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Abstract

Fault-based testing is an approach where the designed
test data is used to demonstrate the absence of a set of pre-
specified faults, typically being frequently occurring faults.
Mutation testing is a fault-based testing technique used to
inject faults into an existing program, i.e., a variation ofthe
original program and see if the test suite is sensitive enough
to detect common faults. Aspect-Oriented Programming
(AOP) provides new modularization of software systems by
encapsulating crosscutting concerns. AspectJ, a language
designed to support AOP uses abstractions like pointcuts,
advice, and aspects to achieve AOP’s primary functionality.

Developers tend to write pointcut expressions with in-
correct strength, thereby selecting additional events than
intended to or leaving out necessary events. This incorrect
strength causes aspects, the set of crosscutting concerns,to
fail. Hence there is a need to test the pointcuts for their
strength. Mutation testing of pointcuts includes two steps:
creating effective mutants (variations) of a pointcut expres-
sion and testing these mutants using the designed test data.
The number of mutants for a pointcut expression is usually
large due to the usage of wildcards. It is tedious to manually
identify effective mutants that are of appropriate strength
and resemble closely the original pointcut expression. Our
framework automatically generates mutants for a pointcut
expression and identifies mutants that resemble closely the
original expression. Then the developers could use the test
data for the woven classes against these mutants to perform
mutation testing.

1 Introduction

Aspect-Oriented Programming (AOP) [8] attempts to aid
programmers in the separation of crosscutting concerns.
AspectJ [7, 10], an AOP language uses abstractions like
join points, pointcuts, advice, and aspects to aid AOP. Join
points are well-defined locations like method calls and con-
structor invocations within the primary code. Pointcuts

are predicates that match a join point. Pointcuts select a
join point using signatures that include various designa-
tors, wildcards, and their combinations with logical opera-
tors. The strength of the pattern in the signature determines
which join points are selected. If the pattern is too strong,
some necessary join points are not selected. If the pattern
is too weak, additional join points that should be ignored
are selected. Hence there is a need to test the strength of a
pointcut.

The fundamental premise of mutation testing [4] as
stated by Geist et al. [9] is that, in practice, if the software
contains a fault, there will usually be a set of mutants that
can only be killed by a test that also detects that fault. In
other words, the ability to detect small, minor faults such
as mutants implies the ability to detect complex faults. Mu-
tation testing measures how good our tests are by inserting
faults into the program under test. Each fault results in a
new program (called a mutant) that is slightly different from
the original program. The idea is that the tests are adequate
if they detect all mutants.

Mutation testing has many costs, including the possible
generation of vast numbers of mutants. Another cost of mu-
tation testing is the detection of equivalent mutants [12].
Equivalent mutants, by definition, are unkillable because
the mutants are semantically equivalent to the original pro-
gram. Detecting such mutants in software is generally in-
tractable [5] and historically has been done by hand [12].

Performing mutation testing to test the strength of a
pointcut requires generation of effective mutants, i.e., vari-
ations of the pointcut expression that resemble closely the
original pointcut expression. In this paper, we propose a
framework that serves the following purposes: generating
relevant mutants and detecting equivalent mutants. Rele-
vant mutants are those that are relevant to the original point-
cut and resemble closely the original pointcut without be-
ing arbitrary strings. Equivalent mutants are those that are
pointcut mutants that match the same set of join points as
the original pointcut. Finally the framework reduces the to-
tal number of mutants from the initial large number of gen-
erated mutants.



Our framework identifies join points that are matched by
a pointcut expression, generates mutants of this pointcut ex-
pression, and identifies join points that are matched by these
mutants. The mutants and their matched join points are
then compared with those of the original pointcut and classi-
fied as different types of mutants for selection. When more
than one mutant has the same set of join points, it is neces-
sary to select the best mutant for that particular set of join
points. The best one is selected using a simple heuristic (ex-
plained in Section 3). The classified mutants are ranked us-
ing a string similarity measure to help the developer choose
a mutant that resembles closely original one. The devel-
oper could use designed test data (for the woven classes
produced by aspect weaving) along with these mutants to
perform mutation testing of pointcuts.

The rest of the paper is organized as follows. Section 2
presents an overview of the pointcuts and potential prob-
lems with generation of mutants for pointcuts. Section 3
illustrates our framework. Section 4 describes the imple-
mentation of the framework. Section 5 provides prelimi-
nary results of applying the framework on selected subjects.
Section 6 discusses issues of the framework. Section 7 dis-
cusses related work and Section 8 concludes the paper.

