
30	 IEEE Software | published by the IEEE computer societ y � 074 0 -74 5 9 /12 / $ 31. 0 0 © 2 012 I E E E

cover image here

FOCUS: Cloud Computing

Developer testing (also called
unit testing) can help ensure the devel-
opment of high-quality cloud applica-
tions. However, unit testing normally
can’t take into account all possible in-
puts because the input space is too large
or even infinite. So, developers need cri-
teria to decide which test inputs to use
and when to stop testing. Effective use

of criteria such as structural-code cov-
erage can help reveal faults.

Manually writing test cases to
achieve high structural coverage re-
quires developers to consider imple-
mentation details, making this task
laborious and time-consuming. Also,
developers sometimes have problems
providing specific combinations of test

inputs and cloud states to cover spe-
cific paths or blocks. To reduce the
manual effort, they can employ auto-
mated test generation tools that use
dynamic symbolic execution (DSE),1
such as Pex (http://research.microsoft.
com/projects/pex), a constraint-solving
technique based on path exploration.
But these tools fail to generate high-
covering test inputs because they can’t
generate a required cloud state or can’t
control the cloud state.

Using stub cloud models could help
alleviate these issues (see “Related
Work” sidebar). With such models, de-
velopers can simulate a real cloud envi-
ronment with a fake stub that provides
default or user-defined return values to
cloud-related API method calls. How-
ever, these values won’t help achieve high
structural coverage, and writing such a
model requires much manual effort.

A parameterized cloud model ex-
tends a stub cloud model to enable gen-
eration of appropriate return values for
covering different paths or blocks. Typ-
ically, a simple parameterized model
would assume that every return value
was possible as long as it could lead to
a new path, even when this return value
wasn’t feasible in a real cloud environ-
ment. Without reflecting the actual
cloud environment’s logic or state con-
sistency, such a model could cause false
warnings among reported failing tests.

To achieve high structural coverage
for cloud applications while causing
few false warnings, we’ve developed
an approach that combines a simulated
cloud model and DSE. It uses

•	 a test-driven-development (TDD)
process of environmental modeling
to simulate the cloud environment,

•	 a reusable cloud model to test cloud
applications, and

•	 an automated technique that gener-
ates test inputs and cloud states.

Environmental
Modeling for
Automated Cloud
Application
Testing
Linghao Zhang, Xiaoxing Ma, and Jian Lu, Nanjing University

Tao Xie, North Carolina State University

Nikolai Tillmann and Peli de Halleux, Microsoft Research

// Simulating environmental behavior and applying

dynamic symbolic execution can help generate

test inputs and cloud states to achieve high

structural coverage for cloud applications. //

	 March/April 2012 | IEEE Software � 31

We’ve applied this approach success-
fully to several open-source cloud ap-
plications running in Microsoft’s Win-
dows Azure platform (www.microsoft.
com/windowsazure), which employs
the platform as a service (PaaS) model.

Empirical Investigations
We studied 21 open-source Azure proj-
ects from CodePlex and Google Code
(for a list, see our project website,
https://sites.google.com/site/asergrp/
projects/cloud). Five of them included
unit tests. We manually investigated
the results from the Lokad Cloud proj-
ect because it includes three classes that
heavily interact with the cloud environ-
ment and because testers have written
test cases to check almost every method
in them. The unit tests achieved 80
percent block coverage for the class
BlobStorageProvider, 79 percent for the class
QueueStorageProvider, and 93 percent for
the class TableStorageProvider.

We carefully inspected the blocks
that these three classes didn’t cover.
Of the 141 uncovered blocks, 78 per-
cent (111 blocks) weren’t covered be-
cause the existing test cases didn’t pro-
vide specific cloud states or program

inputs. Whether the test-writing de-
velopers used a white-box approach to
construct the test cases or not, most of
those blocks weren’t covered because
they required specific cloud states. Even
when the test writers adopted the same
coverage criterion as block coverage to
generate the test cases, they generated
the test cases manually. Different unit
execution paths require different com-
binations of program inputs and cloud
states, and developers can miss some
combinations when writing test cases
(including setting up cloud states).

