PaCon: A Symbolic Analysis Approach for Tactic-Oriented Clustering of Programming Submissions

Yingjie Fu
yingsjiefu@stu.pku.edu.cn
Peking University
Beijing, China

Jonathan Osei-Owusu
jo28@illinois.edu
University of Illinois at Urbana-Champaign
Urbana, Illinois, USA

Angello Astorga
aastorg2@illinois.edu
University of Illinois at Urbana-Champaign
Urbana, Illinois, USA

Zirui Neil Zhao
ziruiz6@illinois.edu
University of Illinois at Urbana-Champaign
Urbana, Illinois, USA

Wei Zhang
zhangw.sei@pku.edu.cn
Peking University
Beijing, China

Tao Xie
taoxie@pku.edu.cn
Peking University
Beijing, China

Abstract
Enrollment in programming courses increasingly surges. To maintain the quality of education in programming courses, instructors need ways to understand the performance of students and give feedback accordingly at scale. For example, it is important for instructors to identify different problem-solving ways (named as tactics in this paper) used in programming submissions. However, because there exist many abstraction levels of tactics and high implementation diversity of the same tactic, it is challenging and time-consuming for instructors to manually tackle the task of tactic identification. Toward this task, we propose PaCon, a symbolic analysis approach for clustering functionally correct programming submissions to provide a way of identifying tactics. In particular, PaCon clusters submissions according to path conditions, a semantic feature of programs. Because of the focus on program semantics, PaCon does not struggle with the issue of an excessive number of clusters caused by subtle syntactic differences between submissions. Our experimental results on real-world data sets show that PaCon can produce a reasonable number of clusters each of which effectively groups together those submissions with high syntax diversity while sharing equivalent path-condition-based semantics, providing a promising way toward identifying tactics.

CCS Concepts: • Social and professional topics → Computing education; • Theory of computation → Program analysis.

Keywords: programming education, clustering, symbolic analysis, path condition

ACM Reference Format:

1 Introduction
In recent years, programming courses, especially online programming courses [19], have attracted high enrollment from all over the world. As the size of classrooms increases, inspecting programming submissions for grading, constructing reference solutions, and preparing targeted teaching materials has become increasingly time-consuming. Some automated tools [1, 7, 9, 11, 21, 23, 27, 29] have been proposed to assist instructors of online programming courses. These tools typically focus on the functional correctness of submissions or how to modify incorrect submissions into functionally correct ones.

However, it is also important to identify the ways (named as tactics in this paper) that students solve a problem, for three main reasons. First, identifying tactics can assist instructors in achieving more efficient grading when tactic-related constraints appear in the description of assignments.
For example, given the assignment “find the largest difference between any two elements in an array without sorting”, a submission that first sorts the input array elements and then subtracts the smallest element from the largest element should not receive full marks, because it violates the requirement “without sorting.” Because tactic-related characteristics of submissions cannot be reflected by the output of programs, without tool assistance, instructors have to manually inspect each submission to check whether these tactic-related constraints are satisfied. Second, identifying tactics can help instructors efficiently come up with a variety of reference solutions that can be valuable for semi-automated tools to generate customized feedback. Some existing tools [5, 8, 13] for feedback generation require users to provide templates or model solutions to match against programming submissions, but it is challenging for an inexperienced instructor to list comprehensive templates ahead of time. By identifying different tactics used in functionally correct submissions from students, instructors can craft reference solutions with less effort. Third, identifying tactics can help instructors prepare targeted and adaptive teaching materials. For example, when students are asked to “find the k-th largest number of the given array”, a good way to solve the problem in this assignment is the way of using “divide and conquer”, but many students may use the way of sorting to solve this problem. By identifying the used tactics, instructors can have a view of the distribution of tactics in submissions from students, and then lecture to the class about the relationship of the “sorting” and “divide and conquer” ways.

Identifying tactics in programming submissions is a challenging and time-consuming task for two main reasons. First, it is difficult to provide a clear definition of tactic, because the identification of tactics reflects different levels of abstraction, depending on the specific assignments and teaching requirements. For example, when we focus on the assignment of sorting, different tactics of submissions can be divided into known tactics such as bubble sort, insertion sort, and merge sort. But for the assignment of “finding the k-th largest elements in an array”, the tactics can be divided into divide and conquer, sorting, and brute force. In the latter assignment, a proper clear definition of tactic ought not to capture the specific used sorting algorithm. Second, programs that adopt the same tactic may have distinct ways of syntactically organizing the code. For example, given the problem of computing \(C^n_m \), both loop and recursion can achieve the same tactic “computing \(C^n_m \) by calculating factorials”, but they show apparent syntactic differences.

