¥

Mutually Enhancing Test Generation
and Specification Inference

Tao Xie David Notkin

Department of Computer Science & Engineering
University of Washington

August 15th, 2003
Foundations of Software Engineering, Microsoft Research |

i Synopsis

Spec-based test gneration
' |

(ikely) Tests
Specs g .
T \\\/

4
Dynamic spec inference

= Need specs for (many kinds of) test generation
= Need tests for dynamic spec inference

= We have applied feedback loop between these
approaches that
= aids in test generation (improving specs and helping in
producing oracles)
= aids in spec inference (improving the underlying test suitezs)

i Outline

- Background

= Feedback Loop between Test Generation
and Spec Inference

= Axiomatic Spec Inference and Test
Generation

» Algebraic Spec Inference and Test
Generation

s Conclusion

i Background — Test Generation

= White-Box Test Generation
= Jtest [ParaSoft] ...
+ Cover structural entities, e.g. statement, branch, path.

- Test oracle problem
= Rely on uncaught runtime exceptions

= Black-Box Test Generation
= Korat [Boyapati et al.02], AsmL [Grieskamp et al. 02], Jtest...
+ Use specs to guide test generation
+ Use specs as test oracles
- Require a priori specs

i Background — Dynamic Spec Inference

= Axiomatic specification inference
= Daikon [Ernst et al. 01]

= Algebraic specification inference
= [Henkel & Diwan 03]

= Protocol specification inference
= Strauss [Ammons et al. 02], Hastings [Whaley et al. 02]

Quality of analysis depends on quality of tests

i Background — Circular Dependency

Spec-based test ﬁeneration
Tests

Dynamic spec inference

= Circular dependency: test generation and spec inference

= Win-win feedback loop:
= Better spec <> better tests?

i Outline

= Background

= Feedback Loop between Test Generation
and Spec Inference

= Axiomatic Spec Inference and Test
Generation

» Algebraic Spec Inference and Test
Generation

s Conclusion

i Feedback Loop

Spec-based test gneration

(ikely)

Specs g

4
Dynamic spec inference

= Inferred Specs - Test Generatio
= Reduce the scope of analysis

\\\/

Tests

Lack of Specs
Problem

Insufficient
= Generated Tests = Spec Inference Test Problem

= Verify/refine the inferred specs

= Spec-Violating Tests - Test Selecti@
Problem

= Inspection and test augmentation

Feedback Loop Framework

I

[|
! A::;gigga”y Automatically JJ
The existin gene generated

_ test input test i
test suite \ﬁ Test \esyuls\ Test
Selection « Generation
Program Selected J
% Likely
specs
———
Trace Spec

i Outline

= Background
= Feedback Loop between Test Generation

= Axiomatic Spec Inference and Test Generation

>and Spec Inference

= Algebraic Spec Inference and Test Generation
= Conclusion

10

Feedback Loop between Axiomatic
Spec Inference and Test Generation
‘_L [ASE 03]

= [race collection (Daikon Java front-end)
= Spec inference (Daikon)

= [est generation (Jtest)

s [est selection

s |[terations

11

Trace Collection &
i Axiomatic Spec Inference

= [race collection
= Method entry point: args, obj fields

= Method exit point: return, updated args, obj
fields

= Spec inference

= Look for patterns and relationships among
values, e.g9. z<ee<z<oy/azr—o>

= Preconditions, postconditions, and class
Invariants

12

i Axiomatic Spec-Based Test Generation

= Black-box test generation based on Design by
Contract (DbC) comments (Jtest)

= Generates and executes test inputs
= Ex: fora 11-method uniqueBoundedStack class with 47 LOC

Call length 1: 14 tests (63% statement cov.)
Call length 2: 96 tests (86% statement cov.)
Call length 3: 1745 tests (86% statement cov.)

= Problem suppression for inputs violating the
preconditions

= Both preconditions and postconditions have impacts on
test generation
13

Test Generation Issue:
Over-Constrained Preconditions

= T0o0 restrictive preconditions may leave (maybe
important) legal inputs untested

= Solution: precondition guard removal

= New problem: allow illegal inputs

= But only report postcondition-violating or exception-
throwing illegal inputs

= Alternatives: precondition guard relaxation?

