
1

Mutually Enhancing Test Generation
and Specification Inference

Tao Xie David Notkin

Department of Computer Science & Engineering
University of Washington

August 15th, 2003
Foundations of Software Engineering, Microsoft Research

2

Synopsis

Need specs for (many kinds of) test generation
Need tests for dynamic spec inference
We have applied feedback loop between these
approaches that

aids in test generation (improving specs and helping in
producing oracles)
aids in spec inference (improving the underlying test suites)

Dynamic spec inference

Spec-based test generation

(likely)
Specs

Tests

3

Outline

Background
Feedback Loop between Test Generation
and Spec Inference

Axiomatic Spec Inference and Test
Generation
Algebraic Spec Inference and Test
Generation

Conclusion

4

Background – Test Generation

White-Box Test Generation
Jtest [ParaSoft] …

+ Cover structural entities, e.g. statement, branch, path.
- Test oracle problem

Rely on uncaught runtime exceptions

Black-Box Test Generation
Korat [Boyapati et al.02], AsmL [Grieskamp et al. 02], Jtest…

+ Use specs to guide test generation
+ Use specs as test oracles
- Require a priori specs

5

Background – Dynamic Spec Inference

Axiomatic specification inference
Daikon [Ernst et al. 01]

Algebraic specification inference
[Henkel & Diwan 03]

Protocol specification inference
Strauss [Ammons et al. 02], Hastings [Whaley et al. 02]

Quality of analysis depends on quality of tests

6

Background – Circular Dependency

Circular dependency: test generation and spec inference
Win-win feedback loop:

Better spec better tests?

Dynamic spec inference

Spec-based test generation

(likely)
Specs

Tests

7

Outline

Background
Feedback Loop between Test Generation
and Spec Inference

Axiomatic Spec Inference and Test
Generation
Algebraic Spec Inference and Test
Generation

Conclusion

8

Feedback Loop

Inferred Specs Test Generation
Reduce the scope of analysis

Dynamic spec inference

Spec-based test generation

(likely)
Specs

Tests

Generated Tests Spec Inference
Verify/refine the inferred specs

Spec-Violating Tests Test Selection
Inspection and test augmentation

Lack of Specs
Problem

Test Oracle
Problem

Insufficient
Test Problem

9

Feedback Loop Framework

Likely
specs

The existing
test suite

Trace Data trace Spec
Inference

Test
Generation

Automatically
generated
test inputs

Selected
tests

Test
Selection

Collection

Automatically
generated
test inputs

Program

10

Outline

Background
Feedback Loop between Test Generation
and Spec Inference

Axiomatic Spec Inference and Test Generation
Algebraic Spec Inference and Test Generation

Conclusion

11

Feedback Loop between Axiomatic
Spec Inference and Test Generation

Trace collection (Daikon Java front-end)

Spec inference (Daikon)

Test generation (Jtest)

Test selection

Iterations

[ASE 03]

12

Trace Collection &
Axiomatic Spec Inference

Trace collection
Method entry point: args, obj fields
Method exit point: return, updated args, obj
fields

Spec inference
Look for patterns and relationships among
values, e.g. x<a,a<x<b,y/ax+b.
Preconditions, postconditions, and class
invariants

13

Axiomatic Spec-Based Test Generation

Black-box test generation based on Design by
Contract (DbC) comments (Jtest)

Generates and executes test inputs
Ex: for a 11-method uniqueBoundedStack class with 47 LOC

Call length 1: 14 tests (63% statement cov.)
Call length 2: 96 tests (86% statement cov.)
Call length 3: 1745 tests (86% statement cov.)

Problem suppression for inputs violating the
preconditions

Both preconditions and postconditions have impacts on
test generation

14

Test Generation Issue:
Over-Constrained Preconditions

Too restrictive preconditions may leave (maybe
important) legal inputs untested
Solution: precondition guard removal

New problem: allow illegal inputs
But only report postcondition-violating or exception-
throwing illegal inputs

Alternatives: precondition guard relaxation?

