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Abstract -- A bug-tracking system such as Bugzilla contains 
bug reports (BRs) collected from various sources such as 
development teams, testing teams, and end users.  When bug 
reporters submit bug reports to a bug-tracking system, the bug 
reporters need to label the bug reports as security bug reports 
(SBRs) or not, to indicate whether the involved bugs are 
security problems.  These SBRs generally deserve higher 
priority in bug fixing than not-security bug reports (NSBRs).  
However, in the bug-reporting process, bug reporters often 
mislabel SBRs as NSBRs partly due to lack of security domain 
knowledge. This mislabeling could cause serious damage to 
software-system stakeholders due to the induced delay of 
identifying and fixing the involved security bugs.  To address 
this important issue, we developed a new approach that applies 
text mining on natural-language descriptions of BRs to train a 
statistical model on already manually-labeled BRs to identify 
SBRs that are manually-mislabeled as NSBRs.  Security 
engineers can use the model to automate the classification of 
BRs from large bug databases to reduce the time that they 
spend on searching for SBRs.  We evaluated the model's 
predictions on a large Cisco software system with over ten 
million source lines of code.  Among a sample of BRs that 
Cisco bug reporters manually labeled as NSBRs in bug 
reporting, our model successfully classified a high percentage 
(78%) of the SBRs as verified by Cisco security engineers, and 
predicted their classification as SBRs with a probability of at 
least 0.98.  
 

I. INTRODUCTION 
Software organizations use bug-tracking systems 

(BTSs) such as Bugzilla1 to manage bug reports (BRs) 
collected from various sources including development 
teams, testing teams, and end users.  In a BTS, some BRs 
are labeled by bug reporters as security bug reports (SBRs), 
whose associated bugs are found to be security problems.  
SBRs generally deserve higher fix priority than not-security 
bug reports (NSBRs), the subset of BRs that are believed 
not to have a security impact.   

Correctly labeling SBRs among BRs submitted to a 
BTS is important in security practice since delay of 
identifying and fixing the security bugs involved in the 
SBRs causes serious damage to software-system 
stakeholders. The likelihood of unlabeled SBRs in a BTS 
could be high for at least three reasons.   First, if bug 
reporters perceive a subtle security bug that they are 
reporting in a BR as an innocuous not-security bug, then 
they may label the BR as an SBR.  Second, some security 
bugs described in BRs are associated with recommended 
mitigations that may be unknown to bug reporters.  For 

example, if a SQL parser throws an exception due to input 
containing a single quote, then a bug reporter without 
sufficient security knowledge may report this bug as a 
NSBR, whose related bug may be later fixed by filtering the 
input for single quotes.  However, attackers can write crafty 
exploits to circumvent such filtering [1].  A bug reporter 
with sufficient security knowledge would realize that single 
quotes can be used in SQL injection attacks and report this 
bug as an SBR,  whose related bug would be later fixed by 
limiting privileges on a database server and using prepared 
statements that bind variables as advised by Howard et al. 
[7].  Third, a bug related to general reliability problems can 
also be related to security problems [15] and a bug reporter 
without sufficient security knowledge may report this bug 
as a NSBR.  For example, a bug that causes a system to 
crash can also be a denial-of-service security bug if 
exploited by an attacker.  

In the practice of bug reporting, bug reporters may 
often mislabel SBRs as NSBRs partly due to lack of 
security domain knowledge as discussed earlier. Then it is 
desirable for security engineers to inspect NSBRs submitted 
to a BTS to identify SBRs that are manually-mislabeled as 
NSBRs in the BTS. However, manually inspecting (often 
thousands of) NSBRs in a BTS to identify SBRs is time-
consuming and often infeasible, or not even conducted in 
practice. For example, to the best of our knowledge, the 
open source project members of Mozilla and Red Hat1,2 do 
not have the practice of manually inspecting each NSBR 
submitted to their BTSs, while acknowledging that some 
NSBRs in their BTSs were in fact mislabeled, and should 
have been SBRs3.   

Therefore, there remains a strong need of effective tool 
support for reducing human efforts in this process of 
identifying SBRs in a BTS, enabling this important security 
practice of SBR identification in either industrial or open 
source settings. With such effective tool support, security 
engineers can elevate the priority of each identified SBR 
and ensure that the described security bug receives 
appropriate fortification efforts, and gets fixed timely, thus 
improving the security assurance of the software. 

To satisfy such a strong need, in this paper, we propose 
a new tool-supported approach that applies text mining on 
                                                                 
1 https://www.mozilla.org/projects/security/security-bugs-policy.html 
2 http://ovasik.fedorapeople.org/bugs.pdf 
3http://mail.opensolaris.org/pipermail/tools-discuss/2009-

March/004379.html 



natural-language descriptions of BRs to learn a statistical 
model to classify4 a BR as either an SBR or an NSBR.  
With the help of our approach, security engineers can 
feasibly apply our proposed approach on NSBRs from a 
BTS to effectively identify SBRs, without inspecting each 
single NSBR from a BTS (which is simply infeasible in 
practice as discussed earlier).  

The rationale of our proposed approach is to exploit 
valuable natural-language information of BRs in a BTS. 
Although bug reporters may not recognize that the bug they 
are describing is a security bug, the natural-language 
description of the bug in the BR may be adequate to 
indicate that the bug is security-related and thus the BR is 
an SBR.   

