
Systematic Structural Testing of Firewall Policies

JeeHyun Hwang1 Tao Xie1 Fei Chen2 Alex X. Liu2

1 Department of Computer Science, North Carolina State University, Raleigh, NC 27695-8206
2 Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824-1266

jhwang4@ncsu.edu xie@csc.ncsu.edu {feichen,alexliu}@cse.msu.edu

Abstract

Firewalls are the mainstay of enterprise security and the

most widely adopted technology for protecting private net-

works. As the quality of protection provided by a firewall

directly depends on the quality of its policy (i.e., configu-

ration), ensuring the correctness of firewall policies is im-

portant and yet difficult. To help ensure the correctness of

a firewall policy, we propose a systematic structural testing

approach for firewall policies. We define structural cover-

age (based on coverage criteria of rules, predicates, and

clauses) on the policy under test. To achieve high structural

coverage effectively, we have developed three automated

packet generation techniques: the random packet genera-

tion, the one based on local constraint solving (considering

individual rules locally in a policy), and the most sophisti-

cated one based on global constraint solving (considering

multiple rules globally in a policy).

We have conducted an experiment on a set of real poli-

cies and a set of faulty policies to detect faults with gen-

erated packet sets. Generally, our experimental results

show that a packet set with higher structural coverage has

higher fault-detection capability (i.e., detecting more in-

jected faults). Our experimental results show that a reduced

packet set (maintaining the same level of structural cover-

age with the corresponding original packet set) maintains

similar fault-detection capability with the original set.

1 Introduction

Serving as the first line of defense against malicious at-

tacks and unauthorized traffic, firewalls are crucial elements

in securing the private networks of most businesses, institu-

tions, and home networks. A firewall is typically placed at

the point of entry between a private network and the outside

Internet so that all network traffic has to pass through it. In a

distributed system, messages are encapsulated into packets,

which often pass through multiple access points in a net-

work and firewalls are responsible for filtering, monitoring,

and securing such packets as the parts of a distributed sys-

tem [10]. Corruption or misconfiguration in firewalls may

cause that the firewalls fail to filter malicious packets prop-

erly and affect the performance and security of a distributed

system.

As security problems of firewalls are often caused by

misconfiguration in firewall policies, correctly specifying

firewall policies is a critical and yet challenging task for

building reliable firewalls [14]. There are many factors for

misconfiguring firewall policies. First, the rules in a fire-

wall policy are logically entangled because of the conflicts

among rules and the resulting order sensitivity. Second, a

firewall policy may consist of a large number of rules. A

firewall on the Internet may consist of hundreds or even a

few thousands of rules in extreme cases. Last but not the

least, an enterprise firewall policy often consists of legacy

rules that are written by different operators, at different

times, and for different reasons, which make maintaining

firewall policies even more difficult.

To help ensure the correctness of firewall policies, re-

searchers and practitioners have developed various firewall

analysis and testing tools. The main function of these fire-

wall analysis tools is to detect “bad smell” (i.e., “anoma-

lies”) in firewall policies based on some common patterns of

firewall configuration mistakes [2, 15]. Such firewall anal-

ysis tools are certainly useful; however, the main drawback

of such tools is that the “anomalies” may not be mistakes

and the number of “anomalies” could be too large to be

practically useful. Several firewall policy testing techniques

have been proposed [7, 9, 11]. However, these firewall pol-

icy testing techniques are not based on well-established test-

ing techniques in software engineering. For example, these

techniques do not consider coverage criteria [16] for fire-

wall policy testing

In this paper, we propose firewall policy testing based

on the concept of firewall policy coverage, which helps test

a firewall policy’s structural entities (i.e., rules, predicates,

and clauses) to check whether each entity is specified cor-

rectly. In firewall policy testing, test inputs and outputs are

packets and their evaluated decisions (against the firewall

policy under test), respectively. Given test packets and the

policy under test, when evaluating packets against the pol-

icy, our coverage measurement tool measures firewall pol-

icy coverage —- which entities of the policy are involved

(called “covered”) in the evaluation. Our systematic firewall

policy testing helps detect faults, which often do not follow

some configuration mistake patterns (e.g., anomalies [2,15]

and configuration errors [14]).

