JBOORET: an Automated Tool to Recover OO Design and Source Models

o Hong Mei, Tao Xie, Fuqing Yang
Department of Computer Science & Technology, Peking University, Beijing, China 100871
Email: {meih, taoxie, yang}@cs.pku.edu.cn

Abstract

This paper introduces a reverse engineering tool,
JBOORET (Jade Bird Object-Oriented Reverse
Engineering Tool). This tool is developed by adopting a
parser-based approach to assist the activity of extracting
the higher-level design and source models from system
artifacts. A conceptual model is formulated as the
knowledge representation. Multi-perspective design and
source models are recovered by JBOORET based on the
comprehensive program information extracted from
source code. Its flexible user interface can assist users to
browse the detailed information of design and source
models by using the selection and compaction mechanism.
This paper discusses the design principles and decisions
of JBOORET and describes its implementation.
Keywords: Reverse Engineering, CASE Tool, Object-
Orientation, Program Understanding

1. Introduction

Legacy system comprises a great deal of knowledge of
the enterprise, such as system requirements, design
decision and business plan. In order to use existing assets
in legacy systems effectively, it is important to develop a
systematic strategy for continuable evolution of legacy
systems. Reverse engineering helps users understand a
system by identifying objects in the system, finding out
the relations between these objects and expressing the
system in an abstract way.

To reduce the time and efforts software personnel
spend on legacy system analysis, an automated reverse
engineering is required to facilitate the recovery of design
and source models and the generation of reports and
documents recovered from existing system. A good
reverse engineering tool can aid software engineers to
analyze and understand the complex legacy software
system. It plays an important role in the process of
reengineering activities.

There are many reverse engineering tools implemented
in software industry and academia. Because many of
current legacy systems were written in imperative or
procedural languages, a number of those reverse

0-7695-1372-7/01 $10.00 © 2001 IEEE

71

engineering tools are designed for procedural source code,
such as Refine/C [1] and Rigi {2]. These tools mainly
focus on the recovery of interprocedural dependence, data
structure and control/data flow graph etc. However, with
the object-oriented technology and object-oriented
program languages adopted by software developers, there
appear more and more object-oriented software systems in
software industry, which has led to the development of
reverse engineering tools for object-oriented software.
These tools not only inherit some functions of procedural
reverse engineering tools, but also realize some new
features such as class hierarchies and class nest diagram
recovery. However, most of current reverse engineering
tools can not produce satisfactory views of the application
for users. Some tools may not extract the accurate and
complete information from source code and consequently
the recovered models from the application are not
comprehensive enough to perform forward engineering.
Some other tools may not represent the higher-level
abstraction and design satisfactorily, especially when the
size of the legacy system is rather large. Generally the
whole higher-level view of the application is less readable
and even unmanageable with the growth of the size.

In our work, we explored some approaches in
designing the object-oriented reverse engineering tool in
order to address the above problems. With the parser-
based approach, Jade Bird Object-Oriented Reverse
Engineering Tool (JBOORET) is designed to recover the
comprehensive higher-level models from the source code.
It also produces multi-perspective models and presents
rich information of models to users satisfactorily by
selection and compression mechanisms.

The paper is organized as follows. In section 2, we first
explore the design principles and decisions of JBOORET.
In section 3, we introduce the implementation of our
JBOORET. In section 4, we give a brief introduction of a
case study. We discuss related work in section 5. Finally
we reach a conclusion in section 6.

2. Design Principles and Decisions of

JBOORET

Canfora etc. [3] proposed some problems of current
reverse engineering tools as follows. MIf tools fail to

identify the right level of details in recovered design and
lack proper design presentation strategies; @Or recover
only a small portion of the design information software
maintainers need; @Or are not flexible enough and can’t
be easily tailored and enriched in the operating
environment, it would hinder the wide application of
reverse engineering tools.