To help identify tactics in programming submissions, in this paper, we propose PaCon, a symbolic analysis approach for clustering functionally correct programming submissions to provide a way of identifying tactics. PaCon uses path conditions from symbolic execution [14] to cluster submissions. Executing a program with the given input value can exercise (i.e., follow) a path in the program. The path condition for this path, also referred to as the path condition for the given input value, represents the input constraints (1) that all input values exercising this path must satisfy and (2) whose satisfying input values must cause to exercise this path.

Our insight underlying PaCon is that the input-space-partitioning strategy adopted by a submission can offer a way to look for tactics, and such strategy can be derived based on the path conditions of input values. In particular, path conditions reflect how the program of the submission divides the input space into multiple equivalence classes, each of which includes all the input values that follow the same path. Revisit the earlier described example: two submissions that compute \(C^n_m \) by calculating factorials, including one using loops for the calculation and the other one using recursion. Although the two submissions are implemented differently, their programs share the same input-space-partitioning strategy derived based on the path conditions.

Based on this insight, the workflow of PaCon consists of three main steps: (1) test generation, (2) path condition collection, and (3) path-condition-based clustering. PaCon first runs a structural test generator to generate test inputs (in short as tests), normalizes the set of the generated tests, and then collects the path conditions of these tests. In the last step of clustering, PaCon ensures that submissions in the same cluster must have semantically equivalent path conditions for each of the generated tests.

We conduct an evaluation on real-world data sets to show that the number of clusters produced by PaCon is reasonable, and PaCon is able to produce clusters each of which effectively groups together those submissions with high syntax diversity while sharing equivalent path-condition-based semantics. By manually looking into the clusters produced by PaCon, we find that the clusters can be a good indicator of how the submissions differ in their ways to solve the target problem. These results demonstrate that PaCon can provide a promising way toward identifying tactics.

This paper makes the following main contributions:

- We raise the awareness of identifying tactics in student programming submissions.
- We propose a symbolic analysis approach named PaCon for clustering functionally correct programming submissions to provide a way of identifying tactics.
- We conduct an evaluation on real-world data sets for assessing PaCon in clustering functionally correct programming submissions.

2 Motivating Example

In this section, we present a motivating example to illustrate (1) the challenge faced by clustering approaches to help identify tactics and (2) why existing approaches fail in this task. The motivating example shown in Listings 1-3 is about a programming assignment of “finding the largest difference between any two elements in an array of int values” where the
input a is not null. In Listings 1-3, max-difference(A), max-difference(B), and max-difference(C) show the snapshots of three submissions, which are all functionally correct.

Listing 1. max-difference(A)

```java
// Tactic: compute max and min (using built-in API methods) and return their difference.
public class Program {
    public static int Puzzle(int[] a) {
        return a.Max()-a.Min();
    }
}
```

Listing 2. max-difference(B)

```java
// Tactic: compute max and min (not using built-in API methods) and return their difference.
public class Program {
    public static int Puzzle(int[] a){
        int max = a[0], min = a[0];
        for (int i = 1;i < a.Length;i++){
            if (a[i] > max){
                max = a[i];
            }
        }
        for (int i = 1;i < a.Length;i++){
            if (a[i] < min){
                min = a[i];
            }
        }
        return max - min;
    }
}
```

Listing 3. max-difference(C)

```java
// Tactic: compute all the pairwise element differences, then return the maximum.
public class Program {
    public static int Puzzle(int[] a) {
        int max=0;
        foreach(int i in a){
            foreach(int j in a){
                max=i-j>max?i-j:max;
            }
        }
        return max;
    }
}
```

Among these three submissions, max-difference(A) and max-difference(B) share similarities in the way that they solve the problem. Specifically, the first two submissions first find the maximum and the minimum elements of the array and then subtract the minimum element from the maximum element to get the expected return. The submission max-difference(C) solves the problem by checking all pairs of elements and comparing the difference.

However, these three submissions also differ in variable names and code structure. In terms of variable names, max-difference(A) and max-difference(B) both use the variable `max` to record the maximum and use the variable `min` to record the minimum, but max-difference(C) directly uses `max` to record the expected maximum difference. In terms of code structure, max-difference(A) uses the built-in `Max` and `Min` API methods, but max-difference(B) uses two for-loops to identify the largest and smallest integer elements in the array, respectively. To compare all the pairwise differences between elements, max-difference(C) implements a two-level nested for-loop.

In this example, if we do not consider the implementation of the `Max` and `Min` API methods, a desirable clustering approach that can help identify tactics should be able to identify the similarities between max-difference(A) and max-difference(B) in their problem-solving ways and group them together. As for the max-difference(C) submission, because it uses a different tactic, a desirable clustering approach should not put it into the same cluster as max-difference(A) and max-difference(B).