Policy testers shall generate a test suite to achieve high

structural coverage, which helps investigate a large por-

tion of policy entities for fault detection. We have devel-

oped an automated packet-generation tool (that can gen-

erate packets) for three packet-generation techniques: the

random packet generation technique, the one based on lo-

cal constraint solving (considering individual rules locally

in a policy), and the most sophisticated one based on global

constraint solving (considering multiple rules globally in a

policy). As generated packets are often large and manual

inspection of packet-decision pairs is tedious, we have de-

veloped an automated packet reduction tool to reduce the

number of packets while keeping the same level of struc-

tural coverage.

We have conducted an experiment on a set of real fire-

wall policies with mutation testing [4], which is a specific

form of fault injection that creates faulty versions of a pol-

icy by making small syntactic changes. We generate six

packet sets (for each policy): the first three are generated

by the three packet generation techniques, respectively and

the other three are their reduced packet sets, respectively.

Our experimental results show that among the first three

packet sets, a packet set with higher structural coverage (in-

cluding rule, predicate, and clause coverage) often achieve

higher fault-detection capability (i.e., detecting more in-

jected faults), which is measured through the number of

“killed mutants” (i.e., detected faults). Our experimental

results also show that a reduced packet set achieves similar

fault-detection capability with the original packet set.

The rest of the paper is organized as follows. Section 2

presents background information on firewall policies. Sec-

tion 3 presents a firewall model. Section 4 describes struc-

tural coverage of a firewall policy. Sections 5 and 6 illustrate

our proposed packet-generation techniques and test reduc-

tion technique, respectively. Sections 7 and 8 describe a

mechanism of measuring fault-detection capability and an

implementation of our framework, respectively. Section 9

illustrates the study of measuring policy coverage and fault-

detection capability. Sections 10 and 11 discuss related

work and issues, respectively. Section 12 concludes.

2 Firewall Policy

A firewall policy is composed of a sequence of rules that

specify under what conditions a packet is accepted and dis-

carded while passing between a private network and the

outside Internet. In other words, the policy describes a

sequence of rules to decide whether packets are accepted

(i.e., being legitimate) or discarded (i.e., being illegitimate).

A rule is composed of a set of fields (generally includ-

ing source/destination IP addresses, source/destination port

numbers, and protocol type) and a decision. Each field

represents the possible values (to match the corresponding

value of a packet), which are either a single value or a finite

interval of non-negative integers.

A packet matches a rule if and only if each value of the

packet satisfies the corresponding values in the rule. Upon

finding a matching rule, the corresponding decision of that

rule is derived. When evaluating a packet, the firewall pol-

icy follows the first-match semantic: the first matching rule

is given the highest priority among all the matching rules.

Figure 1 shows an example of a firewall policy. The

symbol “*” denotes that the corresponding field’s range

(in a rule) is equal to the domain of the field and is satis-

fied by any packet. An IP address is a 32 bit value (e.g.,

192.168.0.0), which is represented as a four-part dotted-

decimal address. Classless Inter-domain Routing (CIDR)

notation is used to represent IP ranges over an IP address

with a subnet mask (e.g., /16 or /24). For example, the range

of 192.168.0.0/24 implies IP addresses from 192.168.0.0

to 192.168.0.255. This range consists of all possible IP

addresses starting with the same left-most 24 bits (i.e.,

192.168.0) on the given IP address. Each of the remaining

8 bits (which do not have fixed values) is either 0 or 1.

The example has three firewall rules r1, r2, and r3.

Rule r1 accepts any packet whose destination IP address

is the network 192.168.0.0/16 (which indicates the range

[192.168.0.0, 192.168.255.255]). Rule r2 discards any

packet whose source IP address is the network 1.2.3.0/24
(which indicates the range [1.2.3.0, 1.2.3.255]) and port is

the range [1, 28 − 1] with the TCP protocol type. Rule r3

is a tautology rule to discard all packets. Consider that a

packet k whose destination IP address is 192.168.0.0 and

protocol type is UDP. When evaluating k, we find that k
can match both r1 and r3. Among the two rules, as r1 is

the first-matching rule, k is evaluated to be accepted (with

regards to the decision of r1).