To identify SBRs by exploiting valuable natural-
language information in BRs, we propose an approach that 
learns a natural-language statistical model for classifying a 
BR as either an SBR or NSBR.  We implement our 
approach based on an industrial text mining tool called SAS 
Text Miner5. We evaluated our model on a large Cisco 
software system that contains over ten million source lines 
of code (SLOC).  We trained our model on four years of 
Cisco SBRs and then applied the model on BRs that were 
labeled as NSBRs by Cisco bug reporters.  We also applied 
the model on BRs from three additional large Cisco 
software systems, two of which each consist of over five 
million SLOC, and one of which consists of over 10 million 
SLOC. 

In this paper, we use the terms “bug reporters,” 
“software engineers,” and “security engineers” as follows.  
A bug reporter is any person (internal or external to Cisco) 
who reports a bug to the Cisco BTS.  A software engineer is 
any stakeholder at Cisco responsible for the development of 
Cisco software.  Software engineers may also be bug 
reporters.  A security engineer is a Cisco engineer that is 
responsible for securing Cisco software.  Security engineers 
assess SBRs that have been submitted to the BTS. 

In summary, this paper makes the following main 
contributions: 

• The first approach that learns a natural-language model 
to automate the classification of SBRs.  We also show 
how our model can be trained and refined to improve 
the effectiveness of classifying SBRs mislabeled as 
NSBRs.   

• An extensive empirical evaluation of the proposed 
approach on four large Cisco software systems.  Two 
systems each consist of over five million SLOC and the 
other two systems each consist of over ten million 

                                                                 
4 We reserve labeling for manually identifying BRs as SBRs or NSBRs and 

classifying for model-based identification of SBRs and NSBRs. 
5 http://www.sas.com/technologies/analytics/datamining/textminer/ 

SLOC.  Our results indicate that our model can classify 
seven times more SBRs from a BTS of one system than 
randomly selecting BRs from the BTS (a default 
strategy when the number of BRs is beyond the security 
engineers’ afforded inspection efforts).  Among a 
sample of BRs that Cisco bug reporters originally 
labeled as NSBRs, our model successfully identified a 
high percentage (78%) of the SBRs as verified by a 
Cisco security engineers, and predicted their 
classification as SBRs with a probability of at least 
0.98. 
Due to the very promising results of our case study, 

Cisco is planning on carrying out another pilot study, 
confirming the value and impact of our work on Cisco 
practice.  The rest of this paper is organized as follows.  
Section II provides background.  Sections III and IV detail 
our approach and case study setup.  Section V presents the 
results. Section VI discusses the threats to validity.  Section 
VII provides related work, and Section VIII concludes. 

II.  TEXT-MINING OVERVIEW 
    Text mining uses natural-language processing to parse 
terms (i.e., words and phrases) from a document to create a 
term-by-document frequency matrix.  Table I shows a 
simple, hypothetical term-by-document matrix.  A 
document is represented by a vector (column) in the matrix 
that contains the number of times each of the different terms 
occurs in the document.  The matrix provides a quantitative 
representation of the document that text mining uses to 
classify documents.  The models that use such matrices to 
represent documents are called vector space models, and are 
commonly used for text mining [11]. 

The investigator performing text mining can decide 
what terms to enter into the matrix by creating a pre-defined 
list of terms.  A start list contains terms that are most likely 
to be indicative of categories of documents.  If terms in a 
document match those in the start list, then those terms are 
entered into the matrix. 

Table I.  A term-by-document frequency matrix. 
Term Document 1 Document 2 Document 3 

Attack 1 0 1 
Vulnerability 1 0 0 
Buffer overflow 3 0 0 

A stop list contains terms such as articles, prepositions, 
and conjunctions that are not used in text mining.  If terms 
in the stop list match those in a document, then those terms 
are not entered into the matrix.  While the terms in the start 
list are not unique to SBRs, their frequency and presence 
with other security terms in a BR increase the probability 
that the BR is an SBR.  The synonym list contains terms 
with the same meanings (e.g., “buffer overflow” and “buffer 
overrun” have the same meaning).  Terms in a synonym list 
are treated equivalently in text mining.  Therefore, a less-
used term that is associated with SBRs may be given more 



weight in the predictive model if the term is synonymous 
with a term that is often used with SBRs.     

Weighting functions can be assigned to the terms and 
their frequencies in each vector.  The total weight of a term 
is determined by the frequency weight and the term weight.  
We use the log frequency weight function to lessen the 
effect of a single term being repeated often in each BR.  We 
use the entropy term weight function to apply higher 
weights to terms that occur infrequently in the BRs [14]. A 
statistical model can then estimate the probability that a 
document belongs in a given category based on the 
weighted values in the vector.  Being a major part of text 
mining, text classification uses a built natural-language 
predictive model to classify documents into predefined 
categories with a pre-classified training set [14].   

III. APPROACH 
Our approach consists of three main steps.  The first 

step is to obtain a labeled BR data set that contains textual 
descriptions of bugs and labels to indicate whether a BR is 
an SBR or an NSBR.  The labeled BR data set is required 
for building and evaluating our natural-language predictive 
model.  The second step is to create three configuration files 
that are used in text mining: a start list, a stop list, and a 
synonym list.  The third step is to train, validate, and test the 
predictive model that estimates the probability that a BR is 
an SBR. 
A.  Textual-Data Preparation 

