
ACPT: A Tool for Modeling and Verifying Access Control Policies

JeeHyun Hwang1 Tao Xie1 Vincent Hu2 Mine Altunay3

1
Department of Computer Science, North Carolina State University, Raleigh

2
Computer Security Division, National Institute of Standards and Technology, Gaithersburg

3
Computing Division, Fermi National Laboratory, Batavia

jhwang4@ncsu.edu xie@csc.ncsu.edu vincent.hu@nist.gov maltunay@fnal.gov

Abstract

Access control mechanisms are a widely adopted tech-

nology for information security. Since access decisions (i.e.,

permit or deny) on requests are dependent on access control

policies, ensuring the correct modeling and implementation

of access control policies is crucial for adopting access con-

trol mechanisms. To address this issue, we develop a tool,

called ACPT (Access Control Policy Testing), that helps to

model and implement policies correctly during policy mod-

eling, implementation, and verification.

1 Introduction

Access control is one of the most fundamental and

widely used privacy and security mechanisms at both appli-

cation and network levels. Access control mechanisms con-

trol which principals such as users or processes have access

to which resources based on access control policies. Since

access decisions on requests are based on policies, miscon-

figurations or faults in policies result in consequences such

as disallowing an authorized user to access her resources.

Moreover, such faulty policies may lead to security vulner-

abilities (e.g., malicious users can access critical resources).

Correctly specifying and maintaining access control

policies is an important and yet challenging task due to two

main factors. First, a policy may consist of a large number

of rules, especially when being used to control access on

a large amount of distributed and sensitive information in

large-scale computing environments. Second, a policy can

become complex in order to meet various security and pri-

vacy requirements (such as legal issues) of policy authors.

To ensure the correctness of policy specifications, policy au-

thors must conduct rigorous policy verification and valida-

tion to ensure that the policy specifications truly encapsulate

the requirements of the policy authors.

To address this issue, we develop a tool, called ACPT

(Access Control Policy Testing), that assists policy au-

thors in implementing policies correctly during policy mod-

eling, implementation, and verification. Our previous

work [7, 9, 10] focuses on verifying access control poli-

cies (in XACML [1]) with property verification (static ver-

ification) or test-input generation (dynamic verification).

However, our previous work does not help create poli-

cies embedded in models or generate enforceable policies.

ACPT bridges the gap between policy requirements and

policy implementations by generating enforceable policies

(in XACML) directly from policy models (reflected by pol-

icy requirements). In addition, ACPT supports static and

dynamic verification of the generated policies to reduce

faults in the policies.

ACPT provides three major functionalities. First, ACPT

helps specify and combine policies based on well-known

existing policy models. Second, ACPT analyzes and con-

verts a policy (generated based on policy models) into an

enforceable format such as XACML. Third, to ensure pol-

icy correctness, ACPT conducts both static and dynamic

verification of a policy. Given a user-specified property set

and a policy, our static verification checks whether the prop-

erties are satisfied. However, the confidence on policy cor-

rectness based on the static verification is dependent on the

quality of the specified properties [8]. ACPT conducts dy-

namic verification (i.e., testing) to complement static ver-

ification by generating and executing test suites. Through

dynamic verification, the policy authors can attain higher

confidence on policy correctness.

2 ACPT Components

This section presents our tool for modeling and verify-

ing access control policies. Our tool (shown in Figure 1)

includes four components: policy modeling, static verifica-

tion, dynamic verification, and policy implementation.

2.1 Policy Modeling

ACPT allows policy authors to create policies based on

well-known access control models such as Role-Based Ac-

1



Policy 
Implementation

Static
Verification

Dynamic
VerificationPolicies

PropertiesPolicy 
Models

Policy
Modeling

XACML
Policies

Figure 1. ACPT overview

cess Control (RBAC) [5], Attribute-Based Access Control

(ABAC) [11], and Multi-Level security [3].

ACPT provides GUI to help policy authors specify poli-

cies and their properties interactively and effectively. More-

over, ACPT also supports additional features where the pol-

icy authors can edit, add, or delete policies and their at-

tributes interactively. Figure 2 shows GUI in ACPT to

model policies.

2.2 XACML Policy Implementation

XACML (eXtensible Access Control Markup Lan-

guage) [1] is a standard language used to represent and

evaluate access control policies. It was mainly designed as

a standard for expressing both access requests and access

control policies. ACPT takes a policy as an input and gener-

ates an XACML-represented policy, by mapping attributes

in the policy to their corresponding XACML attributes. We

use condition, i.e., a boolean function (in XACML) associ-

ated with a rule to specify its constraints; the rule matches

with a request when each of attribute values in the rule

matches against a request and the condition is evaluated to

be true.

2.3 Static Verification

To ensure correct behaviors of a policy against its prop-

erties, we apply static verification on a policy to verify

whether its properties are satisfied.