Many existing syntax-based approaches rely on specific program features such as control flow, variable sequence, and Abstract Syntax Tree (AST) to cluster submissions. These approaches put two submissions into the same cluster only when their specific program features are the same or highly similar. For example, CLARA [9] puts two submissions into the same cluster only if the looping structure of the two submissions match. OverCode [6] requires that the sets of statements (after renaming variables) of the two submissions in the same cluster must be the same. These two approaches both put the first two submissions into separate clusters.

From the preceding example, we can see that existing syntax-based approaches do not consider the problem-solving ways of programs, and thus they do not work well in helping identify tactics. Toward identifying tactics, we propose to take semantic program information into account.

3 Approach

In this section, we present our symbolic analysis approach for clustering programming submissions, named **PaCon**, which clusters programming submissions based on path conditions, a semantic feature of programs.

3.1 An Overview of PaCon

Given a programming problem, **PaCon** takes a set of functionally correct submissions as input and outputs a set of submission clusters. To simplify the subsequent discussion, we assume that each submission has a static method, named `Puzzle`, which takes inputs through its arguments `args` and returns its result through the return value. The types of the arguments and the return can be either primitive types or classes.
Figure 1. The Workflow of PaCon

Figure 1 shows the overview of PaCon’s workflow, which consists of three steps: (1) test generation, (2) path condition collection, and (3) path-condition-based clustering. The purpose of the first step is to generate high-code-coverage tests, which can help reflect the program behavior of the submissions. In the second step, for every submission, PaCon collects its path condition from running each test on this submission. Finally, PaCon groups submissions based on the equivalence of their path-condition semantics and outputs a set of submission clusters.

3.2 Test Generation

The purpose of this step is to attain tests with high code coverage such as high statement, block, branch, data flow, and path coverage. Ideally, the tests should comprehensively sample input values that can help exercise different paths and thus different resulting path conditions, in order to differentiate different input-space-partitioning strategies across submissions.

This step includes two modules: a wrapper method generator and a test generator. PaCon first constructs a wrapper method for the programming problem. The wrapper method can be regarded as a parameterized unit test of the Puzzle method. The wrapper method can be generated automatically with respect to the argument types and the return type of any functionally correct solution of the problem. Listing 4 presents a simplified example of the wrapper method for max-difference shown in Section 2. If there is any precondition (i.e., constraint for the input arguments), instructors can manually add the precondition in the generated wrapper method. Note that only one wrapper is needed for each problem, so it is an acceptable workload for instructors to prepare the wrapper method even manually.

Listing 4. A simplified example of the wrapper method for max-difference

```java
1 public static void Wrapper(int[] args) {
2     global::Program.Puzzle(args);
3 }
```

After the wrapper method is ready, PaCon interacts with a structural test generator to attain tests with high code coverage. Note that it may be impossible to achieve full coverage of paths in a program, e.g., one where the number of loop iterations is the value of an integer input argument without any bound constraint, and thus there exist an infinite number of paths and path conditions. The goal of a structural test generator typically can be configured as achieving high statement, block, branch, or data flow coverage. In our implementation of PaCon, the adopted structural test generator is Pex [25], whose configuration by default is to generate tests with high block coverage. For the motivating example shown in Section 2, the number of tests generated by Pex for max-difference(A), max-difference(B), and max-difference(C) is 1, 6, and 2, respectively.

3.3 Path Condition Collection

In this step, PaCon aims to collect the path condition derived from each test. Executing a program with the given input value in the test can exercise (i.e., follow) a path in the program. The path condition for this path, also referred to as the path condition for the given input value, represents the input constraints (1) that all input values exercising this path must satisfy and (2) whose satisfying input values must cause to exercise this path.

Different from the branch conditions along the exercised path, a path condition includes constraints involving only variables from the input arguments, not any local variables
in the program. For example, for the submission in Listing 2, there are two branch conditions in Lines 6 and 11, respectively, and they both involve a local variable (max and min, respectively). Given an input array \(a = [1, 2] \), the path condition is \(\text{a[1]} > \text{a[0]} \) \&\& \(\text{a[1]} \geq \text{a[0]} \), instead of \(\text{a[1]} \geq \text{min} \) \&\& \(\text{a[1]} \geq \text{min} \).

Note that to cluster submissions, PaCon needs their path conditions of the same test. But a structural test generator typically cannot guarantee to produce the same set of tests on each run, and the set of tests generated for any two submissions, respectively, may also be different. For example, for max-difference(A) in Listing 1, Pex generates one test as [18, 18], and for max-difference(C) in Listing 3, Pex generates two tests: [32, 48] and [40, 41, 18]. Therefore, it is necessary to use the same set of tests for each of all the submissions so that we can fairly compare the resulting path conditions for each submission over the input space.