15

Test Selection

Select tests violating at least one inferred
postcondition.
Inspect them:

illegal inputs:
Adding preconditions or defensive programming

legal inputs:
Fault exposure: bug fixing and regression test suite augmentation
Normal, but new feature exercising: regression test suite
augmentation

Complementary technique: Select tests exercising
at least one new structural entity.

Specification Violation - Example
public class uniqueBoundedStack {
private int[] elems;
private int numberOfElements;
……

public int top(){
if (numberOfElements < 1) {
System.out.println("Empty Stack");
return -1;

} else {
return elems[numberOfElements-1];

}
}

top: @post: [($result == -1) == (this.numberOfElements == 0)]
is violated by input:
uniqueBoundedStack THIS = new uniqueBoundedStack ();
THIS.push (-1);
int RETVAL = THIS.top ();

17

Iterations

Iterates until reaching a fixed point (no violations)

In the next iteration, spec inference is based on:
the existing test suite augmented by

new violating tests
all generated tests

18

Experiment – Subject Programs

Programs #Public
Methods

#LOC

UB-Stack (JUnit) 11 47 8 96
UB-Stack (JAX) 11 47 15 96

RatPoly-1 13 161 24 223
RatPoly-2 13 191 24 227

RatPolyStack-1 13 48 11 128
RatPolyStack-2 12 40 11 90

BinaryHeap 10 31 - 166
BinarySearchTree 16 50 - 147

DisjSets 4 11 - 24
QueueAr 7 27 - 120
StackAr 8 20 - 133
StackLi 9 21 - 99

#Jtest-tests#Manual-tests

Jtest method call length: 2

19

Experiment – Results

Programs #SelT #FRT #SelT #FRT #SelT #FRT #SelT #FRT #SelT #FRT #SelT #FRT

With Preconds W/O Preconds With Preconds W/O Preconds With Preconds W/O Preconds
Iteration 1 Iteration 2 Iteration 3

UBS (JUnit) 1 15 5 2 6 1 1

UBS (JAX) 3 25 9 4

RatPoly-1 2 2 1 1

RatPoly-2 1 1 1 1 1 1

RatPolyStack-1 12 8 5 2 1

RatPolyStack-2 1 10 7 2

……

20% 68% 0% 17% _ 0%Median of #FRT/ #SelT

#SelT: #Selected tests #FRT: #Fault-revealing tests
With Preconds: basic tech W/O Preconds: precond removal tech

• #Selected tests are not too large (affordable to inspect)

• #Selected tests have high probability of exposing a fault or indicating a
necessary precondition

• A couple of iterations are good enough

20

Outline

Background
Feedback Loop between Test Generation
and Spec Inference

Axiomatic Spec Inference and Test
Generation
Algebraic Spec Inference and Test
Generation

Conclusion

21

Feedback Loop between Algebraic
Spec Inference and Test Generation

Trace collection
Spec inference
Test generation
Test selection

Iterations

22

Trace Collection

Object = data + operations

Method
Execution

Entry object
state

Exit object
state

Arguments Return

Trace data:
Method entry point: args, entry object state
Method exit point: return, exit object state

23

Simply outputting (all) object field values
doesn’t work

Which object fields of ancestor classes are
relevant?
Which object fields of the current class are
relevant?
How deep shall we track referencing object
fields?

Object State Collection - Challenges

24

We developed a tracing front-end based on BCEL
Require a pre-defined “equals” method

Instrument “this.equals(this)” at public method entry and exit
points.
Collect the object field values accessed within
“this.equals(this)”.
Sort these object field values by their field names and treat
non-null reference field values as “Non-null”.

Object State Collection - Solution

1389 (of 1745) Jtest-tests produce 12713 method
executions, but only 63 distinct entry object states/args.