ACPT takes a policy p and its property r as inputs

and verifies p against r using NuSMV [4]. Our previous

work [6, 7] proposed an approach to represent a policy and

its properties as a corresponding finite state machine (FSM)

model and temporal logics (e.g., computation tree logic), re-

spectively, using the SMV specification language [4]. SMV

is a language that can represent various types of access con-

trol policy models and properties of access constraints. A

property can be specified as a logical formula that repre-

sents whether a specific state can be reachable for the given

constraints. NuSMV explores states to detect any states that

violate the property. Properties can be either constraints

or specific policy behaviors that should be preserved in the

policy. The work focuses on modeling popular mandatory

access control policies (RBAC [5] and Multi-Level secu-

rity [3]). ACPT takes a policy p and converts p to an FSM

model p′. Through state space search of p′, a symbolic

model checker called NuSMV [4] can search for the set of

states where a property r is true or false; if the set of states

(where r is false) is found, NuSMV reports that r is violated

with counterexamples. The policy authors then inspect the

counterexamples and fix the problems in p until no further

violations are detected. However, ACPT does not provide

any suggestions on how to fix the problems. Fixing prob-

lems depends on the policy authors’ knowledge decision.

The policy authors manually add/delete/modify rules in the

policy to fix the problems.

2.4 Dynamic Verification

Given policy specifications, policy authors implement

policies Pimp in a system. Dynamic verification is a testing

process to assure the correctness of Pimp. By observing the

evaluation of a policy implementation with a test input (i.e.,

request), policy authors may identify faults in the policy,

and validate whether the corresponding output (i.e., deci-

sion) is intended. Confidence on policy correctness gained

via static verification is dependent on the quality of the

specified properties [8]. The policy authors have additional

confidence on policy correctness by complementing static

verification with dynamic verification (i.e., verifying a pol-

icy through executing test inputs on Pimp).

ACPT generates test inputs based on structural cover-

age [10] and combinatorial coverage [7]. Our previous

work [7, 9, 10] proposed structural test generation (white-

box testing) and combinatorial test generation (black-box

testing) to reduce the size of generated requests for output

inspection while providing a sufficient level of confidence

on policy correctness. The objective of structural test gen-

eration is to generate test inputs to achieve 100 % structural

coverage (e.g., rule coverage) in a policy. Achieving high

structural coverage helps investigate a large portion (e.g., all

or most of the rules being evaluated at least once) of policy

entities (e.g., rules) for fault detection. We first use struc-

tural test generation before using combinatorial test gener-

ation to augment the generated test inputs for achieving the

n-wise (e.g., pairwise) coverage criterion. The reason for

using combinatorial test generation after structural test gen-

eration is that structural test generation (white-box testing)

cannot detect some types of faults including omission faults

(e.g., missing a rule). Specifically, combinatorial test gener-

ation is used to test all n-way combinations of input param-

eter values. In the policy context, for combinatorial testing,

three attributes (subject, action, and object) and attribute

values correspond to parameters and parameter inputs, re-

spectively. For combinatorial test generation, Figure 3



Subjects Resources Actions
1 Faculty Grades Write
2 Faculty Records View
3 Student Grades View
4 Student Records Write

Figure 3. 2-way combinatorial test inputs

Figure 4. Verification results provided by
ACPT

shows 2-way combinatorial test inputs, respectively, for the

given subjects (e.g., Faculty and Student), resources (e.g.,

Grades and Records), and actions (e.g., Write and View).

In Figure 3, each row corresponds to a single request.

3 ACPT Prototype

We implemented ACPT using Java. ACPT includes fea-

tures of policy modeling, implementation, static and dy-

namic verification. ACPT is a Windows GUI-based tool

to help users model and implement a policy and its prop-

erties interactively and effectively. We integrated NuSMV

and ACTS1 into ACPT for symbolic model checking and

combinatorial test generation. We also integrated our pre-

vious structural test generation tool [10] for generating test

inputs to achieve 100% structural coverage (e.g., rule cov-

erage) of a policy under test. ACPT measures the structural

coverage of the policy under test after test inputs (i.e., re-

quests) are evaluated.

Figure 2 shows GUI that helps policy authors spec-

ify policies based on various access control models such

as RBAC, ABAC, and Multi-Level security. The policy

workspace in Figure 2 shows specified policy models as a

1http://csrc.nist.gov/groups/SNS/acts/index.html

tree structure. The policy editor provides a working area for

the policy authors to edit a selected model. In Figure 2, the

policy authors specify an RBAC policy with a set of roles

(e.g., Faculty and Student), user-role relations (e.g., Jane is

a faculty member and Jim is a student), and roles’ permis-

sions (e.g., a faculty member can write grades and a student

cannot write grades).