In this step, PaCon conducts test normalization by taking the union of all the tests produced by the first step for each of all the submissions and placing them into a set where only unique tests are kept. Then PaCon invokes the path condition collector on each submission to collect path conditions of the tests in the normalized test set. In this way, the normalized test set for max-difference(A), max-difference(B), and max-difference(C) includes [18, 18], [32, 48], [40, 41, 18], etc.

We leverage Pex as the path condition collector. In particular, Pex provides a convenient way to attain the path condition of the input value in a test, i.e., by calling the GetPathConditionString API method provided by Pex. We simply return the result of calling GetPathConditionString as the collected path condition.

3.4 Path-Condition-Based Clustering

In this step, PaCon conducts path-condition-based clustering to group functionally correct submissions into a set of submission clusters, based on equivalent path-condition-based semantics.

The high-level idea of path-condition-based clustering is that, for two given correct submissions \(s_1 \) and \(s_2 \) for the same problem, PaCon checks whether \(s_1 \) and \(s_2 \) have semantically equivalent path conditions of each test in the normalized test set. If so, PaCon puts them into the same cluster. It is worth mentioning that the equivalence between submissions is transitive. Therefore, when assessing whether a submission belongs to a given cluster, PaCon needs to compare the submission against only one submission randomly chosen from this cluster, instead of against all submissions in it.

The pseudo-code of path-condition-based clustering is shown in Algorithm 1. PaCon iterates through all correct submissions (Line 2). For each submission \(s \), PaCon traverses the existing clusters to check whether \(s \) belongs to any of them by comparing path conditions. Specifically, PaCon randomly selects a submission \(r \) belonging to an existing cluster \(c \) as a representative (Line 5), and then calls the function isEq to determine whether \(s \) and \(r \) are equivalent (Line 6). If isEq returns True (Lines 7-9), cluster \(c \) can be regarded as the cluster that the submission \(s \) belongs to, and PaCon adds \(s \) into cluster \(c \) and moves on to work on the next submission. If the current cluster set \(C \) is empty or there is no cluster found for submission \(s \), PaCon builds a new cluster and puts \(s \) into it (Lines 10-12). When all submissions are placed in their respective cluster, PaCon returns set \(C \) as the clusters of submissions.

As shown in Algorithm 2, the equivalence of two submissions \(s_1 \) and \(s_2 \) is determined by the semantic equivalence of their path conditions. Specifically, for each test \(t \in T \), the path conditions of \(s_1 \) and \(s_2 \) are represented as \(pc_1 \) and \(pc_2 \), respectively. \(s_1 \) and \(s_2 \) are considered equivalent, if and only if the semantics of \(pc_1 \) and \(pc_2 \) are equivalent for each test in \(T \). This equivalence is dedicated to identifying how a program divides the input space into equivalence classes.

Algorithm 1: path-condition-based clustering

Input: a set of tests \(T \), a set \(S \) of functionally correct submissions, and their path conditions PC of each test \(t \in T \)

Output: a set of submission clusters \(C \)

1. \(C \leftarrow \emptyset \)
2. for submission \(s \in S \) do
 3. \(\text{foundcluster} \leftarrow \text{False} \)
 4. for cluster \(c \in C \) do
 5. \(r \leftarrow \text{a submission randomly chosen from } c ; \)
 6. if isEq\((s, r, T, PC)\) then
 7. \(c \leftarrow c \cup \{ s \} ; \)
 8. \(\text{foundcluster} \leftarrow \text{True} ; \)
 9. \(\text{break} ; \)
 10. if foundcluster == False then
 11. \(c' \leftarrow \{ s \} ; \)
 12. \(C \leftarrow C \cup \{ c' \} \)
13. return \(C \)

Algorithm 2: isEq(s1, s2, T, PC)

Input: two functionally correct submissions \(s_1, s_2 \), a set of tests \(T \), and their path conditions PC of each test \(t \in T \)

Output: True or False

1. for test \(t \in T \) do
2. \(pc_1 \leftarrow \text{getPC}(PC, s_1, t) ; \)
3. \(pc_2 \leftarrow \text{getPC}(PC, s_2, t) ; \)
4. if not pc_1 == pc_2 in semantics then
5. \(\text{return False} ; \)
6. return True
Ideally, for two submissions s_1 and s_2 in the same cluster and an arbitrary input t, the equivalence classes of t for s_1 and s_2 should be the same. We achieve the semantic comparison of path conditions through a path condition parser and a constraint solver Z3 [20].

4 Evaluation

In this section, we aim to answer three research questions by empirically investigating the number of clusters produced by PaCon and the diversity of syntax in each produced cluster compared to the results produced by syntax-based tools, and exploring what kind of tactics can be reflected by the clusters produced by PaCon.