Object State Collection - Example

•stack.push(3); stack.push(4); stack.pop();

elems

3 4

numberOfElements=1

public class uniqueBoundedStack {
private int[] elems;
private int numberOfElements;
public uniqueBoundedStack() {

numberOfElements = 0;
max = 2;
elems = new int[max];

}
…

}

elems

numberOfElements=0

•stack =new uniqueBoundedStack()

Exit state: (this.euqals(this))

elems = Non-null

elems[0] = 3

max = 2

numberOfElements = 1

public boolean equals(uniqueBoundedStack s) {
if (s.maxSize() != max)

return false;
if (s.getNumberOfElements() != numberOfElements)

return false;
int [] sElems = s.getArray();
for (int j=0; j<numberOfElements; j++) {

if (elems[j] != sElems[j])
return false;

}
return true;

}

26

Compose method call pair from method executions
Method executions of foo1 and foo2 are composed as
foo2(foo1(S, arg1), arg2),

if foo1.exit_state == foo2.entry_state

Look for equality patterns among args, return, entry
state, exit state of either method in a pair

Based on axiom templates

Algebraic Spec Inference

27

foo2(foo1(S, arg1), arg2) = const
isEmpty(push(Stack, element)) == false

foo2(foo1(S, arg1), arg2) = arg1 or arg2
top (push(Stack, element)) == element

foo2(foo1(S, arg1), arg2) = foo1(S, arg1)
equals (pop(uniqueBoundedStack()), uniqueBoundedStack())

foo2(foo1(S, arg1), arg2) = S
equals (pop (push (Stack, element)), S)

foo2(foo1(S, arg1), arg2) = foo1(foo2(S, arg2), arg1)
equals (push(push(Stack, element1), element2) ,

push(push(Stack, element2), element1)
foo1(S, arg1) = const

maxSize(Stack) == 2
foo1(S, arg1) = S

equals (print(Stack), Stack)

Algebraic Spec Inference –
Axiom Templates - I

28

Conditional axioms
foo2(foo1(S, arg1), arg2) = ((arg1 == arg2)? RHS_true :
RHS_false)
foo2(foo1(S, arg1), arg2) = ((arg1 != arg2)? RHS_true :
RHS_false)
foo2(foo1(S, arg1), arg2) = ((foo3(S))? RHS_true :
RHS_false)

Differencing axioms
foo2(foo1(S, arg1), arg2) = RHS + const

Algebraic Spec Inference –
Axiom Templates - II

29

Parameter generation
Collect non-referencing parameter values exercised by
existing tests
Collect method call traces from test class to handle
referencing parameters

Object state setup
Collect object states exercised by existing tests

Method sequence generation
LHS and RHS of Inferred axioms

Test code generation based on the Danish tool
[Hughes & Stotts 96]

Algebraic Spec-Based Test Generation

30

Test selection
Axiom-violating tests

LHS != RHS for axiom LHS = RHS
Minimum tests contributing to inference of a new
axiom

Complementary technique: Select tests
exercising at least one new structural entity.

Test Selection

31

Iterations stop until reaching fixed point or
terminating conditions are satisfied, e.g. size =
max_size
Not all possible method pairs can be composed

In the first iteration, dummy axioms are generated
Grow parameters

When the return of a method is the same type as a
parameter

Grow object states
Construct object state tree, only new object states are
added to the tree

Iterations

32

Object State Tree Growth - Example

push(7)
pop()

uniqueBoundedStack()

push(0)

push(1)
pop()

pop()

1389 Jtest-tests produces
12713 method executions
63 distinct entry object states/args
7 distinct object states!!

33

Outline

Background
Feedback Loop between Test Generation
and Spec Inference

Axiomatic Spec Inference and Test
Generation
Algebraic Spec Inference and Test Generation

Conclusion

34

Conclusion

Feedback loop between test generation and spec
inference

Axiomatic specs (integration of Daikon and Jtest)
Algebraic specs

Aids in test generation (improving specs and helping
in producing oracles)
Aids in spec inference (improving the underlying test
suites)

Dynamic spec inference

Spec-based test generation

(likely)
Specs

Tests

35

Questions?

36

“equals” may call other public methods
Keep track of call depth

Object field’s object fields might be accessed
Tracked objects include “this”, referencing object fields
transitively accessed from “this”.
Collect an object field value if its object is tracked

More
Array element’s order doesn’t matter – access count
heuristics
“equals(C obj)” method contains shortcut (if this == obj
return true) – replace “return true” with nop

Object State Collection - Complications