2 Pointcuts in AspectJ

This section presents an overview of pointcuts in AspectJ
and discusses potential problems of generating mutants for
mutation testing of pointcuts. Pointcuts are predicates that
match join points in the execution of a program. Pointcuts
are modeled using expressions that identify the type, scope,
or context of the events.

Figure 1 provides an example of pointcuts with the join
point candidates, which are the probable join points being
identified. Pointcut 1 is used to match read accesses of
of classBlocks ’ fields whose names start with “current ”
and whose type can be any. If the intention of the point-
cut is to track current “X” and “Y” positions, then this ex-
pression would match additional join points likeget(int

Blocks.currentBlock) . Pointcut2 matches calls of
classBlocks ’ methods whose names start with “typeTo ”,
whose argument isint , and whose return can be of any
type. If the intention of the pointcut is to match all
type conversion methods, it would leave out the method
typeToString(String) . Hence it is necessary to test
pointcuts for their strength.

Mutation testing of pointcuts requires generation of ef-
fective mutants for a pointcut. For example, consider the
mutantget( * Blocks. * ) . This mutant is too weak since
it matches all variables belonging to classBlocks . Due to
the usage of wildcards in pointcut expressions, the number
of mutants that can be formed is very large. But it is nec-
essary to generate mutants that are of appropriate strengths

Pointcut 1
pointcut xyposition() : get( * Blocks.current * );

Matched join points
get(static int Blocks.currentXPos);
get(static int Blocks.currentYPos);
get(static int Blocks.currentBlock);

Pointcut 2
pointcut Types() : call( * Blocks.typeTo * (int));

Matched join points
call(Color Blocks.typeToColor(int));
call(Image Blocks.typeToImage(int));

Unmatched join point
call(String Blocks.typeToString(String));

Figure 1. Sample pointcuts and join point
candidates

and resemble closely the original expression in order to per-
form effective mutation testing on pointcuts.

Our preliminary application of the framework on Tetris
(an AspectJ Benchmark [2]) produced 1455 mutants for a
pointcut expression. Performing mutation testing on such a
large number of mutants is practically not efficient. Devel-
opers would prefer to select those expressions that resemble
closely the original one and use them for the mutation test-
ing. But it is tedious to manually identify such mutants.

3 Approach

To reduce human efforts in mutation testing of pointcuts,
we develop a framework to generate only relevant mutants
rather than arbitrary strings. The relevant mutants are se-
lected from the initial large set of mutants by classifying
them and also by detecting equivalent mutants. These rele-
vant mutants resemble closely the original pointcut expres-
sion.Our framework is based on a candidate fault model
for pointcuts proposed by Alexander et al. [11] as well
as AJTE [18], an existing unit-testing framework without
weaving. Figure 2 provides an overview of our framework.
In particular, the source files (aspects and target classes un-
der test) are given as input to three components in the frame-
work: the candidate generator, pointcut parser, and AJTE.

AJTE outputs a test class that consists of methods for
testing the join point candidates generated from the candi-
date generator. In particular, AJTE provides APIs for creat-
ing join point objects, which are in turn used as arguments
to pointcut-checking methods. TheTestJoinPoint class
of AJTE is the class for processing a join point as an ob-
ject. TheTestPointcut class is the class for processing a
pointcut expression as an object.

Our framework automatically identifies likely join points
from the Java class file. These likely join points form the
join point candidates used to classify the pointcuts. Once
the join point candidates are identified, they are fed as input
to theTestJoinPoint factory class of AJTE to produce



Figure 2. Overview of the framework

join point objects. These join point objects are then fed as
arguments to theTestPointcut factory class of AJTE to
verify whether the join point objects match the pointcut ex-
pression. This step is performed on all join point candidates.

The second set of input includes the pointcut expressions
from the AspectJ source file. We parse the AspectJ source
code to identify the pointcut expressions based on the key-
word pointcut used to define pointcuts. For primitive
and anonymous pointcuts where keywords are not used, the
pointcuts are identified by the presence of designator types.