14

Test Selection

= Select tests violating at least one inferred
postcondition.

= |Inspect them:
= lllegal inputs:
= Adding preconditions or defensive programming
= |legal inputs:
= Fault exposure: bug fixing and regression test suite augmentation

= Normal, but new feature exercising: regression test suite
augmentation

= Complementary technique: Select tests exercising
at least one new structural entity. 15

Specification Violation - Example

public class uniqueBoundedStack ({
private int[] elems;
private int numberOfElements;

public int top() {
if (numberOfElements < 1) {
System.out.println ("Empty Stack");
return -1;
} else {
return elems[numberOfElements-1];

top: Qpost: [(Sresult == -1) == (this.numberOfElements == 0)]
is violated by input:
uniqueBoundedStack THIS
THIS.push (-1);

int RETVAL = THIS.top ()

new uniqueBoundedStack () ;

i Iterations

= |terates until reaching a fixed point (no violations)

= |In the next iteration, spec inference is based on:

= the existing test suite augmented by
= new violating tests
= all generated tests

17

Experiment — Subject Programs

Programs

UB-Stack (JUnit)
UB-Stack (JAX)

RatPoly-1
RatPoly-2
RatPolyStack-1
RatPolyStack-2
BinaryHeap
BinarySearchTree

DisjSets

QueueAr
StackAr
StackLi

#Public
Methods

11
11

13
13
13
12
10
16

o 0 QA

#LOC

47
47

161
191
48
40
31
S0

11
27
20
21

Jtest method call length: 2

#Manual-tests #Jtest-tests

8
15

24
24
11
11

96
96

223
227
128
90
166
147

24
120
133

99

18

Experiment — Results

With Preconds: basic tech W/O Preconds: precond removal tech
#SelT: #Selected tests #FRT: #Fault-revealing tests

Iteration 1 Iteration 2 Iteration 3
With Preconds | W/O Preconds | With Preconds | W/O Preconds | With Preconds | W/O Preconds
Programs #SelT |#FRT | #SelT |#FRT | #SelT| #FRT | #SelT| #FRT | #SelT [#FRT | #SelT [#FRT
UBS (JUnit) 1 15 5 2 6 1 1
UBS (JAX) 3 25 9 4
RatPoly-1 2 2 1 1
RatPoly-2 1 1 1 1 1 1
RatPolyStack-1 12 8 5 2 |
RatPolyStack-2 1 10 7 2
Median of #FRT/ #SelT 20% 68% 0% 17% 0%

o #Selected tests are not too large (affordable to inspect)

o #Selected tests have high probability of exposing a fault or indicating a
necessary precondition

A couple of iterations are good enough 19

i Outline

= Background

= Feedback Loop between Test Generation
and Spec Inference

= Axiomatic Spec Inference and Test
Generation

j> » Algebraic Spec Inference and Test
Generation

s Conclusion

20

Feedback Loop between Algebraic
i Spec Inference and Test Generation

= [race collection
= Spec inference
= [est generation
s [est selection

s |[terations

21

Trace Collection

= Object = data + operations
Arguments Return

\ L,

Entry object Exit object

state \s:tate

= [race data:
sMethod entry point: args, entry object state

sMethod exit point: return, exit object state N

i Object State Collection - Challenges

= Simply outputting (all) object field values
doesn’'t work

= Which object fields of ancestor classes are
relevant?

= Which object fields of the current class are
relevant?

= How deep shall we track referencing object
fields?

23

Object State Collection - Solution

= We developed a tracing front-end based on BCEL

= Require a pre-defined “equals” method
= Instrument “this.equals(this)” at public method entry and exit
points.
= Collect the object field values accessed within
“this.equals(this)”.
= Sort these object field values by their field names and treat
non-null reference field values as “Non-null”.

1389 (of 1745) Jtest-tests produce 12713 method
executions, but only 63 distinct entry object states/args.