The textual-data step prepares labeled data for building 
and evaluating our natural-language predictive model. This 
step includes three sub-steps. First, from a BTS, we obtain 
BRs that were submitted by stakeholders including 
development team, testing teams, and end users.  Second, 
we distinguish between SBRs and NSBRs among the 
obtained BRs.  In some commercial software organizations, 
a BR contains a label field that indicates whether the BR is 
an SBR. A query on this field in the BTS causes all known 
SBRs to be returned.  If the field is not present in the BTS 
or an insufficient number of BRs are labeled, then manual 
efforts from software or security engineers are needed to 
label a subset of all BRs as SBRs or NSBRs. In the end, we 
use labeled BRs to build and evaluate our natural-language 
predictive model. Finally, using a built-in function in SAS, 
we enumerate all the terms in the labeled SBRs and NSBRs.  
These terms are necessary for the next step where we 
construct configuration files. Generally, the more labeled 
data used for building the predictive model, the more 
accurate the predictive model is.  According to SAS [14], 
the minimum count of documents required for natural-
language modeling is 100.   
B. Configuration-File Preparation 

After we obtain the terms from the BRs, we select 
terms from them to prepare the start, stop, and synonym 
lists.  To the start list, we manually add terms such as 

“vulnerability” and “attack” from SBRs.  We also include 
terms (from SBRs) that are not explicitly security-related, 
but can indicate a security problem.  For example, “crash” 
and “excessive” are also candidates for inclusion in the start 
list.   

To the stop list, we add prepositions, articles, and 
conjunctions since they likely have little benefit for 
indicating a security bug.  Both stop lists and start lists are 
acceptable for text mining [14].  SAS Text Miner allows 
either a start list or stop list to be used in text mining, but 
not both.  In our approach and case study, we tried each 
type, and experienced similar classification results.   

To the synonym list, we add synonyms based on 
examinations of the enumerated terms from SBRs and 
NSBRs.  Bug reporters may use security-related verbiage 
such as “buffer overflow” or “buffer overrun” to describe 
the same bug.  By including such terms in the synonym list, 
the predictive model can identify different terms in the same 
context to reflect the same type of bugs.  

We next use SAS Text Miner to generate a term-by-
document frequency matrix from the terms in BRs based on 
the start or stop, and synonym lists.  The matrix is a 
quantified format of the natural language descriptions in the 
BRs.  If we include a large number of BRs in text mining, 
the term-by-document frequency matrix can become large.  
A large matrix can hinder the predictive modeling in text 
mining [5].  We reduce the size of the matrix by choosing 
the singular value decomposition (SVD) option in SAS.  
SVD determines the best least squares fit to the weighted 
frequency matrix, based on a preset number of terms, k 
[14].  High (30-200) values of k are useful for prediction 
whereas small (2 to 50) values of k are more effective for 
clustering similar documents [14]. We use 200 for the value 
of k for our text classification, which is for prediction 
instead of clustering.  

C.  Predictive Modeling 
Next, we use the term-by-document matrix as the 

independent variable (i.e., the input variable) in our 
predictive model.  The dependent variable (i.e., the value 
that we intend to predict) is the label (SBR or NSBR) of a 
BR.  We apply SAS Text Miner to construct a trained model 
based on the term-by-document matrix. The recall and 
precision of the trained model enable us to judge whether 
we need to reassess the content of the configuration files or 
the value of k for SVD.  If the results are satisfactory, then 
the trained model is usable and we can feed a new BR data 
set (e.g., BRs without labels) to the model for predicting 
their labels. We next describe the training, validation, and 
test data sets used for training the model, the application of 
our trained model on new BRs, and retraining of the model 
with corrected mislabeling (when the initial training data 
include mislabeled data).  



i. Training, Validation, and Test Data Sets 
First, we train, validate, and test the model using the 

BR data set that we earlier prepared, and divide the BR data 
set into three smaller data sets: the training, validation, and 
test data sets [13]. The training data set is used for 
preliminary model training.  The validation data set is used 
for selecting the optimum configuration options (such as 
weights for the term vector in the matrix).  The test data set 
is used for an assessment of the model for the data that have 
not been used to train or validate the model.  The 
proportions of BRs allocated to the training, validation, and 
test data sets are 60%, 20%, and 20%, respectively, as 
recommended by SAS [14].   

ii.  Application of Trained Model on new BRs 
Given new BRs (e.g., BRs without labels), our built 

predictive model then estimates the probability that a BR is 
an SBR.  In our setting, the probability ranking is a list of 
BRs sorted in descending order of the estimated probability 
of being an SBR.  Security engineers can start their 
assessments of the BRs at the top of the probability ranking 
and continue until they reach a pre-defined probability 
threshold.  The threshold indicates that SBRs with 
probabilities below the threshold may exist, but there are 
only few of them.   

We determine the probability threshold with the 
following technique.  We first assess the probabilities of 
SBRs.  If all the SBRs have higher probabilities than the 
NSBRs, we assign the threshold as the lowest probability 
associated with an SBR.  If some NSBRs have higher 
probabilities than some SBRs, the threshold must be made 
based on the security engineers’ available resources.  In 
particular, based on the results from the test set, we can 
determine the lowest estimated probabilities assigned to 
SBRs.  Security engineers should look at the lowest 
probability of an SBR in the test set and then match that 
probability to the probability ranking of the BRs that they 
intend to assess.  If there are too many BRs above that 
probability to assess, then security engineers should use the 
next lower threshold, and so on.   

iii.  Model Retraining with Corrected Mislabeling  
One inherent challenge in our research context is the 