The mutation engine forms pointcut mutants based on
two mutation operators (pointcut strengtheningandpointcut
weakening) in a candidate fault model [11] for pointcuts.
The idea behind the two mutation operators is to reduce or
increase the number of join points that a pointcut matches,
by creating mutants of the original pointcut. Initially the
mutation engine forms mutants for different naming parts
of the original pointcut, and the matched and unmatched
join point candidates. The pointcut mutants are formed by
performing all possible combinations of all mutants of the
naming parts.

We develop two approaches to form mutants. First, the
naming parts are considered as a whole and positions of
wildcards within the naming parts are modified to form mu-
tants. Second, the naming parts are split into portions and
the wildcards are substituted for each portion. In this latter
approach, positions of wildcards are varied to form different
combinations of the split portions and wildcards.

In the first approach, there are three techniques. First, a
wildcard is inserted at the end of the naming part. Then the
wildcard is moved from the right end to the left end. As
the wildcard is moved towards left, it replaces each char-
acter in the naming part. For example, consider the join
point get(static int Blocks.curretnXPos) . The
mutants formed for the naming partBlocks areBlocks * ,

Block * , Bloc * , Blo * , Bl * , andB* . Second, the wildcard
is inserted at the beginning of the naming part. Then the
wildcard is moved from the left end to the right end. As
the wildcard is moved right, it replaces each character in
the naming part. The mutants formed for the naming part
Blocks by this technique are* Blocks , * locks , * ocks ,
* cks , * ks , and* s . Third, the mutants are formed by plac-
ing the wildcard in between the beginning and end of the
naming part and varying the position of the wildcard. Al-
though this technique does not enumerate all possible mu-
tants with a wildcard in the middle (doing so would cause
combinatorial explosion), mutants generated by this tech-
nique favors putting the wildcard around or in the middle
of the naming part, complementing the first two techniques.
The mutants formed forBlocks in this fashion areB* s ,
Bl * s , andBl * ks .

The second approach is to split the naming part into
portions so that only the first character in each por-
tion can be in uppercase (except for the first portion
where all characters could be in lowercase)1. The ap-
proach then substitutes each portion with a wildcard.
The portion that the wildcard replaces is varied each
time to generate a different mutant; multiple wildcards
can appear in the resulting mutants. For example, con-
sider the naming parttypeToString of the join point
get(String Blocks.typeToString(String)) . The
typeToString method is split into three portions:type ,
To, andString . The mutants formed fortypeToString

using the second approach aretypeTo * , type * String ,
* ToString , * To* , type * , and* String .

In the case of naming parts like modifiers and re-
turn types, mutants are formed only by just replacing
an entire modifier or return type with the wildcard. In
the case of arguments, AspectJ allows a special type of
wildcard “..”. The wildcard “..” denotes any number of
any type of arguments. Similar to forming mutants for
other naming parts with wildcards, we form mutants for
arguments with “..” . For example, consider the arguments
“ (int,float,String) ”. The mutants formed for this
argument will be(int,float,..) , (int,..,String) ,
(..,float,String) , (..,float,..) , (int,..) ,
(..,String) , and(..) .

Pointcut mutants are also generated from the original
pointcut in a similar way as from the join point candidates.
The two approaches for generating pointcut mutants from
join point candidates are applied to the naming parts of the
original pointcut. Unlike join point candidates, the original
pointcut might include wildcards. All naming parts of the
original pointcut except for wildcards are changed to form
mutants. It is possible that the original pointcut includes

1Based on common Java naming conventions, each portion wouldrep-
resent a meaningful word and pointcuts written by developers are usually
formed by replacing these words with wildcards.



only wildcards. In such a case, pointcut mutants are formed
only from the join point candidates.

The mutants and the original pointcut expression are ver-
ified using the test class from AJTE. Then the mutants, orig-
inal pointcut, and their respective join points are fed as input
to the mutant classifier in order to classify the mutants. Mu-
tants with the same set of join points as that of the original
expression are classified asneutral. The neutral mutants
here are equivalent mutants. If the set of join points of the
original expression is a subset of the set of join points of the
mutant, then the mutant is classified asweak; otherwise, it
is classified asstrong. A weak mutant matches more events
compared to the original pointcut expression and a strong
mutant does not match all events matched by the original
pointcut expression.