Object State Collection - Example

public class uniqueBoundedStack { -stack =new uniqueBoundedStack()
private int[] elems; elems

private int numberOfElements;
public uniqueBoundedStack() {
numberOfElements = 0;

max = 2;
elems = new int[max]; numberOfElements=0
} stack.push(3); stack.push(4); stack.pop();
} elems
public boolean equals(uniqueBoundedStack s) { 3 4

if (s.maxSize() I= max)

return false;
if (s.getNumberOfElements() != numberOfElements)

return false;
int [] sElems = s.getArray(); Exit state: (this.euqals(this))
for (int j=0; j<numberOfElements; j++) { elems = Non-null

if (elems]j] = sElems]j])

return false; elems[0] = 3

} max = 2
return true;

}

numberOfElements=1

numberOfElements = 1

i Algebraic Spec Inference

= Compose method call pair from method executions

= Method executions of foo7 and foo2 are composed as
foo2(foo1(S, arg1), arg2),

« if foo1.exit_state == foo2.entry state

= Look for equality patterns among args, return, entry
state, exit state of either method in a pair
= Based on axiom templates

26

Algebraic Spec Inference —
Axiom Templates - I

= Joo2(foo1(S, arg1), arg2) = const
= ISEmpty(push(Stack, element)) == false
s foo2(foo1(S, arg1), arg2) = arg1 or arg2
= ftop (push(Stack, element)) == element
s foo2(foo1(S, arg1), arg2) = foo1(S, arg1)
= equals (pop(uniqueBoundedStack()), uniqueBoundedStack())
s foo2(foo1(S, arg1), arg2) =S
= equals (pop (push (Stack, element)), S)
s foo2(foo1(S, arg1), arg2) = foo1(foo2(S, arg2), arg1)

= equals (push(push(Stack, element1), element2) ,
push(push(Stack, element2), element1)

= foo1(S, arg1) = const
= maxSize(Stack) ==
= foo1(S, arg1) =S
= equals (print(Stack), Stack) 27

Algebraic Spec Inference —
Axiom Templates - II

s Conditional axioms

» foo2(foo1(S, arg1), arg2) = ((arg1 == arg2)? RHS true :

RHS false)

« foo2(foo1(S, arg1), arg2) = ((arg1 I= arg2)? RHS true :
RHS false)

» foo2(foo1(S, arg1), arg2) = ((foo3(S))? RHS true :
RHS false)

= Differencing axioms
= foo2(foo1(S, arg1), arg2) = RHS + const

28

Algebraic Spec-Based Test Generation

arameter generation

= Collect non-referencing parameter values exercised by
existing tests

= Collect method call traces from test class to handle
referencing parameters

Obiject state setup
= Collect object states exercised by existing tests

Method sequence generation
= LHS and RHS of Inferred axioms

Test code generation based on the Danish tool
[Hughes & Stotts 96] 29

i Test Selection

s [est selection

= Axiom-violating tests
=« LHS = RHS for axiom LHS = RHS

= Minimum tests contributing to inference of a new
axiom

= Complementary technique: Select tests
exercising at least one new structural entity.

30

Iterations

lterations stop until reaching fixed point or

terminating conditions are satisfied, e.g. size =
max_size

Not all possible method pairs can be composed
= In the first iteration, dummy axioms are generated
Grow parameters

= When the return of a method is the same type as a
parameter

Grow object states

= Construct object state tree, only new object states are
added to the tree

31

|
l uniqueBoundedStack()

* Object State Tree Growth - Example

pop()

pop()

1389 Jtest-tests produces
12713 method executions
= 63 distinct entry object states/args

= 7/ distinct object states!! 32

i Outline

= Background

= Feedback Loop between Test Generation
and Spec Inference

= Axiomatic Spec Inference and Test
Generation

» Algebraic Spec Inference and Test Generation

)m Conclusion

33

i Conclusion
Sgec-balsed test generation
(ikely) >

Specs g

4 | R
Dynamic spec inference
= Feedback loop between test generation and spec
inference
= Axiomatic specs (integration of Daikon and Jtest)
= Algebraic specs

= Aids Iin test generation (improving specs and helping
in producing oracles)

= Aids in spec inference (improving the underlying test
suites) 34

Tests

Questions?

+

35

i Object State Collection - Complications

= "equals” may call other public methods
= Keep track of call depth

= Object field’s object fields might be accessed

= Tracked objects include “this”, referencing object fields
transitively accessed from “this”.

= Collect an object field value if its object is tracked

= More

= Array element’s order doesn’t matter — access count
heuristics

= “equals(C obj)” method contains shortcut (if this == obj
return true) — replace “return true” with nop

36