To help answer the first two research questions, besides PaCon, we also study two syntax-based clustering tools, which are based on two (near-)duplicate-code detection tools that can work on C# programs: dupFinder (DF) [12] from JetBrains, and Near-Duplicate (ND) [16] from Microsoft. In particular, to produce clusters from the results of (near-)duplicate-code detection, we put two submissions into the same cluster if there is any duplicate code fragment between them. For each submission that shares no duplicate code fragment with any other submissions, we put this submission into a separate cluster.

4.1 Research Questions

RQ1: What is the number of clusters produced by PaCon compared with syntax-based tools? The purpose of RQ1 is to investigate to what extent PaCon can potentially reduce the workload of instructors in inspecting programming submissions. One goal of PaCon is to relieve instructors from the burden of inspecting an intractable number of submissions. Ideally, with the help of clustering, instructors need to select only one representative from each cluster for inspection, rather than looking into all submissions. However, if the number of clusters produced by a clustering approach remains large, it is still burdensome for instructors to inspect all representatives, and then the clustering approach is not feasible in practice. To answer this question, we count the number of clusters produced by PaCon, compared with the number of clusters produced by ND and DF, respectively.

RQ2: How diverse is the syntax of submissions included in a cluster produced by PaCon? The purpose of RQ2 is to assess the ability of PaCon to cluster together submissions with syntactic differences but equivalent path-condition-based semantics. To answer this question, we assess the syntax diversity within each cluster produced by PaCon, in short as each PaCon cluster. In particular, we measure the syntax diversity within a PaCon cluster as the number of syntax-based clusters (i.e., ones produced by a syntax-based tool such as ND or DF) that the submissions from this PaCon cluster belong to. The higher the count, the more syntactically diverse the PaCon cluster is.

RQ3: What kind of tactics can be reflected by the clusters produced by PaCon? As mentioned in Section 1, one challenge of identifying tactics comes from the tactic definition that changes with requirements, so it is difficult to label the tactic(s) used in each submission as the ground truth. The purpose of RQ3 is to investigate what kind of tactics PaCon can help instructors identify. To answer this question, we manually check each PaCon cluster and summarize the tactics used in the submissions for each assignment in the evaluation subjects.

4.2 Evaluation Subjects

The evaluation subjects consist of two sources of real-world data sets.

Code-Hunt. The Code-Hunt data set [2] contains submissions from a 48-hour worldwide coding contest. The contest has four sectors each of which contains six puzzles, and participants (students) were allowed unlimited attempts to solve the programming problems within the time limit. We choose this data set because the difficulty of its puzzles is representative of assignments in introductory-level programming courses and also because the data set is used in related work [3, 4, 18].

Of the 24 total puzzles in the Code-Hunt data set, we first choose the 12 ones whose submissions include at least one branch. Considering that PaCon focuses on clustering only functionally correct submissions, we further exclude the submissions that do not perform functionally the same as their given solution in Code-Hunt, keeping only functionally correct ones. In addition, students who participated in the contest were allowed to use either Java or C#. Because our implementation of PaCon includes Pex (supporting C# without supporting Java) as the test generator, we use a converter [24] to translate Java submissions into C# programs and include only those resulting C# programs that can be successfully compiled. Finally, we exclude puzzles with fewer than ten correct submissions remaining. Table 1 shows the description of the puzzles included in our evaluation. The second column of Table 2 shows the number of submissions included in our evaluation for each of these puzzles.

Sorting. Besides the Code-Hunt data set, our evaluation subjects also include the sorting data set consisting of a number of programs that implement the sorting functionality. We select the sorting problem because (1) sorting is a classical problem taught in CS programming courses, and (2) we want to know how the tactics that PaCon can identify are related to those well-labeled problem-solving ways. We collect sorting programs with five different labels: bubble sort, heap sort, insertion sort, quick sort, and merge sort. We attain the programs for these five kinds of sorting by searching with each label as the keyword among C# programs via Google. The labels of bubble sort, heap sort, insertion sort, quick sort, and merge sort include 17, 11, 16, 10, and 12 programs, respectively, in total 66 programs.
Table 1. The Description of the Code-Hunt Puzzles Used in Our Evaluation

<table>
<thead>
<tr>
<th>Puzzle</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sector2-Level2</td>
<td>Count the depth of nesting parentheses in a string</td>
</tr>
<tr>
<td>Sector2-Level5</td>
<td>Find the maximum difference between two elements in an array</td>
</tr>
<tr>
<td>Sector2-Level6</td>
<td>Generate the string of binary digits for the input integer n</td>
</tr>
<tr>
<td>Sector3-Level1</td>
<td>Create a filter that retains only values greater than or equal to a given threshold</td>
</tr>
<tr>
<td>Sector3-Level2</td>
<td>Compute the sum of the n-th and (n − 1)-th Fibonacci numbers</td>
</tr>
<tr>
<td>Sector3-Level3</td>
<td>Find the k-th smallest element in an array</td>
</tr>
<tr>
<td>Sector3-Level6</td>
<td>Compute the set difference of two input integer arrays</td>
</tr>
<tr>
<td>Sector4-Level2</td>
<td>Compute (C_m^n,) i.e., (\frac{m!}{n!(m-n)!})</td>
</tr>
<tr>
<td>Sector4-Level6</td>
<td>Advance each character in a string by the Fibonacci number evaluated at the character’s integer ASCII value</td>
</tr>
</tbody>
</table>