3 Firewall Policy Model

This section illustrates a model of a firewall policy based

on common generic features. A firewall policy is composed

of a sequence of rules, each of which has the form (called

the generic representation) as follows.

〈predicate〉 → 〈decision〉 (1)

A 〈predicate〉 in a rule is a boolean expression over fields

on which a packet arrives. The 〈decision〉 of a rule can be

Rule Source IP Source Port Destination IP Destination Port Protocol Decision

r1 * * 192.168.0.0/16 * * accept

r2 1.2.3.0/24 * * [1, 28 − 1] TCP discard

r3 * * * * * discard

Figure 1. An example firewall policy

accept or discard and returned as the evaluation result when

the 〈predicate〉 is evaluated to be true.

A packet k can be viewed as a tuple (fv1, ..., fvn) over

a finite number of fields F1, ..., Fn, where fvi is a vari-

able whose values are within a domain, denoted by D(Fi).
For example, D(Fi) of the source/destination IP address is

[0, 232 − 1], (which indicates [0.0.0.0, 255.255.255.255]).
In a policy model, we convert values in fields (e.g., IP ad-

dress) to corresponding integer values to simplify a repre-

sentation format. The 〈predicate〉 is represented as a con-

junction form as follows.

F1 ∈ S1 ∧ ... ∧ Fn ∈ Sn (2)

We refer to each Fi ∈ Si as a 〈clause〉, which can be either

evaluated to true or false. Table 1 summarizes the notations

used in this paper.

The first-match semantic (of a firewall policy) shows

the same behavior with the execution of a series of

IF-THEN-ELSE statements in program code. Given a se-

quence of rules, the following process is iterated until reach-

ing the last rule: if a 〈predicate〉 in a rule is evaluated true,

then the corresponding decision is returned; otherwise, the

next rule (if exists) is evaluated.

T a test suite

P a set of predicates of the rules in a policy

C a set of clauses of the predicates in a policy

K a set of all valid packets such that ki ∈ D(Fi)
pi a predicate in a rule ri

ci a clause in a predicate

ri a rule in a typical firewall representation

(e.g., Figure 1)

Ri a rule in a policy model representation

(e.g., Figure 2)

Fi a field

Si a subset of domain D(Fi)
D(Fi) domain of field Fi

Cpi
(ci) a constraint of a clause ci in a predicate pi

C(pi) a constraint of a predicate pi

ki a packet

fvi a field value in a packet

P (ri) a path constraint to reach a rule ri in a policy

Table 1. Summary of notations

R1 : F1 ∈ [2, 5] ∧ F2 ∈ [5, 10] → accept
R2 : F1 ∈ [6, 7] ∧ F2 ∈ [5, 10] → discard

Figure 2. Example firewall rules

4 Structural Coverage Criteria

In firewall testing, exhaustive testing (i.e., executing all

possible test packets) is time consuming, inefficient, and of-

ten infeasible. Instead of exhaustive testing, we focus on

testing to cover only specific entities (i.e., a predicate tested

to be false or true) based on a set of defined coverage crite-

ria.

4.1 Definition

Treating the firewall policy under test as program code

(i.e., IF-THEN-ELSE statements), we apply structural cov-

erage criteria similar to the ones defined by Ammann et

al [3]. In this paper, we define rule, predicate, and clause

coverage criteria as follows. Note that P denotes a set of

predicates of the rules in the policy under test and C de-

notes the set of clauses in the predicates in P . T denotes a

test suite, which is a set of packet-decision pairs.

Definition 1 Rule Coverage Criterion (RCC) for a test

suite T requires that for each r ∈ R, the evaluation of the

test packets in T needs to match r (i.e, make p ∈ P to be

evaluated to true) at least once, respectively.