The remaining 30 uncovered blocks
weren’t covered either because no test
case executed the method the block
belonged to or because covering the
block depended on other business logic.

As our results show, generating test
inputs and cloud states manually can
prove challenging. In the next section,
we use a real code example to illustrate
similar challenges in automated testing.

The Challenge of
Automated Testing
Figure 1 illustrates the testing chal-
lenge. The code snippet is a simpli-
fied method with a unit test from

PhluffyFotos, an open-source project
(http://phluffyfotos.codeplex.com).
The method DispatchMsg first acquires a
CloudQueueClient from the storageAccount at
line 3 and gets a list of all existing Mes-
sageQueues at line 4. It then fetches one
message from each queue at line 6 and
dispatches the message to another mes-
sage-processing method according to
the type of each queue at lines 10–23.
The flag success is true if the message has
been successfully dispatched and pro-
cessed at lines 14 and 18. Finally, the
method deletes the message at line 26 if
success is true.

To write test cases to check this
method, developers must first clean
up the cloud to ensure that the old
cloud state doesn’t affect the results.
Then, they must prepare an appropri-
ate cloud state before execution. An il-
lustrative manually written test case at
lines 31–47 first gets a reference of the
CloudQueue PhotoQueue at line 37, cleans all
the messages in the queue at line 40,
inserts a new message into the queue at
line 42, and then executes the method
under test at line 44. The assertion at
line 46 checks whether the message has
been deleted.

Related Work
Testers use two general techniques for environment isolation:
mocks and stubs.1 They use mocks mainly for behavior verifica-
tion and stubs mainly for state verification. Our approach primarily
uses our cloud model for state verification. By analyzing all uses of
actual cloud-related API methods for substitution, stub techniques
can automatically generate stub methods that include behavior.2
However, a stub object generally can’t reflect an object’s actual
behavior, resulting in false warnings. In contrast, our cloud model
can simulate the real cloud environment’s behavior.

MODA (Mock Object-Based Test Generation for Database
Applications) automatically tests database applications, using a
simulated database represented by tables.3 In contrast, our cloud
model provides a simulated cloud environment, which is more
complex than a database.

Microsoft’s local cloud emulator includes complex, sophisticat-
ed code logic, posing significant challenges for path exploration.
Because our cloud model is much more abstracted and simplified,
DSE-based tools such as Pex can achieve more effective code
coverage.

References
	 1.	 M. Fowler, “Mocks Aren’t Stubs,” 2 Jan. 2007; www.martinfowler.com/

articles/mocksArentStubs.html.
	 2.	 N. Tillmann and W. Schulte, “Mock-Object Generation with Behavior,” Proc.

21st IEEE/ACM Int’l Conf. Automated Software Eng. (ASE 06), IEEE CS, 2006,
pp. 365–368.

	 3.	 K. Taneja, Y. Zhang, and T. Xie, “MODA: Automated Test Generation for
Database Applications via Mock Objects,” Proc. 25th IEEE/ACM Int’l Conf.
Automated Software Eng. (ASE 10), IEEE CS, 2010, pp. 289–292.

32 IEEE SoftwarE | www.computEr.org/SoftwarE

FOCUS: Cloud Computing

 However, if the developers want to
cover all this method’s branches, they
must provide various cloud states. In
particular, to cover the true branch
at line 8, at least one queue should be
empty. To cover the true branch at line

24, at least one example of the Photo-
Queue or PhotoCleanupQueue should exist in
at least one message in the queue. For
this relatively simple method under
test, developers must expend nontriv-
ial effort to construct the cloud state.

Covering some branches of a more
complex method might require specifi c
cloud states that can’t be easily con-
structed manually owing to the com-
plex execution logic.