In our work, we have designed JBOORET for C++.
Similar to Stan Jarzabek’s [4] work, a model-based
approach is adopted to design this tool. A conceptual
model of object-oriented program information is defined
and stored in physical storage — a relational database.
Therefore the variances in requirement of higher-level
design and source model will not affect the analysis front
end and the low-level conceptual model extracted from
the source code. To effectively support the program
understanding and software reuse, JBOORET should be
designed according to following principles:

1) The recovered models should describe the program
from different granularity. The reversed models should
represent not only the algorithm and data structure of
program (such as the member attributes and member
methods), but alsc the system architecture, describing
the relations between each part of the program (such as
class structure and component dependency relation
etc.).

The recovered models should be easily manipulated by
users. When users are in the process of understanding
the program, the tool should help them manipulate the
recovered models and the entities in them.

The generated models should be able to be used
directly in forward engineering. Software maintenance
and software reengineering are the iterative processes
between reverse engineering and forward engineering.
CASE too! for forward engineering should be able to
utilize the recovered models directly.

The adopted analysis approach should ensure the
correctness and completeness of recovered models to
be used in forward engineering. Otherwise the result of
the forward engineering based on the recovered
models would be inaccurate.

2)

3)

4)

Some specific design principles and decisions are
discussed in light of the three phases of the reverse
engineering process put as follows.

2.1. Data Analysis

Data analysis is a core part of the reverse engineering
tool. Generally there are two approaches in analyzing the
source code. One is a lexical approach, which is applied
by specifying the regular expressions that are matched to
the program source code. The advantages of this approach
are its versatility, adaptability and flexibility [S]. However,
the lexical approach has its disadvantages in certain

72

circumstances. Sometimes this approach extracts
unexpected information or misses the expected
information. Additionally it has to scan the whole source
code every time it deals with a specific model
specification.

The other one is the parser-based approach, which
uses the parser to analyze the source code based on the
mature compiler technology. It can address those
problems that occurred in the lexical approach. The more
accurate and comprehensive program information is
extracted, the more desirable this approach is for reverse
engineering tool. Therefore, the parser-based approach
should be adopted to recover the design and source
models in JBOORET. By analyzing the design and
implementation parts of the application, both the design
and source models should be extracted.

Additionally JBOORET should adopt incremental
parsing approach to analyze the software system, which is
changing during the reverse engineering process. Because
it only analyzes those parts, which have changed since the
latest analysis, it reduces the parse time and resource.
Moreover the incremental parsing technology would
effectively support the incremental reengineering process.

2.2. Knowledge Organization

There are several types of data model to organize the
knowledge collected from source code. JBOORET should
formulate a conceptual model for object-oriented program.
The conceptual model is considered as the low-level
program information model. During the parsing process,
only the low-level program information model is stored in
the physical storage. And the higher-level design and
source models are derived from the program information
model. Thus, the analysis parts and data models become
independent from many variances in requirements of
different reverse engineering tasks. The tool should not
build all higher-level design and source models in advance,
but extract those selected higher-level models and
construct representations on users’ demand. Meanwhile,
there is no need to construct different analysis front ends
for various higher-level model extractors for desired
models. By sharing the common conceptual model, it
needn’t parse the source code every time when it wants to
produce one desired model. It is because the information
in the conceptual model, obtained by analyzing the source
code only once, can be used to produce different higher-
level models many times.

It is a general practice to store the content of the
conceptual model in database. And because the
conceptual model of program information is separated
from the physical storage, it enables the tool to be easily
adapted to different database platforms. To support
various design and source models for different
requirements, the conceptual model should be

comprehensive and well defined.

2.3. Information Presentation

In this phase, the tool presents the higher-level design
or source models to users. The functions of the model
representations have a great impact on the effectiveness of
applying the reverse engineering tool. To reduce the time
and efforts to perform the task of model representations, a
mechanism should be designed to construct the higher-
level design or source models on demand, not in advance.
And the tool should also cache those frequently browsed
models, which are not too large but are relatively too
expensive to be derived [6].