4.3 RQ1 Results: Number of Produced Clusters

Table 2 shows the statistics of the clustering results. The first two columns indicate the name of an assignment and the total number of functionally correct submissions for this assignment. The number of clusters produced by PaCon, \(ND \), and \(DF \) is shown in the last three columns \(N_c \), \(N_{ND} \), and \(N_{DF} \), respectively.

According to the statistics, PaCon produces at most 10 clusters for each of the Code-Hunt puzzles and 15 clusters for the sorting problem. The number of clusters produced by PaCon is smaller than that of both \(ND \) and \(DF \) for all assignments. This gap is more evident as the number of submissions increases. The 99 submissions for Sector3-Level2 are grouped into only 5 clusters by PaCon, and the number of clusters produced by \(ND \) and \(DF \) is 40 and 68, respectively. In contrast, the 17 submissions for Sector4-Level2 are grouped into 7 clusters by PaCon, 10 clusters by \(ND \), and 14 clusters by \(DF \).

The trend is consistent with our intuition: for a specific programming problem, the submissions that adopt the same tactic may have distinct ways of syntactically organizing the code, and as the number of submissions increases, this gap tends to increase as well.

In summary, PaCon can produce a reasonable number of clusters, and the number of clusters produced by PaCon is much smaller than that of the two syntax-based tools (\(ND \) and \(DF \)).

4.4 RQ2 Results: Syntax Diversity of Cluster

Figure 2 shows the distribution of PaCon clusters’ syntax diversity for each assignment. For all the assignments, PaCon can produce clusters whose syntax diversity is at least 2. In addition, the clusters with syntax diversity not less than 2 account for at least 40% of the total clusters for most assignments. Moreover, for Sector2-Level2, Sector2-Level5, Sector2-Level6, Sector3-Level2, etc., PaCon even results in clusters whose syntax diversity is greater than 10.

When \(DF \) is used for syntax-based clustering, for all assignments except two (Sector2-Level5 and Sector3-Level1), the percentage of clusters with syntax diversity of at least 2 is not less than 40%. In Sector2-Level6, the percentage is even as high as 75%. In contrast, when \(ND \) is used for syntax-based clustering, for Sector2-Level5, Sector2-Level6, Sector3-Level1, and Sector3-Level6, the percentage of clusters whose syntax diversity is only 1 exceeds 60%. In particular, for Sector3-Level6, only 10% of PaCon clusters have syntax diversity greater than 1.

In summary, PaCon can effectively group together submissions with syntactic differences but equivalent path-condition-based semantics.

4.5 RQ3 Results: Tactics Reflected by Clusters

We manually check the clusters produced by PaCon and summarize the tactics based on the clusters for each evaluation subject. Due to the space limit, in this subsection,
Compute all the pairwise element differences, then return the maximum

<table>
<thead>
<tr>
<th>Tactic Summary</th>
<th>NoC</th>
<th>Clusters</th>
<th>Num</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find the max and min elements of the array, then return their difference</td>
<td>c₀</td>
<td>Call Max and Min API methods or implement the API methods</td>
<td>66</td>
</tr>
<tr>
<td>c₁</td>
<td></td>
<td>Implement Max and Min API methods with an extra "=" in the ">=" and "<=" comparison operators, such as "if (a[i] >= max) {max = a[i];}"</td>
<td>1</td>
</tr>
<tr>
<td>c₂</td>
<td></td>
<td>Implement Max and Min API methods with initialization of max and min using different array elements, such as "int max = a[0]; int min = a[1];;"</td>
<td>3</td>
</tr>
<tr>
<td>Sort first, then return</td>
<td>a[</td>
<td>a.length-1]-a[0]</td>
<td></td>
</tr>
<tr>
<td>c₄</td>
<td></td>
<td>Call Array.sort API method and execute some extra code</td>
<td>2</td>
</tr>
<tr>
<td>Compute all the pairwise element differences, then return the maximum</td>
<td>c₅</td>
<td>Compute all the pairwise element differences, then return the maximum</td>
<td>1</td>
</tr>
</tbody>
</table>

we discuss the analysis results of only two evaluation subjects. The complete analysis results can be found at https://sites.google.com/view/paconproj/.