Automated test generation tools
usually must execute cloud-related API
methods to collect information (by in-
strumenting these methods). Some
tools, such as Pex, use symbolic execu-
tion to track the usage of the value a
cloud-related API method returns. De-
pending on the subsequent branching
conditions on the returned value, these
tools execute the unit under test mul-
tiple times, using different values to ex-
plore new execution paths. However,
directly applying these tools would fail
because the return values of cloud-re-
lated API methods depend on the cloud
environment’s state, which these tools
can’t control, as we mentioned before.

Using stubs can isolate the unit un-
der test from the cloud environment;
however, the developer still must sim-
ulate possible return values for each
stub method. For example, developers
manually provide a list CloudQueue as the
return value of the method ListQueues().
A stub method lets tools such as Pex
automatically generate various inputs
and stub-method return values to ex-
plore different execution paths. How-
ever, such stubs generally can’t refl ect
state changes of the cloud environ-
ment. For example, after the method
DeleteMessage(msg) at line 26 in Figure 1
executes, the message msg should be
deleted from the queue, and the return
value of method GetMessage() at line 46
should be null. If a stub or fake object
can’t capture this behavior, GetMessage()
could return a non-null value even af-
ter DeleteMessage() has executed. Con-
sequently, this test case would fail in
the assertion at line 46, causing a false
warning.

Addressing the Challenge
Given a unit of a cloud application
under test, our approach models the

1: public void DispatchMsg()
2: {
3: var queueClient = this.storageAccount.CreateCloudQueueClient();
4: foreach(var queue in queueClient.ListQueues())
5: {
6: var msg = queue.GetMessage();
7: bool success = false;
8: if (msg != null)
9: {
10: switch (queue.Name)
11: {
12: case PhotoQueue:
13: //Dispatch this message to create a thumbnail.
14: success = true;
15: break;
16: case PhotoCleanupQueue:
17: //Dispatch this message to clean up the photo.
18: success = true;
19: break;
20: default:
21: //Trace.TraceError("Unknown Queue found");
22: break;
23: }
24: if (success)
25: {
26: queue.DeleteMessage(msg);
27: }
28: }
29: }
30: }
31: [TestMethod]
32: public void DispatchMsg_Test()
33: {
34: //Setup
35 var storageAccount = CloudStorageAccount.DevelopmentStorageAccount;
36: var queueStorageClient = storageAccount.CreateCloudQueueClient();
37: var queue = queueStorageClient.GetQueueReference(PhotoQueue);
38: queue.CreateIfNoExist();
39: //Clean message queue
40: queue.Clear();
41: //Prepare
42: queue.addMessage(new CloudQueueMessage(“Message1”));
43: //Act
44: DispatchMsg();
45: //Assert
46: Assert.IsNull(queue.GetMessage());
47: }

FiguRE 1. A method under test with a unit test in the PhluffyFotos project. This � gure is

based on an actual code example to illustrate the challenge of automated testing.

 march/aprIl 2012 | IEEE SoftwarE 33

cloud, transforms the code under test,
generates test inputs and cloud states,
and transforms the generated unit tests.

Modeling the Cloud
We construct a simulated cloud model
and provide stub cloud API meth-
ods that simulate the corresponding
API methods’ effect on the real cloud
by performing the same operations
on the cloud model. Our model cur-
rently focuses on providing simulated
Azure storage services and classes
in the Microsoft.WindowsAzure.StorageClient
namespace, which provides interac-
tions with Windows Azure storage
services. These services provide three
kinds of storage:

• Queue storage transports messages
between applications.

• Blob (binary large object) storage
stores entities such as images, docu-
ments, and videos.

• Table storage provides structured
storage that users can query to
store collections of entities and
properties.

To construct such a model, we care-
fully read API documents from the Mi-
crosoft Developer Network and code
examples from open source projects.
We use a TDD process in which we
write stubs for different classes incre-
mentally on the basis of unit demand
rather than writing all the stub storage
services at once. Each stub class’s name
starts with Stub and ends with its origi-
nal name. For example, we named the
stub class for the class CloudQueue in our
model StubCloudQueue. Each method re-
tains its original name.