(un)certainty of the labeling of SBRs (by bug reporters) 
initially used for training the model.  The first author’s 
empirical investigations (with security engineers in software 
organizations other than Cisco) have revealed that SBRs are 
sometimes mislabeled as NSBRs by bug reporters.  If we 
train the model on SBRs mislabeled as NSBRs, the model 
may classify security-related verbiage as not security-
related, and, as a consequence, incorrectly classify an SBR 
with security-related verbiage as an NSBR.  Therefore, the 
model’s accuracy would likely be improved if security 
engineers review each BR used to train the model to ensure 

that the BR’s label is correct.  To address this issue, we 
select a subset of the NSBRs from the BTS.  Then, we 
submit the NSBRs to security engineers for them to check 
for mislabeling.  If any true SBRs exist among the labeled 
NSBRs (which are thus mislabeled), then we retrain the 
model with the subset of NSBRs that are now correctly 
labeled.  The verbiage between SBRs that contain explicit 
security verbiage (e.g., attack) may be distinctly different 
than SBRs that are mislabeled as NSBRs and do not contain 
such explicit security verbiage. By training the model on 
SBRs that are mislabeled as NSBRs (in addition to true 
NSBRs), the model can classify SBRs with terms that bug 
reporters are likely to use to describe security bugs when 
they do not realize the problem to be security-related.  
Additionally, from the original configuration files, we add 
or subtract terms from the original configuration-files that 
appear in the SBRs and NSBRs that were reviewed by the 
security engineers. 

IV. CASE STUDY SETUP 
We next describe the four large Cisco systems under 

study, the research questions that we intend to answer using 
studies of these systems, and our study design to address 
these questions. 

A.  Four Cisco Software Systems 
We analyzed four large Cisco software systems, 

referred to as Systems A, B, C, and D.  Identities of these 
systems cannot be disclosed here due to confidentiality.  
Each system is implemented primarily in the C 
programming language.  Systems A and B consist of over 
ten million SLOC each and Systems C and D consist of 
over five million SLOC each.  Cisco’s BTS contains all BRs 
associated with these software systems, and these BRs 
document both bugs and failures in the software systems.  
Each BR contains a field that is manually filled (initially by 
bug reporters) to label the BR as an SBR.  Security 
engineers can then evaluate a labeled SBR to either verify 
that the BR is in fact an SBR, or, if not, reset the field to 
indicate an NSBR.  Each BR also contains a summary text 
field and a larger description text field.  Our text mining 
focuses on these two text fields of BRs that have a severity 
rating of 1, 2, or 3, out of the range of 1-6 where severity 1 
has the most detrimental impact on the system.   The 
severity ratings were assigned by Cisco software engineers. 

B.  Research Questions 
In our studies, we address the following research questions: 
• RQ1: How effective is our model at classifying SBRs 

of a given system if the model is trained on a BR data 
set from the same system? 

• RQ2: Do bug reporters fail to recognize that some BRs 
are SBRs?   

• RQ3: How effective is our model at classifying SBRs 
that are manually-mislabeled as NSBRs?  How much 



negative impact would training the model on SBRS 
manually-mislabeled as NSBRs cause on applying our 
approach? 

• RQ4: How effective is our model at classifying 
unlabeled SBRs in a given system if the model is 
trained on a BR data set from a different system? 

The answer to RQ1 helps us to assess the effectiveness 
of our approach when applied to cases where the bug 
reporter describes a security problem or a non-security 
problem in the BR description, but does not label the BR 
(i.e., not labeling the BR as an SBR or a NSBR).   

The answer to RQ2 helps us to determine whether 
Cisco security engineers should review the Cisco BTS for 
SBRs that are manually-mislabeled as NSBRs by bug 
reporters.   

The answer to RQ3 helps us to determine whether our 
approach is effective in automatically classifying SBRs that 
bug reporters manually-mislabel as NSBRs.  If such BRs 
exist, then we should include the terms associated with 
these SBRs in our model, since they describe real security 
problems, but do not explicitly use security-related verbiage 
(e.g., attack). 

The answer to RQ4 helps us to assess the effectiveness 
of our approach in classifying SBRs in other systems that 
the model was not trained on.  The results can indicate 
whether the bug reporters or security engineers can obtain 
assistance from our approach in automatically labeling 
unlabelled BRs of other systems.  Using a common model 
across systems would reduce training and modeling efforts 
and result in providing additional training data across 
systems for the model. 
 
C.  RQ1 Study Setup 

We first queried the Cisco BTS for manually-labeled 
SBRs associated with System A for the past four years.  
Next, we randomly sampled System A’s BRs that were 
manually-labeled as NSBRs by bug reporters.  The samples 
of SBRs and NSBRs are equal in counts to provide the 
model with enough data to classify both SBRs and NSBRs 
accurately.  We call the data set of SBRs and NSBRs for 
System A the Afeasibility data set.  We randomly partition 
Afeasibility into training, validation, and test data sets.  We call 
the model that is trained on the Afeasibility data set the 
“trained” model.  The initial results are used to calibrate the 
model and provide an assessment of the predictive power of 
BR descriptions. The results would not indicate whether the 
model correctly classifies an SBR that was mislabeled as an 
NSBR.     

D.  RQ2 Study Setup 
We randomly sampled BRs (from System A) that were 

manually-labeled as NSBRs by bug reporters.  We call this 
data set Apilot.  We applied the trained model on Apilot to 

estimate the probability that a manually-labeled NSBR is an 
SBR.  We then submitted Apilot to the security engineers for 
them to review the same content (that the model used for 
prediction) to determine whether any of the manually-
labeled NSBRs are actually SBRs.  We did not reveal the 
estimated probabilities to the security engineers to reduce 
potential bias in their analyses. Based on prior discussions 
with the security engineers, we estimated that security 
engineers would require approximately 175 person-hours to 
analyze Apilot and determine whether the manually-labeled 
NSBRs are actually SBRs.  At least two security engineers 
independently reviewed each BR.  If two security engineers 
disagreed on their evaluations of a manually-labeled BR, 
then they discussed their differences and reached an 
agreeable consensus.  We compared their evaluations with 
the model’s estimated probabilities to evaluate the model’s 
predictions.  