Under each category, there maybe more than a mutant
with the same set of join points, then the mutant with the
longest expression (in string length) is chosen as the best
one. The longest expression would consist of a larger num-
ber of characters and more characters indicate that the point-
cut is closer to the join point. A smaller number of char-
acters indicate that the pointcut is generalized and is more
susceptible to fragile pointcut problems [14]. Hence we se-
lect the longest pointcut to avoid potential fragile pointcut
problems. Our framework excludes wildcards like “*” and
“..”, supported by AspectJ, when calculating the length of
each expression for finding out the longest expression, be-
cause including these wildcards could produce longer ex-
pressions, which however are more general.

The distance measurer ranks the mutants in each cate-
gory based on the Monge Elkan distance [13]. The distance
measure is an integer value that indicates the number of
transformations (i.e., insertions and deletions) that should
be performed on the original expression to transform it into
the mutant. Selecting a better match among a set of mutants
with the same join points and ranking these mutants finally
yield mutants that resemble closely the original pointcut ex-
pression. This mechanism also reduces the total number of
mutants that finally form the output. The developers could
use designed test data (for the woven classes) along with
these mutants to perform mutation testing of pointcuts.

4 Implementation

We have implemented the framework for AspectJ and
Java code using the Byte Code Engineering Library
(BCEL) [3], Java reflection APIs [15], and AJTE. The
current implementation of the framework supports an As-
pectJ compiler called ajc [6] Version 1.5 and Java 5 [16].
The main components of the framework include the AJTE,
pointcut generator, candidate generator, mutation engine,
mutant classifier, and distance measurer, as shown in Fig-
ure 2.

AJTE provides two classes:TestJoinPoint class for
processing a join point as an object andTestPointcut

class for processing a pointcut expression as an object. The
testPointcut method has both a pointcut expression ob-
ject and a join point object as the parameters. If the former
matches the latter, it returns true; otherwise, it returns false.
The framework feeds the pointcuts, the mutants, and the
join points to the two classes.

The pointcut parser parses the given AspectJ source code
to identify pointcut expressions. The generated pointcuts
are passed as input to the mutation engine to generate mu-
tants of this pointcut expression. The pointcut expression
also serves as input to the distance measurer to measure the
distance of the pointcut expression from its mutants.

The candidate generator receives the given Java class
files as input. This component uses the Java reflection
APIs [15] to generate join point candidates from the input
files. Then the framework feeds these joinpoint candidates
to theTestJoinPoint factory class to generate joinpoint
objects.

The mutation engine produces mutants only from mean-
ingful data obtained from within the Java code. For exam-
ple, to form mutants of an expression that involves a method
name, other method names from the code are used rather
than arbitrary strings. This technique allows filtering out
expressions with arbitrary strings that match no join point.

Each pointcut expression is checked against the join
point objects using theTestPointcut factory of AJTE to
identify the set of joinpoints (say Set A) that are matched by
the pointcut expression. Similarly each mutant of the point-
cut is checked to identify their set of join points (say Set B).
The two sets are then compared as follows: If Set A is equal
to Set B, then the mutant is classified asneutral. If Set A
is a subset of Set B, then the mutant is classified asweak
since the mutant matches more join points than the original
pointcut; otherwise, the mutant is classified asstrongsince
the mutant does not match all join points matched by the
original pointcut. If under any category, there are more than
one expression with the same set of join points, the longest
expression is chosen as the best match for that set of join
points. The classified mutants are then fed as input to the
distance measurer.

The distance measurer uses the Monge Elkan distance
measure as the measure to find the deviation of the mu-
tant from the pointcut expression. The distance denotes the
number of characters that need to be inserted, deleted, or
modified in the pointcut expression to transform it into the
mutant. The mutants under each category are then ranked
based on the calculated distance. The classification of the
mutants helps the developers to identify mutants with differ-
ent strengths and the ranking of the mutants helps to identify
mutants of the pointcut expression that resemble closely the
pointcut expression. If the developers wish to select only



Table 1. Preliminary Results
Pointcut : call(String Blocks.typeToString(int));
Mutant Type Mutant Joinpoints Distance

Strong None None None
Weak call(* Blocks.typeTo*(int,..)) call(public static String Blocks.typeToString(int)) 12

call(public static Color Blocks.typeToColor(int))
Weak call(* Blocks.t*(int,..)) call(public int[][] Blocks.turnBlock(int[][])) 15

call(public static String Blocks.typeToString(int))
call(public static Color Blocks.typeToColor(int))

Weak call(* Blocks.*(..)) call(public static String Blocks.typeToString(int)) 19
call(public int[][] Blocks.turnBlock(int[][]))

call(public void Blocks.deleteLine(int,int[][]))
call(public static int[][] Blocks.getBlock(int))

call(public static Color Blocks.typeToColor(int))
Neutral call(public static String Blocks.*typeToString(int,..)) call(public static String Blocks.typeToString(int)) 4

a few mutants from our output, the ranking would help in
choosing the best mutants with the shortest distances from
the original expression.