We build up the three kinds of stor-
age on the basis of on C# generic col-
lections. We’ve written stubs for all
the main classes and API methods in
the three storage services. We simu-
late queue storage using an instance
of List<StubCloudQueue>, in which we
simulate each StubCloudQueue using an

instance of List<StubCloudMessage>. We sim-
ulate blob storage using an instance of
List<StubCloudBlobContainer> and simulate
each StubCloudBlobContainer using an in-
stance of List<StubIBlobItem>. We simulate
the table storage similarly.

Transforming the Code under Test
With the cloud model, we execute a
unit under test with the simulated en-
vironment rather than the actual cloud
environment. The code transformer
redirects a unit under test to interact
with the simulated environment. Pre-
processing the unit under test makes
this process possible. Specifi cally,
if the target unit under test refers to
class A from the Microsoft.WindowsAzure.
StorageClient namespace, the code trans-
former redirects the reference to class
StubA. When a method M of class A is in-
voked, the code transformer replaces
the invocation with an invocation of
the simulated method M of class StubA.
Thus, the unit now interacts with our
cloud model.

Generating Test Inputs and Cloud States
The test generator incorporates Pex
to generate both test inputs and cloud
states for a unit under test. Specifi -
cally, Pex generates values for not only
symbolic program inputs but also sym-
bolic cloud states. The generated values

for symbolic cloud states include vari-
ous storage items (such as containers,
blobs, messages, and queues) to be
inserted into the simulated cloud be-
fore test execution. Pex produces a fi -
nal suite in which each test includes a
test input and a cloud state (our proj-
ect website includes an illustrative ex-
ample, in which we explain how our
approach works step-by-step). Figure
2 shows the algorithm for generating
queue storage states.

To ensure that Pex can choose a
valid value for each storage item’s fi eld,
we add various constraints. For exam-
ple, if we test a cloud application us-
ing the DevelopmentStorageAccount, the URI
address for any blob container should
be http://127.0.0.1:10000/devstoreac-
count1/containerName. Pex will choose
only the name for each container, mak-
ing the URI address fi eld valid. We use
a similar algorithm to generate blob
storage states.

However, the algorithm to gener-
ate table storage states differs slightly.
A real cloud table can store instances
of TableServiceEntity from different sub-
classes of TableServiceEntity, but in most
open source projects, each cloud table
stores instances of TableServiceEntity from
only a specifi c subclass of TableServiceEn-
tity. So, we restrict each StubCloudTable to
store instances from only one subclass

1. N <– Pex chooses the total number of StubCloudQueues (0 to MAX)
2. QueueList <– Initiallize QueueStorage using an instance of List< StubCloudQueue > (N)
3. for i from 0 to N
4. StubCloudQueuei <– Create a new instance of StubCloudQueue
5. Pex chooses values for each �eld in StubCloudQueuei

6. M <– Pex chooses the total number of StubCloudMessages (0 to MAX) to be inserted into StubCloudQueuei

7. for j from 0 to M
8. StubCloudMessagesij <– Create a new instance of StubCloudMessage
9. Pex chooses values for each �eld in StubCloudMessagesij

10. StubCloudQueuei. MessageList.MessageAdd(StubCloudMessagesij)
11. end for
12. QueueList.Add(StubCloudQueuei)
13. end for

FiguRE 2. The algorithm for generating queue storage states. This algorithm describes how

the entire QueueList is initialized with symbolic values.

34	 IEEE Software | www.computer.org/software

FOCUS: Cloud Computing

of StubTableServiceEntity. (All user-defined
types of table service entity are in-
herited from the class TableServiceEntity,
which is similar to database schema but
much simpler). Such simplification lets
Pex easily generate table storage states
without losing much applicability.