E.  RQ3 Study Setup 
Having the security engineers evaluate each BR in Apilot 

enables us to be certain of the label of each BR in Apilot.  We 
then retrain the model on Apilot (which does not include any 
BRs from Afeasibility) to determine whether a model trained 
on SBRs mislabeled as NSBRs can be useful for the specific 
purpose of classifying those SBRs that are manually-
mislabeled as NSBRs.  We allocate Apilot in the 60% 
(training), 20% (validation), 20% (test) proportions as with 
the trained model.  We refine the start list and synonym list 
from Afeasibility, based on the evaluations by the security 
engineers to focus on terms that bug reporters use when 
they describe an SBR and do not realize that the bug is a 
security bug.  We call the model that is trained on Apilot the 
“retrained” model.  

F.  RQ4 Study Setup 
The security bugs associated with System A may be 

specific for that software system.  Additionally, the bug 
reporters for System A may have different writing styles 
and diction for describing bugs than bug reporters from 
other software systems.  To investigate these possibilities, 
we randomly sampled six months of bug reports from 
Systems B, C, and D and combined them into one data set 
that we call BCD.  We tested whether the trained model, 
constructed using data from System A, can effectively 
classify SBRs for three different Cisco software systems.  If 
the model that is trained on System A is predictive for 
Systems B, C, and D, then the model may be applicable for 
many other Cisco software systems.  Table II provides a 
summary of our two models, and the three data sets used to 
train, validate, and test the models.  The “Train” column 
represents the data set that was used to train the model, the 
“Validate” column represents the data set used to validate 
the model, and the “Test” column represents the data set 
used for the model’s evaluation. 

 



 
 

Table II.  Summary of models and data sets. 
 Data sets 
Model name Train Validate Test 

Afeasibility 
Apilot Trained Afeasibility Afeasibility 
BCD 

Retrained Apilot Apilot Apilot 
 

V. RESULTS 
We found that a model used with Afeasibility with a start 

list and synonym list identified approximately the same 
count of manually-labeled SBRs as a model with a stop list.  
We chose to use a start list and synonym list for our text 
mining because we suspect that continually updating the 
start list is more feasible for a limited number of security 
bugs than managing a large stop list. 

If the model classifies an SBR as an NSBR, or if the 
model classifies an NSBR as an SBR, then the result is a 
misclassification.  We now define the correct classifications 
and misclassifications for the natural-language model.  A 
true positive (TP) is a verified (by a security engineer) SBR 
that is correctly classified by the model.  A false positive 
(FP) is a verified NSBR that is incorrectly classified to be 
an SBR.  A false negative (FN) is a verified SBR that is 
incorrectly classified to be an NSBR.  A true negative (TN) 
is a verified NSBR that is correctly classified to be an 
NSBR.  The success rate of the model is the number of 
correct classifications divided by the total number of 
classifications [17].  Model precision is the percentage of 
correctly classified SBRs among SBRs and NSBRs that 
have been classified by the model to be SBRs (i.e., 
exceeding a minimum probability).  In our setting, recall is 
the percentage of correctly classified SBRs (above a 
minimum probability) among all verified SBRs.  The 
formulas for the success rate, precision, and recall are 
provided below.   

TP + TNSuccess rate =  x 100%
TP + FP + TN + FN

TPPrecision =  x 100%
TP + FP

TPRecall =  x 100%
TP + FN

 

In the rest of this paper, an SBR denotes a verified SBR 
unless otherwise stated.  The SBR is either verified by the 

Cisco security engineers before the case study began or is 
verified as an SBR by the security engineers during our 
study. 

A.   Lift Curves and Tables  
We measure the effectiveness of the model with lift 

curves [17], which quantify how much the model improves 
the rates of classifying SBRs, compared to randomly 
selecting and analyzing BRs from the BTS.  Figure I shows 
the lift curves for the trained model tested on Afeasibility, Apilot, 
and BCD, and the retrained model tested on Apilot.  We 
explain the details of these results in later subsections.  The 
lift curve x-axis represents the BRs sorted in descending 
order of likelihood of being an SBR, as predicted by the 
model, and then divided into ten deciles, where the leftmost 
decile contains the BRs with the highest likelihood of being 
an SBR.  The y-axis represents the percentage of total SBRs 
(called the “cumulative” percentage) contained in a given 
decile classified by the model.  The lift curves are 
cumulative in the sense that the counts of SBRs and BRs are 
aggregated within each of the ten deciles.  An accurate 
model is one in which the highest SBR rate occurs in the 
first decile, the second highest in the second decile, and so 
on.  The horizontal dashed lines in Figure I are baselines 
that represent the rate of classifying SBRs for the data set’s 
deciles if we manually select BRs from the BTS.  The 
overall SBR rate is equal to the count of SBRs divided by 
the count of all BRs.  For a given decile, the difference 
between the cumulative SBR rate that is derived from the 
model and the baseline rate represents the effectiveness of 
the model’s classification for that decile.  The specific 
values on the y-axis in Figure I are not disclosed in order to 
conceal the Cisco SBR rate.   