5 Preliminary Results

We have implemented the approach and performed pre-
liminary experiments on a few sample sets from an AspectJ
benchmark called Tetris [2]. Table 1 shows an example of
an original pointcut and its mutants. The mutants have been
classified as strong, neutral, and weak, and ranked using the
Monge Elkan similarity measure. For a pointcut expression
from the Tetris benchmark, our approach identified 1455
mutants. Classifying these mutants and selecting the best
match for mutants with the same set of join points reduced
the number to 9 weak mutants and 6 neutral mutants. Man-
ually identifying these mutants is tedious and the ranked list
along with their join point sets provided by our framework
helps the developers to identify quickly the mutants that re-
semble closely the original one.

6 Discussion

In our current implementation, the join points are formed
based on static analysis of the code and currently does not
support forming mutants in the presence of dynamic context
like cflow . The distance measure provided by the distance
measurer is the syntactical difference between the pointcut
expression and its mutant. But it is likely that pointcuts
that differ a lot syntactically may have similar sets of join
points. To address such cases, we displayed the mutants
along with their join point sets, which help the develop-
ers select pointcuts based on the set of join points they had
actually intended to. This technique helps select appropri-
ate mutants when the pointcut and mutants differ by a large

measure syntactically but still resemble closely in their sets
of join points. The current implementation supports gener-
ating mutants for performing mutation testing on pointcuts
in aspect-oriented programs. In future work, we plan to ex-
tend the framework to generate test data (for woven classes)
that could be used to kill these mutants.

7 Related Work

An approach developed by Mortensen and Alexan-
der [11] provides a set of mutation operators to find in-
correct strengths in pointcut patterns and thereby evaluate
the effectiveness of a test suite. Their approach does not
account for selection of effective mutants. Our approach
provides an automated framework to generate mutants and
select mutants that resemble closely the original expression;
the selected mutants could be used with a test suite to per-
form mutation testing.

Yamazaki et al. [18] present the AJTE framework for
unit testing aspects without weaving. This framework gen-
erates testing methods from an aspect definition so that test
cases can directly verify properties of aspects such as the ad-
vice behavior and pointcut matching. This framework pro-
vides only APIs to be used for testing pointcuts but it does
not help to generate mutants of a pointcut. Our framework
automatically generates mutants for a pointcut expression
that can be used in mutation testing.

Our previous work [1] presents an automated frame-
work that tests pointcuts in AspectJ programs with the
help of AJTE. This framework identifies joinpoints that are
matched by a pointcut expression and a set of boundary
joinpoints, which are events that are not matched by a point-
cut expression but are close to the matched joinpoints in
terms of their string names. The developers can inspect this
set of join points and verify the correctness of a pointcut.



This framework helps only to verify the correctness of a
pointcut and does not generate mutants of a pointcut. Our
framework helps generate efficient mutants that resemble
closely the original pointcut expression.

Xie and Zhao [17] present an automated tool that lever-
ages existing test-generation tools to generate test inputs for
the woven classes; these test inputs indirectly exercise the
aspects. Their tool can be combined with our framework to
form a complete mutation testing system for testing point-
cuts in aspect-oriented programs.

8 Conclusion

We have developed a framework that automatically gen-
erates mutants for a pointcut expression and identifies mu-
tants that resemble closely the original expression. This
framework generates only relevant mutants rather than arbi-
trary strings. It also classifies the mutants and detects equiv-
alent mutants. This framework eases developers’ efforts of
generating effective mutants and identifying equivalent mu-
tants. Our preliminary results show that the framework is
promising since manually identifying such mutants is te-
dious. Automatically generating the mutants and ranking
them help the developers save manual efforts in identifying
equivalent mutants and generating efficient mutants rather
than a potentially large number of mutants for a pointcut
expression.
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