The tool should provide different levels or
perspectives of design or source models for users. Then
users can select the specific level or part of detail
information they wish to view. Many current object-
oriented reverse engineering tools, without subsystem
division, only recover the whole class diagram. Then the
complex class diagram recovered from large application is
generally less readable and manageable. Therefore it is

necessary for our tool to provide different granular models.

Moreover, the tool should export some necessary
higher-level models to object-oriented development tools
to facilitate forward engineering. And it should also
provide a flexible user interface to allow users to interact
with the tool by manipulating the entities in the recovered
higher-level models. Selection and compression are two
fundamental means of reducing information complexity
[7]. The tool is desired to support these two means to
overcome the scale problems of information space by
providing a user interface to compress or expand any
composition of its sub-spaces. Finally the tool should
support users to switch from the higher-level models to
the actual source code and highlight the related part in the
source code, so that the users can understand the mapping
between different levels easily.

3. Implementation of JBOORET

The JBOORET for C++ consists of three major
components: a data extractor, a knowledge manager and
an information presenter, as shown in figure 1. This tool
analyzes source code of the program statically in the way
of incremental parsing, extracts program information
according to a conceptual model formed with Enhanced
Entity Relationship model, and stores the information in a
relational database.

The flexible architecture adopted by JBOORET has
many advantages. This approach conforms to the principle
of separating data extraction from information
presentation, thereby avoiding repeating analysis process
for each higher-level model extraction. The separation

73

between data extractor and knowledge manager makes the
analysis part front-end independent of other parts, so that
when the tool is required to be adapted to support another
similar object-oriented program, the adaptation only
affects the components of data extractor. Similarly the
separation between information presenter and knowledge
manager makes the model extraction part independent of
other parts in JBOORET, and therefore the changes in the
requirements of higher-level models don’t affect data
extractor and knowledge manager.

Understanding Task

Information Presenter

Version Controller
Model
r: | Extractor \
Programs | lrj " Trees T
S \ . v :
/ Database Info i
X Server Database | ;
Extractor
Parser \\3\ '
Lookaheader Incremental \ Database ;
Lexer Database [3/' Linker
Data Extractor Knowledge Manager

Figure 1. JBOORET Architecture Overview
3.1. Data Extractor

The front end analyzes C++ source code, extracts
program information and stores it into the program
information database through the database server. The
model extractor uses the program information via the
database server. Only the front end needs to know the
exact syntax of the C++ language, which means that when
the target language changes, it only affects the front end.

Instead of using standard compiler tool LEX, the lexer
(lexical analyzer) is customized for the front end,
incorporating a special preprocess into lexical analysis.
Receiving physical source code, the customized lexer can
extract program information, say, comments and include-
file relationship, needed for program analysis. Moreover,
it accurately associates C++ program entities, such as
class, object, statement, macro, and so on, with their
physical location in the source code. To easily update the
front end to support analysis of different C++ languages,
we implemented the parser around YACC. Normally
YACC accepts LALR grammar, but C++ grammar is
inherently ambiguous and definitely not LALR. Token
lookahead technique is employed to disambiguate the
parser generated by YACC.

Incremental parsing is adopted to make it possible to
parse only the modified portion during the changes of the
source files. JBOORET creates an incremental database
for each source file and then links all incremental

database to construct the large program information
database.

3.2. Knowledge Manager

JBOORET forms a conceptual model for C++
programs employing Enhanced Entity Relationship (EER)
model. According to EER model, C++ programs are
viewed as a set of entities and relationships between them,
both of which may have a set of attributes. To support
various higher-level design and source models for
different requirements, the conceptual model should be
comprehensive and well defined. The EER model of
JBOORET is shown in figure 2, in which the rectangle
stands for entity and the rhombus means relationship.