In Table III, we show the cumulative SBR lift values 
for each decile for each data set shown in Figure I.  The 
cumulative lift value in the first decile is equal to the SBR 
rate of the model in the first decile divided by the overall 
SBR rate [13].  The cumulative lift value in the second 
decile is equal to the cumulative SBR rate of the model 
divided by the overall SBR rate for the second decile, and 
so on.  The rest of this section compares the model’s 
predictions to randomly selecting BRs from the BTS. 



 
Figure I. Lift curves for case study results.   

 

i.   Classifying SBRs in System A 
RQ1: How effective is our model at classifying SBRs of a 
given system if the model is trained on a BR data set from 
the same system? 

The lift curve for the model that is trained, validated, 
and tested on Afeasibility (see Figure Ia) indicates that the 
chance of finding an SBR generally decreases as the 
model’s estimated probabilities decrease.  Although the 
first decile (associated with the highest probabilities) 
contains some SBRs, the highest percentage of SBRs exists 
in the second decile.  The increase (“lift”) for the first 
decile is only 1.53, and is 1.65 in the second decile, as 
shown in Table III for Afeasibility.  The results indicate that 
security engineers would classify 1.53 times more SBRs in 
the first decile with the model than by randomly selecting 
BRs from the BTS.  Therefore, this result shows that the 
verbiage in SBR text fields can be successfully used to 
classify other unlabeled SBRs.  While this lift is low, the 
lift is nevertheless positive, providing enough justification 
to continue our analyses on SBRs mislabeled as NSBRs.   
Table III. Cumulative lift values for three data sets. 

 Data sets 

Decile Afeasibility  Apilot 
Apilot 

(retrained) BCD 

1 1.53 3.33 7.00 0.09
2 1.65 3.89 5.00 1.32
3 1.56 2.96 3.33 1.18
4 1.50 2.22 2.50 1.16
5 1.37 1.78 2.00 1.05
6 1.30 1.67 1.67 0.96
7 1.19 1.43 1.43 1.00
8 1.10 1.25 1.25 1.00
9 1.04 1.11 1.11 0.96

10 1.00 1.00 1.00 1.00
 

Our natural-language model has moderate success 
in classifying SBRs that bug reporters realize as 
true SBRs. 

 
 
 

ii.Identification of SBRs Mislabeled as NSBRs 
 
RQ2: Do bug reporters fail to recognize that some BRs are 
SBRs?   

The security engineers verified that some†6of the BRs 
that were labeled as NSBRs by bug reporters are actually 
SBRs.  Figure Ib shows the lift curve when the trained 
model (i.e., trained on Afeasibility) is used to classify SBRs in 
Apilot.  The cumulative lift value for the first decile is 3.33 
(see Table III), indicating that security engineers would 
classify 3.33 times more SBRs that are mislabeled as 
NSBRs by using the model than they would by randomly 
selecting BRs from the BTS and verifying the selected 
BRs.   

The model identified several† types of security bugs 
demonstrating that the model does not classify only one 
type of security bug.  One of the SBRs identified in the 
analysis was also reported in the field, thereby indicating 
that the model can be used to classify BRs that are found 
both internally and externally to Cisco.  If the SBRs 
discovered by the security engineers had not already been 
fixed, it would have received either an elevated priority or 
would have subjected to a careful security review.   

The lift curve for the retrained model (i.e., retrained on 
Apilot) shows a consistent decrease in lift from the first 
decile to the tenth decile (see Figure Ib).  This result 
indicates that as the estimated probabilities decrease, the 
likelihood of being an SBR also decreases.  The largest 
cumulative lift value in our case study, 7.00, is in the first 
decile for the retrained model.  The language used to 
describe the SBRs in Afeasibility may closely resemble the 
SBRs mislabeled as NSBRs in Apilot; this factor is likely to 
be responsible for improving the accuracy of the retrained 
model.  Similarly, the NSBRs in Apilot may have 
resemblance to the NSBRs in Afeasibility.  For each run of the 
model, security engineers can add examined BRs to the 
training and validation sets to improve the model’s 
accuracy.  Additionally, security engineers can add or 

                                                                 
6 †The counts, percentages, and types of security bugs are confidential. 



subtract terms (collected from SBRs identified by the 
security engineers) to the start and synonym lists.   

As mentioned earlier, Apilot is the only data set in our 
study in which security engineers reviewed each BR in the 
data set.  We are therefore certain which BRs are SBRs and 
which are NSBRs.  This certainty improves the retrained 
model’s results over the trained model’s results for two 
reasons.  First, the certainty can improve the model training 
and validation compared to other training and validation 
data sets that may have SBRs mislabeled as NSBRs.  
Training the model with SBRs mislabeled as NSBRs can 
result in the model’s misclassification of SBRs as NSBRs.  
Second, the certainty improves the accuracy of the model 
in the test data set in Apilot compared to evaluations in other 
test data sets.  If an SBR is mislabeled as an NSBR by a 
bug reporter in Afeasibility, but the model classifies the BR as 
an SBR, then the result is a false positive.  The cumulative 
lift values decrease due to instances where the model is 
correct, but the labeling of the BRs is incorrect.  The 
security engineers’ review of Apilot reduces such errors for 
the retrained model.  We show the misclassification rates in 
Table IV. 

Software engineers do manually mislabel SBRs as 
NSBRs. 

iii. Probability Ranking 
RQ3: How effective is our model at classifying SBRs that 
are manually-mislabeled as NSBRs? How much negative 
impact would training the model on SBRS manually-
mislabeled as NSBRs cause on applying our approach? 