RCC requires that for each predicate p, p is evaluated

to true at least once. Figure 2 shows example firewall rules

where only two fields F1 and F2 are used. For example,

given two test packets, k1 (3, 5) and k2 (6, 10) over two

fields F1 and F2, both predicates p1 and p2 (of R1 and R2,

respectively) are evaluated to true and RCC is achieved

by these two test packets.

Definition 2 Predicate Coverage Criterion (PCC) for a

test suite T requires that for each p ∈ P , the evaluation

of the test packets in T needs to make p to be evaluated to

true and false at least once, respectively.

PCC requires that for each predicate p, p is evaluated

to true and false at least once. We find that k1 and k2 do

not evaluate p2 to false. Therefore, we require one more

packet such as k3 (6, 11) that evaluates p2 to be false to

achieve PCC.

Covering every predicate in a firewall requires at most 2n
test packets, where n is the number of rules. However, the

minimal number of test packets (for PCC) could be less

than 2n because a single test packet can satisfy multiple

true or false branches of predicates. As RCC and PCC
do not require each clause to be covered, we then define

clause coverage criterion (CCC), which specifically targets

at covering each clause in a predicate.

Definition 3 Clause Coverage Criterion (CCC) for a test

suite T requires that for each c ∈ C, the evaluation of the

test packets in T needs to make c to be evaluated to true and

false at least once, respectively.

In CCC, each clause is required to be evaluated to true

and false at least once independently from other clauses.

Consider that p1 includes two clauses c1 and c2 (with re-

gards to F1 and F2, respectively). Figure 3 illustrates four

test packets that evaluate all combinations of true and

false (of c1 and c2) and the corresponding boolean value

of p1 (in Column 5). There are several ways to cover clauses

in p1: (1) select k2 and k3 or (2) select k1 and k4. How-

ever, instead of the first selection, the second selection has

an advantage to increase the coverage in terms of RCC and

PCC.

packets c1 c2 p1 = (c1 ∧ c2)
k1 (3,5) T T T

k2 (6,10) F T F

k3 (3,11) T F F

k4 (6,11) F F F

Figure 3. Sample packets for all combina-
tions of true and false values of clauses c1

and c2

4.2 Measurement

We have developed a coverage measurement tool that

monitors whether rules, predicates, or clauses are covered

when evaluating packets against the policy under test. For

each structural coverage criterion, we define coverage mea-

surements as follows.

Rule coverage measurements. For the rule coverage

criterion, rule coverage is the percentage of the number of

covered rules (i.e., predicates being evaluated to true) in R
over |R|.

Predicate coverage measurements. For the predicate

coverage criterion, predicate coverage is the percentage of

the number of covered predicates (i.e., predicates being

evaluated to true or false) in P over 2 × |P |.
Clause coverage measurements. For the clause cover-

age criterion, clause coverage is the percentage of the num-

ber of covered true or false values of clauses in C over 2 ×
|C|.

4.3 Structural Coverage and Fault Detec-
tion

Policy testers may generate and select a test suite to

achieve a certain (high) level of coverage. However, our

main objective, through testing, is to detect faults in the

firewall policy while reaching a certain level of coverage.

Coverage analysis helps investigate a larger portion of enti-

ties for fault detection using a test suite that achieves higher

structural coverage.

Consider that a fault in entities (i.e., rules, predicate, or

clause) may cause to output incorrect decisions when eval-

uating some packets. A fault in a rule’s decision (e.g., using

accept by mistake instead of discard) is discovered if

and only if the rule is covered and the derived decision is

verified. A test suite with high rule coverage may detect

such faults easily and increase our confidence on the cor-

rectness of the policy against such faults. Similarly, a test

suite with high predicate/clause coverage may have a high

chance to detect faults in predicates/clauses. Therefore, we

are interested in covering each entity at least once to exer-

cise a wide range of the policy’s behavior.

5 Test Packet Generation

As manually generating packets for testing policies is te-

dious, we have developed three techniques to automatically

generate packets for a policy under test. The objective is to

generate packets for achieving high structural coverage.