Figure 2. JBRET Conceptual Model

JBOORET EER model defines six kinds of entities:
Macro, File, Class, Function, Object, and Statement,

among which entity Object can be divided into two kinds
of sub-entities based on its declaration location: Attribute

and Variable. Strong entity is an entity that has a key. For
example, entity Macro’s name is its key since the name
Macro is unique in C++ language. On the other hand
weak entity is an entity that has no key. For example,
entity functions can have the same name due to function
overload and thus they are not unique. In EER model, a
strong entity is illustrated as a single-line rectangle, while
a weak entity is illustrated as a double-line rectangle.

In this model, relationships exist between entities
according to their lexical and semantic relations. For
example, in C++ language, classes are always defined in a
specific source file, and classes and files have lexical
position relation. Therefore, relationship Loc_in exists
between entity Class and entity File and its coordination
is one-to-many. In EER model, relationship is illustrated
as a rhombus, which is connected to two corresponding
entities by two lines. Since a weak entity has no key, it
must depend on another entity to exist and there is a kind
of so-called dependence-relationship between the two
entities. The dependence-relationship is represented by a
double-line rhombus in EER model.

74

3.3. Information Presenter

In the information presenter component, a basic symbol
information table in memory is constructed from a low-
level program model every time users open an analyzed
program project to browse. This basic symbol information
table comprises the frequently used information of each
symbol in memory, which includes the class name,
attributes of the class, methods of the class and etc. To
improve the access speed to the symbol information table,
we organize it as a harsh table. Other complementary
information infrequently used, such as the reference
information, physical position information, is loaded only
on user’s demand during the interactive manipulation
process. To reduce the time to access the program
information database during the interactive process and
thus to increase the access speed, a circular cache with a
limited capacity is constructed in memory to store the
most recently used complementary information. To be
simply implemented, FIFO strategy is adopted to replace
the information in cache when its capacity is full. During
the presenting process, the source information of the
higher-level models is first searched in the symbol
information table rather than in low-level conceptual
model stored in the relational database to improve the
efficiency.

The tool provides two major means to present higher-
level design or source models. It can export the models to
the Object-Oriented Development Tool to support forward
engineering, and at the same time provides flexible user
interface for users to manipulate the extracted models.

W orplo s HEE

Composition
_compositor
_components _m =)

[Coord | =

| I— ZlincWidth (S|

E— _lineBreaks

1incCount

Repair
Composition

Campose
omposito

[

impleCompositor TeXComposito B
e | | —

Lo __ Lfﬂ

Figure 3. JBOO class diagram recovered by

JBOORET

JBOORET can export the class diagram recovered from
program information database to our Jade Bird Object-
Oriented Design Tool (JBOOD). JBOOD is one of the
object-oriented development tool set JBOO, which
supports object-oriented analysis, design and
programming. Reversed JBOOD document describes the

following information of software: classes, classes and
objects, attributes, services, classification structure,
composition structure, instance link and message link.
Figure 3 shows the reversed JBOO design document —
class diagram of sample source code of design pattern
Strategy [8].
JBOORET can also export the reversed design model
document to currently popular object-oriented
development tool Rational Rose 98' [9], which includes
the following three views: '
® Use case view: describes the implementation details
of class methods, such as method's message trace
diagram, in the forms of sequence diagram and
collaboration diagram.

® [ogic view: describes the static relation of system, in
the forms of package, the dependency relation and
class diagram (class, attributes, operations and
relations between classes).

® Component view: describes the relations between
file components, in the forms of the include relations
between files.

Although above recovered models provide an
automated way to understand the system and facilitate the
forward engineering, the models are usually too large and
complex to be easily handled by users with the size of
application increasing. Especially when analyzing a large
application, the scale of the information in the extracted
models is hard to manage if they are not divided into
subsystems. However, subsystem decomposition is not
easily supported by an individual tool and is insufficiently
implemented without manual support. It generally requires
application-specific or domain knowledge acquired
manually.