4.5.1 Case of Sector2-Level5. Table 3 shows the detailed results of Sector2-Level5. We summarize three tactics based on the clustering results of PaCon: “find the max and min elements of the array, then return their difference”, “sort first, then return |a[length-1]-a[0]|”, and “compute all the pairwise element differences, then return the maximum”.

For the first tactic in the table, PaCon produces three clusters among which most of the submissions fall into cluster c₀. Submissions in cluster c₀ either call the built-in Max and Min API methods or implement the two API methods themselves. There are also a few other submissions that adopt similar tactics as those in cluster c₀ but are not grouped into cluster c₀. For example, cluster c₁ includes one submission that implements the Max and Min API methods with extra “=" in the

Figure 2. The Distribution of Syntax Diversity in Clusters Produced by PaCon
The bars indicate the percentage (p_c) of PaCon clusters that contain 1 syntax-based cluster, 2-4 syntax-based clusters, 5-7 syntax-based clusters, etc. The comparison with DF is shown in orange bars, and that with ND is shown in blue bars.

Figure 3. The Results of PaCon on Sorting Programs Compared with Their Labels
we are calculating the maximum element in an array. Most submissions use statements such as
"if (a[i]>max) {max = a[i];}" whereas the submission in cluster c1 uses the statement "if(a[i]>=max) {max = a[i];}". In addition, cluster c2 includes three submissions that initialize the max and min variables as different array elements from those used in cluster c0 or c1.

Although the operator difference with extra "=" seems to be of only syntactic nature, in some cases it does lead to semantic differences of path conditions. Due to extra "=" not only the operator changes, but the comparisons also occur for different pairs of elements. For example, consider that we are calculating the maximum element in an array a = [2, 2, 1, 3]. When we use "if(a[i]>max)" for the update of max, the path condition is a[1]<=a[0] && a[2]<=a[0] && a[3]>a[0]. But when we use "if(a[i]==max)" for the update, the path condition becomes a[1]==a[0] && a[2]<a[1] && a[3]>a[1].

For the second tactic in the table, PaCon produces two clusters c3 and c4, and most of the submissions fall into cluster c3. Submissions in clusters c3 first conduct sorting of the given array elements, whereas besides conducting the sorting, those in c4 also execute some extra code without which the submissions still have the same return values but whose execution introduces additional constraints in the path conditions. For the third tactic in the table, there is one cluster with only one submission that computes all the pairwise element differences and then returns the maximum.

4.5.2 Case of the Sorting Problem. Figure 3 shows a scatter plot for the clustering results produced by PaCon on the sorting programs. The x axis indicates the clusters produced by PaCon, and the y axis indicates five different labels for the sorting programs. The number of programs is reflected by the size of scatters.

According to the results shown in Figure 3, instead of identifying different sorting labels, the clustering results produced by PaCon reflect the stability of sorting. A sorting program is stable if any two elements with equal values in an array always appear in the same order in the program’s output as they appear in the input. Specifically, the programs in c0 are all stable sorting programs, consisting of most bubble sort programs, most insertion sort programs, and most merge sort programs. The programs in the other 14 clusters are all unstable sorting programs.

Cluster c13 consists of two programs implementing merge sort. When merging two ordered subarrays, the programs put a[i] to the left of a[j] only when a[i] < a[j] (a[i] is an element in the left subarray and a[j] is an element in the right subarray). This operation causes the relative order of the two elements a[i] and a[j] to be reversed if their values are equal, so these two programs are not stable sorting programs.

Programs in each of the remaining 12 clusters are all with only one label. These programs implement either heap sort or quick sort, and they are all unstable.

The remaining question is why PaCon divides those unstable sorting programs into different clusters. The key reason is that the set of array input values for exposing the instability of an unstable sorting program can be different from the set for exposing the instability of another unstable sorting program. For instance, consider two quick sort programs Q1 and Q2 that use different criteria to select the pivot p, and an input array arr = [1, 2a, 2b, 3, 4]. Suppose that program Q1 takes the leftmost element as the pivot p, and program Q2 takes the rightmost element as the pivot p. Both Q1 and Q2 put elements smaller than p to its left and put elements not smaller than p to its right. After sorting, the output of Q1 is still [1, 2a, 2b, 3, 4], but the output of Q2 becomes [1, 2b, 2a, 3, 4]. Although Q1 and Q2 are both unstable, the instability of Q1 is exposed by the input arr, but that of Q2 is not. Recall that PaCon requires that programs in the same cluster must have equivalent path conditions for each generated test, so PaCon divides unstable sorting programs into different clusters.

To further confirm our finding, after we add a precondition of “all elements are distinct” to the input of sorting, PaCon groups all sorting algorithms into the same cluster.

