ACM SIGPLAN Conf. Pro-
gramming Language Design and Implementa-
tion (PLID 05), ACM, 2005, pp. 213–223.

lingHAo ZHAng is a PhD student in the State Key Laboratory for 
Novel Software Technology, Department of Computer Science and 
Technology at Nanjing University. He’s also a visiting scholar in the 
Department of Computer Science at North Carolina State University. His 
research interests include software testing, analysis, and verifi cation. 
Zhang has a BS in computer science from Nanjing University. Contact 
him at lzhang25@smail.nju.edu.cn.

tAo Xie is an associate professor in the Department of Computer Sci-
ence at North Carolina State University. His research interests include 
software engineering, particularly software testing, analysis, and 
analytics. Xie received a PhD in computer science from the University of 
Washington at Seattle. He’s a member of IEEE and ACM. Contact him at 
xie@csc.ncsu.edu.

nikolAi tillMAnn is a principal research software design engi-
neer at Microsoft Research. His research involves combining dynamic 
and static program analysis techniques for automatic test-case 
generation. Tillmann has an MS in computer science from the Technical 
University of Berlin. Contact him at nikolait@microsoft.com.

peli De HAlleUX is a senior software design engineer at Microsoft 
Research. His research involves combining dynamic and static program 
analysis techniques for automatic test-case generation and making 
those accessible to the masses of developers. de Halleux has a PhD in 
applied mathematics from the Catholic University of Louvain. Contact 
him at jhalleux@microsoft.com.

XiAoXing MA is a professor in the State Key Laboratory for Novel 
Software Technology and the Department of Computer Science and 
Technology at Nanjing University. His current research interests include 
self-adaptive software systems, middleware systems, and cloud com-
puting. Ma has a PhD in computer science from Nanjing University. He’s 
a member of IEEE. Contact him at xxm@nju.edu.cn.

JiAn lU is a professor in the State Key Laboratory for Novel Software 
Technology Department of Computer Science and Technology and the 
director of the State Key Laboratory for Novel Software Technology at 
Nanjing University. His research interests include software methodolo-
gies, software automation, software agents, and middleware systems. 
Lu has a PhD in computer science from Nanjing University. He also 
serves as the director of the Software Engineering Technical Committee 
of the China Computer Federation. Contact him at lj@nju.edu.cn.

A
B

o
u

t
 t

H
E

 A
u

t
H

o
R

S

Selected CS articles and columns 
are also available for free at 
http://ComputingNow.computer.org.