In this section, p and C(p) denote a predicate and its

constraint, respectively. To evaluate p to be true (false),

a packet should satisfy the constraint C(p) (¬ C(p)) (for

the true (false) branch of p). C(p) is represented in the

form of Cp(c1) ∧ ∧ Cp(cn), where Cp(c1), ..., Cp(cn)
are the constraints of the clause c1, ..., cn in p, respectively.

5.1 Random Packet Generation Tech-
nique

The random packet generation technique is straightfor-

ward. A packet k is in the form of (k1, ..., kn), where k1,

..., kn are numeric values over fields (such as source ad-

dresses), whose domains are denoted by D(F1), ..., D(Fn).
Given the domains of the policy under test, the generator

for the technique automatically generates a packet k by ran-

domly selecting ki (within the domain D(Fi)). While the

technique does not require the policy itself in test generation

and can quickly generate a large number of test packets, the

technique often lacks effectiveness to achieve high struc-

tural coverage with the generated packets. Due to random-

ness, the number of the entities (i.e., predicates or clauses)

being covered is often small in comparison to the total num-

ber of the entities in the policy under test.

5.2 Packet Generation Technique based
on Local Constraint Solving

In general, test generation should focus on generating

packets to cover those entities (i.e., predicates and clauses)

that have not been covered previously. Different from the

preceding technique, the technique based on local constraint

solving statically analyzes rules to generate test packets.

Given a policy, the packet generator for the technique ana-

lyzes the entities in an individual rule and generates packets

to evaluate the constraints (i.e., conditions) of the entities

to be true or false. The technique takes into account local

constraints (given by a rule) without considering the impact

of other rules in the policy.

More specifically, the generator constructs constraints

C(p) and ¬C(p) (for both true and false branches of

p). The generator generates a packet based on the concrete

values to satisfy each constraint. However, the generated

packets may not cover each clause (to be true and false).

To target at covering many clauses, the generator constructs

combinations of Cp(ci) and ¬ Cp(ci). For example, com-

binations Cp(c1) ∧ ∧ Cp(cn) (for true branches of all

clauses) and ¬Cp(c1)∧ ∧¬Cp(cn) (for false branches

of all clauses) can be considered.

There are two major limitations of the technique. First,

the generated packets may fail to cover target entities due

to overlapping predicates (i.e., predicates that can be satis-

fied by the same packet) across multiple rules. As shown

in Figure 1, a packet k (whose destination IP address is

192.168.0.0 and protocol type is UDP) satisfies the predi-

cates of both r1 and r3 but fail to be evaluated against r3,

which can be k’s potential target entities. Second, the tech-

nique cannot determine whether a structural entity could be

covered in advance. Some rules may be completely shad-

owed by other rules and never evaluated. In such cases,

there is no criterion to decide whether to generate additional

packets (based on other more capable solutions to solve the

same constraints) or stop testing.

5.3 Packet Generation Technique based
on Global Constraint Solving

To better generate packets to cover target entities, our

generator (based on global constraint solving) analyzes the

policy under test and generates packets by solving global

constraints (collected from the policy). The motivation of

global constraint solving is to take into account the influ-

ence of overlapping predicates across rules. Covering enti-

ties in a rule requires that the predicates of all the preceding

rules should be evaluated to false. To find such entities, we

define rule reachability as follows.

Definition 4 Rule reachability of a test packet k to reach a

rule ri ∈ R (denoting the set of rules in the policy) requires

that for each predicate p1, ..., pi ∈ P (denoting the set of

predicates in R), the evaluation of the test packet k needs to

evaluate ri’s preceding predicates p1, ..., pi−1 to false and

pi to true or false.

All the reachable rules are feasible to be evaluated by

packets. Otherwise, infeasible rules could be detected and

removed similar to dead code in programs.