4.6 Summary of Results

In our evaluation, the number of clusters produced by PaCon is reasonable and much less than that produced by syntax-based tools. At the same time, the clusters effectively groups together those submissions with high syntax diversity while sharing equivalent path-condition-based semantics. Based on our manual analysis, the clusters produced by PaCon can be promising to characterize how the submissions differ in their ways to solve the target problem. For the sorting problem, although PaCon does not help recognize the common sorting algorithms, it can still distinguish a significant characteristic of sorting programs: whether a sorting program is stable or not.

5 Discussion

There are two major limitations of PaCon in terms of its current implementation and design.

1Note that even an unstable sorting program does not always swap two equal elements in the given array input value.
First, the implementation of PaCon includes a constraint solver, such as Z3 [20], to check the equivalence of path conditions, but there exist some cases (such as constraints about HashSet) that Z3 cannot deal with. If such a situation happens, PaCon directly regards the two path conditions as nonequivalent (if their string forms are not the same) and may divide submissions using the same tactic into separate clusters. In our evaluation, PaCon encounters this situation when clustering submissions for Sector3-Level6.

Second, PaCon uses the semantic equivalence of path conditions to cluster submissions. It pays more attention to the semantic of programs and can be robust in the face of many syntactic differences. However, this trade-off has limitations as well as benefits. When two submissions have two different tactics, and the tactic difference manifests in some program features (such as the syntactic composition of constraints within a path condition) yet without impacting the semantics of the path conditions, PaCon puts these two submissions into the same cluster. In our evaluation, PaCon encounters this situation when clustering submissions for Sector4-Level2.

6 Related Work
Due to the growing nature of CS courses, clustering of programming submissions becomes an appealing approach to help quickly inspect a large number of submissions. A substantial body of work has been proposed for this task. In this section, we discuss a number of closely related approaches.

CLARA [9], MistakeBrowser [10], and TipsC [22] all aim to provide feedback to incorrect submissions. CLARA [9] and TipsC [22] both cluster correct programming submissions. In particular, CLARA puts two submissions into the same cluster if they have the same control flow structure and there exists a bijective relation between their variables. TipsC [22] first normalizes the programs to linear representations and then clusters "similar" programs according to a variant of the Levenshtein edit distance. Different from CLARA and TipsC, MistakeBrowser [10] first learns code transformations (i.e., code edits) to correct incorrect submissions, and then uses the learned transformations to cluster incorrect submissions.

OverCode [6] is a system for visualizing and exploring the variations in programming submissions. When clustering submissions, OverCode first produces the cleaned code of programs by renaming common variables that have identical sequences across two or more program traces, and then groups the submissions whose cleaned code contains identical sets of program statements.

PaCon differs from CLARA, MistakeBrowser, TipsC, and OverCode mainly in terms of the design goals. PaCon aims to help instructors identify tactics in functionally correct submissions, whereas the proceeding clustering approaches aim to generate feedback to incorrect submissions or to visualize the variations in submissions. Due to such differences, PaCon pays more attention to the semantic features of programs, whereas CLARA, MistakeBrowser, TipsC, and OverCode mainly take syntactic features into account.

SolMiner [15] leverages static program analysis, data mining, and machine learning to mine distinct solutions (with different data structures, space-time complexity, etc.) from a large pool of submissions. Given that SolMiner represents a program as a sequence of mini-ASTs, each of which corresponds to a portion of a basic block in the program, SolMiner is less robust to syntactic differences in submissions than PaCon.

SemCluster [18] clusters submissions (no matter correct or incorrect) based on their vector representation. The vector consists of two quantitative semantic features: the control flow feature and the data flow feature. Given a program and a test suite, the control flow feature tracks the number of input values flowing through the same control flow paths as different tests, whereas the data flow feature tracks the number of times that a specific value in memory is changed to another specific value. To enable the computation of the control flow feature (involving model counting), SemCluster requires instructors to provide bounds on the input values, whereas PaCon has no such requirement. In addition, SemCluster leverages a classical clustering algorithm based on similarity of quantitative semantic features across submissions whereas PaCon conducts clustering with the help of the Z3 constraint solver [20] based on the equivalence of path condition semantics across submissions.

Grasa [17] aims to augment a given test suite with a minimal set of generated tests whose purpose is to detect a maximum number of incorrect submissions. Different from PaCon, to accomplish this objective, Grasa clusters incorrect submissions by approximating their behavioral equivalence to each other.

7 Conclusion
In this paper, we have raised the awareness of identifying different problem-solving ways (named as tactics) in programming submissions and proposed a symbolic analysis approach named PaCon for clustering functionally correct programming submissions to provide a way of identifying tactics. Different from existing syntax-based approaches, PaCon determines the semantic equivalence of programs by the semantic equivalence of their path conditions. Our evaluation results on real-world data sets show that PaCon can produce a reasonable number of clusters each of which effectively groups together those submissions with high syntax diversity while sharing equivalent path-condition-based semantics, providing a promising way toward identifying tactics.
References