After modeling policies using the GUI, the policy au-

thors can conduct static verification. Static verification is

useful to ensure the correctness of an individual policy or

combined policies against a set of properties. ACPT al-

lows that the policy authors specify multiple policies each

of which includes a set of rules. For combining policies,

the policy authors can specify which policy has to be given

higher priority than other policies to resolve conflicts when

multiple policies or rules are applied to the same request

during policy evaluation. Figure 4 shows a screen snap shot,

where ACPT provides property verification results when

multiple policies are combined. Verifying properties against

the combined policies is useful for the policy authors to un-

derstand whether properties (that are satisfied in an individ-

ual policy) are further satisfied after combination. With this

feature, the policy authors prevent unintended policy behav-

iors (i.e., property violations) after combining policies.

After conducting static verification, ACPT helps the pol-

icy authors implement XACML policies. ACPT automati-

cally converts a policy (specified in ACPT) to a correspond-

ing XACML policy. We use XACML policy templates for

RBAC, ABAC, and Multi-Level security models. ACPT

creates an XACML policy (reflected by a policy specified

in ACPT) by mapping attributes in the policy to their cor-

responding attributes in the XACML templates. We use the

Sun’s XACML Policy Decision Point (PDP) [2] to evaluate

a request against the XACML policy to decide whether the

request is permitted or denied.

To ensure the correctness of the policy under test, the

policy authors often evaluate test requests and inspect

whether the evaluated decisions (e.g., Permit or Deny) of

the requests are correct. In practice, inspecting all possi-

ble test inputs is not trivial due to a large number of possi-

ble test requests. ACPT automatically generates test inputs

by analyzing the policy under test based on a given crite-

rion (e.g., achieving high rule coverage). In addition, ACPT

keeps track of test evaluation results. For structural cover-

age, test evaluation results provide information such as the

number of rules that are covered and the number of rules

that are not covered.

4 Conclusions

Access control mechanisms play an important role to

control access on contents for applications. For example,

people increasingly share their files and access their email

accounts in web applications, which control user’s access

privileges based on access control policies. ACPT bridges



Policy Workspace
Ou
tpu

t 
Wi
nd
ow

Policies

Menu

Rule Editor

Attribute 
EntitiesRules

Figure 2. GUI-based ACPT tool to help policy authors specify and combine policies

the gap between policy requirements and policy imple-

mentations by generating enforceable policies (in XACML)

directly from policy models (reflected by policy require-

ments). In addition, ACPT supports static and dynamic

verification to reduce faults in policies. The current ver-

sion of ACPT provides only the first-applicable combining

algorithm (i.e., resolving conflicting decisions based on an

order of policies). We plan to extend ACPT to combine

policies using other popular combining algorithms such as

deny-overrides, or permit-overrides combining algorithms.

Acknowledgment

This work is supported in part by NSF grant CNS-

0716579 and a NIST contract.

References

[1] OASIS eXtensible Access Control Markup Language

(XACML). http://www.oasis-open.org/

committees/xacml/, 2005.

[2] Sun’s XACML implementation. http://sunxacml.

sourceforge.net/, 2005.

[3] D. E. Bell and L. J. Lapadula. Secure computer systems:

Mathematical foundations. Technical Report ESD-TR-73-

278, Mitre Corporation, 1973.

[4] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pi-

store, M. Roveri, R. Sebastiani, and A. Tacchella. NuSMV

Version 2: An OpenSource Tool for Symbolic Model Check-

ing. In Proc. 14th International Conference on Computer-

Aided Verification (CAV), pages 359–364, 2002.

[5] D. F. Ferraiolo, R. S. Sandhu, S. I. Gavrila, D. R. Kuhn,

and R. Chandramouli. Proposed NIST standard for role-

based access control. ACM Transactions on Information and

System Security, 4(3):224–274, 2001.

[6] V. Hu, R. Kuhn, and T. Xie. Property verification for generic

access control models. In Proc. IEEE/IFIP International

Symposium on Trust, Security and Privacy for Pervasive Ap-

plications (TSP), pages 243–250, 2008.

[7] V. Hu, R. Kuhn, T. Xie, and J. Hwang. Model checking for

verification of mandatory access control models and proper-

ties. To appear International Journal of Software Engineer-

ing and Knowledge Engineering, 2010.

[8] E. Martin, J. Hwang, T. Xie, and V. Hu. Assessing quality

of policy properties in verification of access control policies.

In Proc. Annual Computer Security Applications Conference

(ACSAC), pages 163–172, 2008.

[9] E. Martin and T. Xie. Automated test generation for access

control policies via change-impact analysis. In Proc. 3rd

International Workshop on Software Engineering for Secure

Systems (SESS), pages 5–11, 2007.

[10] E. Martin, T. Xie, and T. Yu. Defining and measuring pol-

icy coverage in testing access control policies. In Proc. 8th

International Conference on Information and Communica-

tions Security (ICICS), pages 139–158, 2006.

[11] L. Wang, D. Wijesekera, and S. Jajodia. A logic-based

framework for attribute based access control. In Proc. 2nd

ACM Workshop on Formal Methods in Security Engineering

(FMSE), pages 45–55, 2004.