More specifically, to cover entities in a rule ri, we ex-

plore a (path) constraint P (ri) that represents rule ri reach-

ability. P (ri) is represented as the form of ¬C(p1) ∧ ∧
¬C(pi−1) where C(p1), ..., C(pi−1) are the predicate con-

straints in the preceding rules r1, ..., ri−1. Given the path

constraint P (ri), to cover the predicate pi in ri, the gener-

ator constructs two constraints P (ri) ∧ C(pi) and P (ri) ∧
¬C(pi). As the generator generates packets based on solu-

tions of constraints P (ri) ∧ C(pi) and P (ri) ∧ ¬C(pi),
the packets reach ri and exercise ri’s true and false

branches, respectively. To cover many clauses in a rule ri,

the generator constructs constraints as follows. The genera-

tor conjuncts P (ri) with the combinations of Cp(ci) and ¬
Cp(ci) in ri. In summary, P (ri) is additionally used upon

the preceding technique to cover target entities by taking

into account the impact of overlapping predicates in the pre-

ceding rules.

The generator generates packets based on solutions for

the collected constraints. This technique is useful to gen-

erate packets with high structural coverage by taking into

account the impact of the preceding rules of a target rule.

However, this technique requires higher analysis time (e.g.,

constraint-solving cost) than the two preceding techniques.

6 Test Reduction

The number of generated packets can be high. In such

cases, it is tedious for the policy authors to manually in-

spect a test suite, which is a set of packet-decision pairs.

Therefore, we should reduce the size of the test suite for in-

spection without incurring substantial loss in fault-detection

capability. Since structural coverage is an important factor

for reflecting fault-detection capability, we can reduce the

size of the test suite while keeping its coverage level. In our

test reduction, we apply the minimization technique used by

Martin et al. [13] to reduce test packets.

Given a packet set, we evaluate a packet against the pol-

icy under test one by one. We use a greedy algorithm that

removes a packet from the packet set if and only if eval-

uating the packet does not increase any of the coverage

metrics that are achieved by previously evaluated packets

in the packet set. Therefore, the reduced packet set is a

set of packets where each packet contributes to cover (not-

yet-covered) new entities and increase coverage. However,

through such a greedy algorithm, this reduced set may not

be a “minimum set”, which includes the smallest possible

number of packets that achieve the same coverage level as

the original packet set.

7 Measuring Fault-Detection Capability

Fault detection is a central focus of any testing process.

In this paper, we use mutation testing [4] to measure fault-

detection capabilities of a test suite. In policy mutation test-

ing, we inject a fault into the original policy and thereby

create a mutant (faulty version). Injected faults can be of

various types including simple mistakes (e.g., incorrect de-

cision in a rule) and complex configuration errors involving

multiple rules. The intuition behind mutation testing is that

if a policy contains a fault, there will usually be a set of

mutants that can be detected (killed) only by a test that also

detects that fault. In other words, the ability to detect small,

minor faults such as mutants implies the ability to detect

complex faults.

When different decisions are produced by the evalua-

tions of the same test packet on the original policy and its

mutant, the test packet is adequate to detect the fault in the

mutant and we say that the mutant is “killed”. When var-

ious mutants are used, fault-detection capability of a test

suite is measured through the mutant-killing ratio, which is

the number of mutants killed by the test suite divided by the

total number of mutants.

Table 2 shows the chosen mutation operators for firewall

policies and their descriptions. Mutation operators may

change predicates, clauses, or decisions of a policy. We

classify mutation operators into two groups: (1) rule-level

mutation operators including RPT , RPF , CRO, CRD,

and RMR and (2) clause-level mutation operators includ-

ing RCT , RCF , CRSV , CREV , CRSO, and CREO.

The first group modifies a predicate, rule order, or a de-

cision in a rule. The number of generated mutants with

each mutation operator is equal to the number of rules of

the policy. The second group modifies a clause in a rule.

The number of generated mutants with each mutation op-

erator is equal to the number of clauses. The total number

of generated mutants is proportional to the number of rules,

predicates, and clauses of the policy. Note that the mutant

generator for each mutation operator may generate equiv-

alent mutants, which are mutants with the same behaviors

as the original policy; an equivalent mutant cannot be killed

by any test packet.

In our approach, we apply mutation testing to investigate

the relationship between firewall policy structural coverage

achieved by a packet set and the packet set’s fault-detection

capability.