The x-axis in Figure II shows the probability ranking 
when the trained model is tested on Apilot.  Approximately 
25% of the BRs are found to have a greater-than-74.1% 
probability of being an SBR, and 75% of the BRs are found 
to be below a 50.0% probability.  The model predicts that 
the BRs fall into two separate groups: one group with high 
estimated probabilities of being SBRs, and the other group 
with low estimated probabilities (suggesting BRs in the 
other group to be NSBRs). The group with the higher 
estimated probabilities is small relative to the other.  This 
distinction enables security engineers to prioritize their 
fortification efforts to a small subset of BRs in the BTS.   
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Figure II.  Distribution of estimated probabilities from 
the trained model on Apilot. 

The success rate is 68.8% for the trained model and 
93.8% for the retrained model as shown in Table IV.  The 

success rates and high precision rates (see Table IV) 
indicate that the model is effective for classifying unlabeled 
and manually-mislabeled SBRs.  The misclassification rate 
for the retrained model is lower than the one for the trained 
model for the training, validation, and test sets, as shown in 
Table IV.  The identification of SBRs mislabeled as 
NSBRs in Apilot indicates that some of the NSBRs in 
Afeasibility may actually be SBRs.  If the trained model 
misclassified SBRs with a threshold where the probability 
is greater than 50% in Afeasibility, they are considered false 
positives and the resulting misclassification rate increases.  
The low misclassification rate from the retrained model 
indicates that security engineers can more effectively 
prioritize their fortification efforts to SBRs by using the 
retrained model.   
Table IV. Performance for the trained and retrained 
models. 

 Misclassification rate 
Model 

(test data set)
Success 

rate Precision Training Validation Test 

Trained 
(Afeasibility) 

68.8% 73.2% 27.6% 31.2% 31.2%

Retrained 
(Apilot) 93.8% 60.0% 11.9% 10.4% 6.3%

As described in Section III C ii, we chose probability 
thresholds based on security engineers’ available resources 
(e.g., afforded inspection efforts).  If we raise the threshold 
to a 97.8% probability for the trained model on the Apilot, 
then 17.1% of the BRs are found above the threshold.  The 
resulting recall for the SBRs is 77.8% as shown in Table V.  
That is, security engineers would identify 77.8% of the 
SBRs in the top 17.1% of the probability ranking.  The 
percentage of NSBRs for the top 17.1% is 63.4%, resulting 
in a precision of 21.1%.  While the FP rate seems high, the 
resulting count of FPs is fairly low since the threshold 
restricts the analysis space to only 17.1% of all BRs in the 
sample.  The recall for the retrained model, 75.0% (see 
Table V), is approximately equal to the recall for the 
trained model, but the FP rate is only 25%.  Additionally, 
19.5% of the BRs in the top 17.1% do not have enough 
information for the Cisco security engineers to determine 
whether a BR is an SBR.   

We tried a threshold of 80.5% in Apilot, and 24.6% of 
the BRs were located above this threshold.  The recall for 
SBRs here is 88.9% in the top 24.6% of the probability 
ranking, as shown in Table V.  The SBRs below the 
threshold do not contain diction to indicate that the BRs are 
likely to be SBRs.  The security engineers labeled these 
BRs as SBRs because their experience with the software 
indicates that these bugs can be exploited.  SBR verbiage is 
not always suggestive of susceptibility to attack.  
Additionally, the FP rate for the trained model tested on 
BCD is 96.2% (see Table V), indicating that security 
engineers would encounter many NSBRs at the top of the 
probability ranking. 



 
 

Table V. Recall for SBRs in the probability ranking. 
Model Test data set Threshold Recall FP 
Trained Afeasibility 50.0% 64.2% 26.7%
Trained Apilot 97.8% 77.8% 63.4%
Trained Apilot 80.5% 88.9% 62.7%

Retrained Apilot 50.0% 75.0% 25.0%
Trained BCD 50.0% 30.0% 96.2%

 
Our natural-language model successfully identifies a 
high percentage (77%) of SBRs manually-mislabeled 
as NSBRs by bug reporters.  In addition, training our 
model on SBRs that were manually mislabeled as 
NSBRs substantially reduces the effectiveness of the 
model. 

iv.  Results from Three Additional Systems 
RQ4: How effective is our model at classifying unlabeled 
SBRs in a given system if the model is trained on a BR data 
set from a different system? 

The lift curve (Figure Ic) for the trained model that 
was tested on the BCD data set does not demonstrate a 
decrease in SBR identification as the estimated 
probabilities decrease.  The cumulative lift value for the 
first decile is only 0.09 (see Table III).  Furthermore, the 
precision measured for the trained model is only 3.7%.  
These results are consistent with those of Anvik et al. [2] 
where the precision of their algorithm decreased from 64% 
to 6% when applied to a project whose labeled data were 
not used to train their model. 

The Cisco security engineers analyzed the BRs in Apilot 
for Systems A, B, C, and D, and identified the types of 
security bugs.  The counts and types are not disclosed to 
protect company confidentiality.  A comparison between 
Systems A and D showed that the most prevalent security 
bug type in A was not present in D.  Furthermore, the 
security bug that dominated in D was among the smallest 
contributors in A.  Therefore, training our model on one 
system’s BR data set is likely to be inadequate to classify 
BRs in another system with different types of security 
bugs. 

The security bug type that dominates in System A 
comprises approximately half of the security bug types in 
Systems B and C.  The second most predominant security 
bug type in Systems B and C is the primary security bug 
type in System D.  This analysis shows that the distribution 
of security bug types between Systems A and Systems B, 
C, and D are not always similar.  The comparison of the 
security bug types indicates that the verbiage in the SBRs 
for System A is too dissimilar from the verbiage in Systems 
B, C, and D to accurately classify SBRs that correspond to 
different security bug types.   