Transforming Generated Unit Tests
Although our cloud model can simu-
late cloud storage’s basic behavior,
it can’t provide a cloud application
with the actual cloud’s execution en-
vironment. To gain high confidence
on code correctness, we must test
the code with either a local emulated
cloud environment or the actual cloud
environment. In addition, for regres-
sion testing or third-party reviewers’
requirements, we must provide a gen-
eral format of our generated unit tests,
which could set up cloud states for the
emulated or actual cloud environment
before execution.

The test transformer transforms
a generated unit test and a generated
cloud state into a general unit test.
Specifically, it converts a cloud state
created by the test generator to a se-
quence of real cloud-related API meth-
ods that could construct the same
state in the emulated or actual cloud
environment.

Testing Our Approach
We conducted unit testing to ensure
our cloud model’s correctness. For each
method, we wrote a number of unit
tests (see our project website). Each test
passes using either the real cloud or our
simulated cloud. Although our simu-
lated cloud can’t replace a local cloud
emulator that provides a cloud appli-
cation with an execution environment,
it can simulate the basic behavior of
cloud storage.

We applied our approach to the
PhluffyFotos project because its code
frequently interacts with cloud stor-
age services. We focused on testing the
units that interact with the cloud. In

total, we tested 17 methods, and our
approach achieved 76.9 percent block
coverage. In contrast, Pex achieved
only 6.87 percent block coverage with-
out using our cloud model.

We also applied our approach to two
other open source projects. It increased
block coverage from 74.3 to 100 per-
cent on the AzureMembership project
and from 50 to 91.6 percent on the disi-
box project. Our project website shows
the details of our testing results.

Currently, our approach has two
main limitations. First, the underlying
constraint solver’s lack of power limits
the ability to generate test inputs and
cloud states. If the constraint solver
can’t solve a certain path constraint,
our approach can’t generate test in-
puts or cloud states to cover that path.
Second, our approach works only on
cloud applications that adopt the PaaS
model. To provide substantial empirical
evidence, we must apply our approach
to more cloud applications to evaluate
our model and approach’s validity and
effectiveness.

Lessons Learned
During the development of our cloud
model, we learned several lessons that
might prove helpful to other developers.

Stateful vs. Stateless Cloud Model
By employing a stateful cloud model,
we assume that other clients or pro-
cesses haven’t modified the cloud con-
currently. However, some might argue
that a simplistic, stateless cloud model
is enough and that any return value of a
cloud-related API method should prove
valid, considering that other clients or
processes can concurrently manipulate
the cloud. Also, a stateless cloud model
is much easier to construct.

We should conduct thorough test-
ing that includes all possible scenarios.
However, in practice, developer test-
ing focuses mostly on realistic common
scenarios, which a stateful cloud model
represents.

TDD
After we test a new program unit, we
extend our cloud model with that unit’s
new behavior and then retest the unit.
Some generated test inputs and cloud
states failed initially, so we manually
investigated the reported failures. Some
failures resulted from the cloud mod-
el’s insufficiency. In such cases, we im-
proved the cloud model on the basis of
the failures.

Faults in the cloud application code
can cause another type of failure. How-
ever, we haven’t found any real faults
in the well-tested applications we
investigated.

Testable API Method Alternatives
We’ve found that developers often com-
bine methods from other API librar-
ies—such as ADO.NET (ActiveX Data
Objects for .NET) and System.Linq—
with Azure API methods (for example,
methods that access the cloud state).
Such methods from other API librar-
ies aren’t quite testable—that is, Pex
will have trouble exploring them ow-
ing to their method implementations’
high complexity. For example, a com-
mon way to make a query to a table
storage service is to invoke IQueryable<T>.
Where<T>(Func<TSource, bool>), which returns
the query results, but this method isn’t
quite testable.

We’ve observed that for some API
methods, alternative methods exist that
are functionally equivalent in the con-
text in which the unit under test used
them and that might be more testable.
For example, because our cloud model
implements the table service using
List<MockTableEntity>, one alternative way
to access the table service storage is
IEnumerable<T>.Where<T>(Func<TSource, bool>).
ToList(), which is more testable because
its implementation is simpler. Instead of
spending nontrivial effort to construct
a sophisticated model for these API
methods, we substitute their call sites
with those of more testable alternatives.
Our project website lists API methods

 march/aprIl 2012 | IEEE SoftwarE 35

that the open source cloud application
we investigated used frequently, along
with alternatives.

