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Abstract—To reduce human efforts and burden on human in-
telligence in software-engineering activities, Artificial Intelligence
(AI) techniques have been employed to assist or automate these
activities. On the other hand, human’s domain knowledge can
serve as starting points for designing AI techniques. Furthermore,
the results of AI techniques are often interpreted or verified
by human users. Such user feedback could be incorporated
to further improve the AI techniques, forming a continuous
feedback loop. We recently proposed cooperative testing and
analysis including human-tool cooperation (consisting of human-
assisted computing and human-centric computing) and human-
human cooperation. In this paper, we present example software-
engineering problems with solutions that leverage the synergy of
human and artificial intelligence, and illustrate how cooperative
testing and analysis can help realize such synergy.

I. INTRODUCTION

Various software-engineering activities traditionally require

intensive human efforts and impose burden on human intelli-

gence. To reduce human efforts and burden on human intelli-

gence in these activities, Artificial Intelligence (AI) techniques,

which aim to create software systems that exhibit some form of

human intelligence, have been employed to assist or automate

these activities in software engineering [22]. Example AI

techniques employed in software-engineering activities are

constraint solving [10], [15] and search heuristics [39] used

in test generation and machine learning [16], [18] used in

debugging, natural language processing [20], [35], [45] used

in specification inference, and knowledge engineering [4] used

in various software-engineering tasks along with search-based

techniques broadly applied in search-based software engi-

neering [13]. These AI techniques typically accomplish more

than automating repetitive well-defined subtasks by instilling

simulation or emulation of how human intelligence would have

been able to help address these software-engineering activities.

Comparing to human intelligence, these AI techniques imple-

mented in software systems are able to handle a much larger

scale of tasks (e.g., the scale of the data under analysis).

On the other hand, human intelligence has also been lever-

aged in the broad context of human-centric software engineer-

ing [19], [38]. Typically human’s domain knowledge can serve

as starting points for designing AI techniques. Furthermore,

the results of AI techniques are often interpreted or verified

by human users. Such user feedback could be incorporated

to further improve the AI techniques, forming a continuous

feedback loop.

Our recently proposed cooperative testing and analysis [37],

[38] include human-tool cooperation (consisting of human-

assisted computing and human-centric computing) and human-

human cooperation. In human-assisted computing [37], tools

are on the “driver” seat and users provide guidance to the tools

so that the tools could better carry out the work. In contrast, in

human-centric computing [30], users are on the “driver” seat

and tools provide guidance to the users so that the users could

better carry out the work. Human-human cooperation is often

in the form of crowdsourcing [5].

We next present some example software-engineering prob-

lems with solutions on the spectrum from leveraging human

intelligence to artificial intelligence, and illustrate how coop-

erative testing and analysis (e.g., human-assisted computing

and human-centric computing) can help realize the synergy of

human and artificial intelligence.

II. EXAMPLE PROBLEMS

Test generation. Traditionally, test generation relies on

human intelligence to design test inputs that can satisfy testing

requirements such as achieving high code coverage or fault-

detection capability. On the other hand, automatic test gener-

ation [36] relies on tool automation to automatically generate

test inputs that can satisfy testing requirements. In human-

assisted computing, test-generation tools are in the driver seat

and may face challenges in test generation; for some of these

challenges, users can provide guidance such as writing mock

objects [17], [24], [31] or writing factory methods for encoding

method sequences to produce desirable object states [29]. In

human-centric computing, users are in the driver seat and may

get guidance from tools on subtasks such as what assertions

need to be written and what method sequences need to be

written [23] or translating natural-language test descriptions

to executable test scripts [25].

Specification generation. Traditionally, specification gen-

eration relies on human intelligence to write specifications.

In the recent decade, automatic specification inference has

emerged to infer likely specifications from runtime traces [1],

[8], source code [27], [28], and natural language artifacts [20],

[35], etc. In human-assisted computing, recent research [33]

leverages simple user-written specifications to more effectively

infer sophisticated specifications. In human-centric computing,

users write specifications based on confirming or rejecting



likely specifications recommended by tools such as Agita-

tor [2].

Debugging. Traditionally, debugging relies on human in-

telligence to locate faulty code and fix the code. Previous

research [40], [41] uses automatic debugging to automatically

isolate failure-inducing inputs, etc. Recent research [34] at-

tempts to automatically fix faulty code. In human-assisted

computing, recent research [32] seeks guidance from users

when tools generate imperfect fixes (e.g., causing unexpected

impact). In human-centric computing, previous research [14]

visualizes code locations associated with suspicion levels of

being faulty so that users can get guidance on where to

inspect [21]. Recent research [12] mines suspicious patterns

as starting points for users to conduct investigation.

Programming. Traditionally, programming relies on hu-

man intelligence to write programs for implementing some

functionalities. In recent years, program synthesis [11] in-

tends to automatically synthesize programs for implementing

some functionalities. In human-assisted computing, program

synthesis by nature relies on users to provide user intents

(e.g., functionalities to be implemented) in various forms.

In human-centric computing, various tools are developed for

recommending to programmers example API usage [26], [44]

or code completion [3].

III. CONCLUSION

To reduce human efforts and burden on human intelligence

in software-engineering activities, Artificial Intelligence (AI)

techniques have been employed to assist or automate these

activities. Typically human’s domain knowledge can serve as

starting points for designing AI techniques. Furthermore, the

results of AI techniques are often interpreted or verified by hu-

man users. Such user feedback could be incorporated to further

improve the AI techniques, forming a continuous feedback

loop. Through example problems in software engineering,

we have illustrated our recently proposed cooperative testing

and analysis, especially human-tool cooperation (consisting

of human-assisted computing and human-centric computing).

Such cooperative testing and analysis help realize the synergy

of human and artificial intelligence in software engineering.

Furthermore, such cooperative testing and analysis can also

play important roles in successful technology transfer and

adoption. Our previous successful efforts [6], [7], [9], [12]

on putting software analytics [42], [43] in practice highlight

the importance of investigating how practitioners take actions

on the produced insightful and actionable information, and

provide effective support for such information-based action

taking. In particular, we need to rely on better AI techniques

such as knowledge representation, machine-human interaction,

and understanding of human cognitive tasks. We also need to

leverage human intelligence to take actions on the produced

analytic results.
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