VI.  THREATS TO VALIDITY 
Our study is representative of only four large software 

systems and may not necessarily yield the same results for 
all software systems.  The count of BRs in Apilot is smaller 
than Afeasibility, but exceeds the minimum count (100) of 
documents required for statistical modeling, according to 
SAS [14].  Additionally, BRs are randomly selected from 
the BTS in an effort to have a similar SBR representation 
between Afeasibility and Apilot.  Furthermore, the model’s 
estimated probabilities rely on adequate textual 
descriptions in the BRs.  Bettenburg et al. [3] use a support 
vector machine (SVM) to determine whether developers 
agree on BR quality, and they found that their model can 
correctly predict the developers’ BR quality rating.  Their 
results indicate that SVMs can be used to indicate BRs that 
may require additional details required for a developer to 
identify and mitigate the problems.   

The rating of severity by software engineers could be 
wrong, which would change the outcome of our analysis.  
Additionally, the generation of the configuration files is not 
an objective and repeatable process and so improving or 
recreating our technique requires human intervention. 

VII. RELATED WORK 
Various research efforts [3, 6, 8] have been focused on 

applying text mining on detecting duplicate BRs in BTSs.  
These efforts can alleviate the work required in triaging 
BRs to developers.  In our work, we also use text mining, 
but to identify SBRs and prioritize them over NSBRs, 
addressing a different set of mining requirements.  

Cubranic and Murphy [6] use a Bayesian learning 
algorithm to predict which developer should fix a bug.  
Their automated technique can reduce the time required by 
manual analyses to triage BRs.  They evaluated their 
algorithm on the Eclipse BTS and found that the algorithm 
correctly predicted the most appropriate developer to assess 
a bug for approximately 30% of the BRs. 

Anvik et al. [2] expand the work of Cubranic and 
Murphy [6] to determine the most appropriate developer 
for a BR.  They use support vector machines to mine the 
one-line summary and full text description of a BR to 
create vectors.  The vectors are used to predict the software 
engineer who should fix the bug.    Their model reached a 
precision level of 57% for the Eclipse project and 64% for 
Firefox.  Bettenburg et al. [4] highlight the value of using 
duplicate bug reports in the Eclipse BTS for training 
machine-learning models.  They observe an accuracy of 
65% when predicting which developer should fix a bug.  
Anvik et al. [2] and Cubranic and Murphy [6] do not train 
their model to classify SBRs and NSBRs and thus their 
models may not be applicable for classifying SBRs 
misclassified as NSBRs.     



Jeong et al. [8] use Markov chains to determine which 
developer should fix a bug.  They found that BRs are 
assigned to developers who then reassign the BRs to other 
developers.  Their graph-based model shows how the 
reassignment of BRs reveals developer networks.  They 
evaluated their model on the Eclipse and Mozilla projects 
and found that their model reduces 72% of the 
reassignments within the developer networks. 

Recent research [9] has shown that natural-language 
information can be used to classify root causes of reported 
SBRs for Mozilla and Apache HTTP Server  .   Li et al. [9] 
collected SBRs from Mozilla and Apache and used a 
natural-language model to identify the root causes of the 
security bugs.  Based on their results, they determined the 
semantic security bugs (e.g., missing features, missing 
cases) comprised 71.9-83.9% of the security bugs.  These 
data provide guidance on what types of tools and 
techniques that security engineers should use to address 
most of their security bugs.  Their analyses focus on only 
SBRs that are reported by software and security engineers.  
In contrast, we apply our model on manually labeled 
NSBRs to classify SBRs.  Additionally, Podgurski et al. 
[10] use a clustering approach for classifying BRs to 
prioritize and identify the root causes of bugs, but they do 
not focus on security bugs. 

Runeson et al. [12] use natural-language information 
to classify duplicate BRs on Sony Ericsson Mobile 
Communications software.  Their model identified 
approximately 67% of the detectable duplicate BRs.  Wang 
et al. [16] used a natural-language model in addition to 
execution information of failing tests for BRs to determine 
which reports are duplicates of pre-existing bug reports in 
Firefox.  They [16] found that when adding execution 
information as an additional factor to the bug description, 
they can increase duplicate BR detection from 43-72% to 
67-93%.  Their results indicate that relying on the text 
alone of BRs may not be adequate for their predictive 
models.  
 

VIII. CONCLUSION7 
BTSs may contain SBRs that are mislabeled by bug 

reporters as NSBRs.  If the security bugs associated with 
the SBRs escape into the field, then the software can be 
exploited by attackers.  Security engineers may inspect 
each single NSBR in a BTS to identify SBRs; however, 
manually inspecting (often thousands of) NSBRs in a BTS 
is time-consuming and often infeasible, or not even 
conducted in practice. To address this issue, we propose a 
novel approach that mines the natural-language text of BRs 
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and constructs a statistical model for predicting which BRs 
are SBRs.   Our approach identified a high percentage 
(78%) of SBRs mislabeled as NSBRs by bug reporters for 
a large Cisco software system.  To increase the accuracy of 
our model, software engineers should retrain the model 
when there are new SBRs being verified by security 
engineers.  But the trained model is not recommended to be 
applied to software systems in which the SBRs describe 
different types of security bugs than those that were used to 
train the model.  In summary, our approach effectively 
automates the identification of SBRs that would otherwise 
require substantial efforts by security engineers to 
manually assess each BR in a BTS to determine which BRs 
are SBRs. 
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