A lthough we’ve applied our ap-
proach to Windows Azure
cloud applications, it’s ap-

plicable to any cloud application that
adopts the PaaS model. You could also
use it to construct different cloud mod-
els. In addition, our approach can em-
ploy other test generation tools and
techniques.

We plan to conduct more unit test-
ing on our cloud model and select more
cloud applications for further evalua-
tion. We also plan to continue compil-
ing our list of untestable API methods
and their behaviorally equivalent alter-
natives. This list could help developers
improve the effectiveness of unit test-
ing with our approach. In addition, we
plan to extend our cloud model to more
closely imitate the actual cloud envi-
ronment, such as simulating classes in
the Microsoft.WindowsAzure.ServiceRuntime and
Microsoft.WindowsAzure namespaces.

Acknowledgments
US National Science Foundation grants
CCF-0725190, CCF-0845272 (and its CiC
Supplement), CCF-0915400, and CNS-
0958235; US Army Research Offi ce grant
W911NF-08-1-0443; National Natural Sci-
ence Foundation of China grants 60973044,
60736015, and 61021062; and the 973 Pro-
gram of China (2009CB320702) supported
this research.

reference
 1. P. Godefroid, N. Klarlund, and K. Sen,

“DART: Directed Automated Random Test-
ing,” Proc. 2005 ACM SIGPLAN Conf. Pro-
gramming Language Design and Implementa-
tion (PLID 05), ACM, 2005, pp. 213–223.

lingHAo ZHAng is a PhD student in the State Key Laboratory for
Novel Software Technology, Department of Computer Science and
Technology at Nanjing University. He’s also a visiting scholar in the
Department of Computer Science at North Carolina State University. His
research interests include software testing, analysis, and verifi cation.
Zhang has a BS in computer science from Nanjing University. Contact
him at lzhang25@smail.nju.edu.cn.

tAo Xie is an associate professor in the Department of Computer Sci-
ence at North Carolina State University. His research interests include
software engineering, particularly software testing, analysis, and
analytics. Xie received a PhD in computer science from the University of
Washington at Seattle. He’s a member of IEEE and ACM. Contact him at
xie@csc.ncsu.edu.

nikolAi tillMAnn is a principal research software design engi-
neer at Microsoft Research. His research involves combining dynamic
and static program analysis techniques for automatic test-case
generation. Tillmann has an MS in computer science from the Technical
University of Berlin. Contact him at nikolait@microsoft.com.

peli De HAlleUX is a senior software design engineer at Microsoft
Research. His research involves combining dynamic and static program
analysis techniques for automatic test-case generation and making
those accessible to the masses of developers. de Halleux has a PhD in
applied mathematics from the Catholic University of Louvain. Contact
him at jhalleux@microsoft.com.

XiAoXing MA is a professor in the State Key Laboratory for Novel
Software Technology and the Department of Computer Science and
Technology at Nanjing University. His current research interests include
self-adaptive software systems, middleware systems, and cloud com-
puting. Ma has a PhD in computer science from Nanjing University. He’s
a member of IEEE. Contact him at xxm@nju.edu.cn.

JiAn lU is a professor in the State Key Laboratory for Novel Software
Technology Department of Computer Science and Technology and the
director of the State Key Laboratory for Novel Software Technology at
Nanjing University. His research interests include software methodolo-
gies, software automation, software agents, and middleware systems.
Lu has a PhD in computer science from Nanjing University. He also
serves as the director of the Software Engineering Technical Committee
of the China Computer Federation. Contact him at lj@nju.edu.cn.

A
B

o
u

t
 t

H
E

 A
u

t
H

o
R

S

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