To address this problem, JBOORET provides
complementary design or source models, which can be
manipulated easily by users. Users can search, select, edit
or browse the entities in the models to enable users to
decide what to focus on and what to ignore. JBOORET
adopts multi-perspectives to present the extracted models,
including class hierarchy tree, class ancestry tree, class
nest tree, file include tree, source code view, program
structure graph and cross reference etc.

In order to aid users to focus on the part they are most
concerned and temporarily ignore other parts, users can
compress the sub-tree in tree models view. The
compaction and selection 1is supported in the
complementary models generated by JBOORET.
Additionally when users double-click the object in the
recovered models, the tool can switch the focus to the
actual source code, the part of which is associated with the
selected object. At the same time the related part of the
source code will be highlighted. Moreover JBOORET

1 . . . - .
Rational Rose is a trademark of Rational Software Corporation.

75

supports advanced searching of the symbols, such as class
names, method names and variable names, and present the
detailed information of some specific symbols to users.

4. Case Study

In component-based software development environment,
to acquire the reusable components, it is feasible to extract
them from existing systems. During the component
extraction process, JBOORET is used to understand the
legacy systems by providing multi-perspective higher-
level models. After the candidate reusable components are
identified during the reusable component identification
process, JBOORET is applied to support the
reengineering of the components by recovering the higher-
level models for forward engineering. Additionally before
the component users compose the selected components for
new application, JBOORET is also adopted to
comprehend the components or adapt them to fulfil the
new requirements in target systems.

Currently JBOORET is implemented to run on
Windows 98/95/NT PC platform, and it is capable of
analyzing large C++ program. The tool has already been
utilized to recover the design and source models from the
76 sample projects of MS Visual C++ 6.0 (695738 lines
of code). The tool has also analyzed the source code of
Jade Bird CASE tools (285801 lines of code) and the
source code of freeware CORBA product OmniBroker
(53435 lines of code). The tool exports the design and
source models to JBOOD and Rose 98 and produces
complementary multi-perspectives. To compare the results
of reverse engineering tools, we perform the same task
with the Reverse Engineering Tool built in Rose 98 and
JBOORET. Table 1 shows the information of higher-level
models recovered by JBOORET and ROSE RET.

Table 1. The information in Recovered Models
generated by JBOORET and ROSE RET

OOP (Sutrce Cod) JBOOD Model Rose Mode] Rose RIET
[§ Class and Object Class Y
C ¥ Atribute Attribute Y
3 S Operation Y
Class ance CGeneralizaty Y
Class Embedded Obieet Agaregation Y
Class Embedded Object Pointer Aggregation Y
Instance Link
Method Call hetween ¢ lasses Message Link “Association N
File Include 1 Component Diagram N
Single Method Call Train Scenuriv Diagram N

The leftmost column lists the entities in source code,
the second lists the corresponding representation entities
in JBOOD model and the third one lists those in Rose
Model. The rightmost column shows whether the Rose
Reverse Engineering Tool (Rose RET) supports
corresponding entity recovery or not. In case study, Rose
RET is found to be incapable of correctly analyzing the
Macro information in the C++ source code and sometimes
present some program information from source code
incorrectly.

5. Related work

Rigi [2] is a flexible tool for architectural understanding
at the University of Victoria. This tool provides a parser
to support common imperative programming languages, a
repository to store the extracted information and an
interactive editor to manipulate program representations.
This tool adopts the layered views, ShriMP view and
layout algorithms to facilitate the information browsing.
And the entities in the recovered models can be easily
manipulated. Rigi is programmable through a scripting
language and provides a customizable interface. However,
the analysis function of this tool is not satisfactory and the
generated views are limited mainly to call graphs.

SNIFF+ [10] adopts a fault-tolerant approximate parser
to analyze the source code. It can parse those incomplete
or syntactically incorrect source codes by performing a
partial parse looking for specific syntactic constructs. But
it is less desirable in forward engineering support because
of the information incompleteness. Moreover, it is not
extensible for reverse engineering tasks.

Refine/C [1] is z reverse engineering tool for C
programs. It provides a parser to produce the internal
representation, an abstract syntax tree which provides the
information for model extraction. It also provides a good
basis to be extended to specific applications by providing
programmable query for users. But its user interface is not
flexible and it lacks search function for symbols in
application. The manipulation of the recovered model is
less satisfactory.

Lightweight lexical source model extraction approach
proposed by G. Murphy and D. Notkin [5] adopts a
lexical approach to recover the high level models. It
allows extracting information from various types of
software artifacts. This lightweight approach reduces the
effort in developing a flexible and tolerant extractor.
However, as is discussed above, the accuracy and
completeness of the extracted models are not satisfiable in
this approach.

6. Conclusion

We adopted a model-based approach to develop
JBOORET. A comprehensive information conceptual
model for C++ is formulated, which provides a good basis
for higher-level abstraction model extraction. Because we
have adopted the parser-based approach to analyze the
program, the design and source models recovered by
JBOORET are accurate and complete enough to
effectively support the reverse engineering, forward
engineering and program analysis. It can export design
and source models to JBOOD and Rose 98 to support
forward engineering conveniently. It also provides
complementary multi-perspective models and flexible user

76

interface for users to search, filter and select the program
representation. Moreover it assists users to compress or
expand the information to facilitate the information focus,
especially when the recovered models are rather large and
complex.

7. Acknowledgements

This effort is sponsored by the State 9th Five-Year Plan,
the State 863 High-Tech Program, and Natural Science
Foundation of China. It also got support from Ricoh
Company, Ltd., Japan.

8. References

[1] G. Kotik and L. Markosian, “Program transformation: the
key to automating software maintenance and re-
engineering”, Technical Report, Reasoning Systems, Inc.,
USA, 1999.

[2] Wong, K., Corrie, B. D., Muller, H. A., Storey. M.-A. D.,
Tilley, S. R.. and Whitney, M., Rigi V User’s Manual,
Department of Computer Science, University of Victoria,
Victoria BC, 161 pp.

[3] Canfora, G., Cimitile, A. And de Carlini, U., “A logic-based
approach to reverse engineering tools production”, IEEE
Transactions on Software Engineering, 1992 18(12), 1053-
1064.

[4] Stan Jarzabek, Guosheng Wang. “Model-based Design of
Reverse Engineering Tools”, Software Maintenance:
Research and Practice”, October, 1998, pp 353-380

[5] Gail C. Murphy, David Notkin, “Lightweight Lexical
Source Model Extraction”, ACM Transactions on Software
Engineering and Methodology, Vol.5, No.3, July 1996,
Pages 262-292

[6] D. C. Atkinson, W. G. Griswold, ""The Design of Whole-
Program Analysis Tools,"” Proceedings of the 18th
International Conference on Software Engineering, Berlin,
IEEE, pp. 16-27, March, 1996.

[71 Javed 1. Khan & . Miyamoto, “Integrating Abstraction
Flexibility with Diverse program Perspectives, Proceedings
of the 17th Annual International Computer Software and
Applications Conference, COMPSAC’93, Phoenix,
November 1993, pp. 186-192.

[8] Gamma, Erich, Richard Helm, Ralph Johnson, and John
Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software, Reading, MA: Addison-Wesley, 1995.

[9] Rational Software Corp. Rational Rose 98 [online],
Available WWW<URL: http://www.rational.com/rose/>.
{1998}

[10] Bischoffberger, W. R., Sniff-A pragmatic approach to a
C++ programming environment. In Proceddings of the
1992 Usenix C++ Conference, USENIC Assoc., Berkeley,
Calif,, 67-81.