8 Implementation

Our implementation (written in Java) includes four com-

ponents: test generation, test evaluation, packet reduction,

and mutation generation. In the test generation component,

for packet generation based on local constraint solving, our

packet generator selects random values (that satisfy a given

constraint) for each field value of a test packet. For packet

generation based on global constraint solving, we leveraged

a theorem prover called Z31. The component statically an-

alyzes the policy under test. Then the component automat-

ically collects and converts each constraint to the SMT-LIB

(Satisfiability Modulo Theories Library) format2. Z3 ana-

lyzes this constraint and finds concrete solutions (i.e., nu-

meric values), each of which is transformed to a test packet.

If no solution exists, Z3 outputs unsolvable.

In the test evaluation component, as no universal fire-

wall evaluation engine is available, we developed a generic

firewall evaluation engine to simulate evaluating packets

against the policy under test. The engine parses and

stores rules as a List. When evaluating a packet, the en-

gine searches for the first-applicable rule and outputs the

rule’s decision. Through packet evaluation, the evalua-

tion engine also monitors the evaluation process of all the

packet/decision pairs and which predicates and clauses in

the policy are covered. The engine also automatically com-

pares the evaluated decisions (on the policy and the mutated

policies) and log “killed” mutant information if the deci-

sions are inconsistent.

In the packet reduction component, our packet reduction

tool observes the details of covered entities and their cover-

ing packets as well as the details of uncovered entities when

evaluating a packet set. In the mutation generation compo-

nent, our mutator automatically generates mutant policies

by modifying the policy under test using the selected muta-

tion operator.

9 Experiments

We carried out our experiments on a laptop PC running

Windows XP SP2 with 1G memory and dual 1.86GHz In-

tel Pentium processor. The packet generation tool generates

1http://research.microsoft.com/projects/z3/
2http://www.smtlib.org/

Table 2. Mutation operators for policy mutation testing.
Name Description

Rule Predicate True (RPT) A rule is applied to all packets by modifying every clause range to “*”.

Rule Predicate False (RPF) A rule is never applied to any packet by modifying every clause range to

an invalid range (e.g., [10, 5]).
Rule Clause True (RCT) A clause ci is applied to the field value fvi of all packets by modifying

the clause range to “*”.

Rule Clause False (RCF) A clause ci is never applied to the field value fvi of all packets by mod-

ifying the clause range to an invalid range (e.g., [10, 5]).
Change Range Start point Value (CRSV) The range in a clause is changed by modifying the start point value ran-

domly.

Change Range End point Value (CREV) The range in a clause is changed by modifying the end point value ran-

domly.

Change Range Start point Operator (CRSO) The range in a clause is changed by increasing the start point value by

one.

Change Range End point Operator (CREO) The range in a clause is changed by decreasing the end point value by

one.

Change Rule Order (CRO) Rule order is changed by exchanging the locations of two adjacent rules.

Change Rule Decision (CRD) A rule’s decision is inverted (i.e., accept to discard or discard to

accept).

Remove Rule (RMR) No packet can be applied to the rule simply by removing the rule in a

policy.

packet sets using the three techniques (random packet gen-

eration, packet generation based on local constraint solving,

and one based on global constraint solving). We use Rand,

Local, and Global to denote the packet sets generated by

these three techniques, respectively. For each policy, we

measured the structural coverage of each packet set and re-

duce the size of each packet set while keeping the same level

of structural coverage. We use R−Rand, R−Local, and

R−Global to denote the reduced packet sets, respectively.

The mutator generates mutants (using the defined muta-

tion operators) by seeding faults in each policy (with one

mutant including one seeded fault). For each policy and

its mutants, the evaluation engine checked if a mutant is

“killed” and measured mutant-killing ratios of each packet

set (i.e., the number of mutants killed by the packet set di-

vided by the total number of mutants).

We compare our proposed three packet-generation tech-

niques in terms of effectiveness to achieve structural cover-

age by the generated packet sets. In order to investigate the

effect of structural coverage on fault-detection capability,

we aim to demonstrate that packet sets with higher coverage

can detect more faults than packet sets with lower coverage.

We have also conducted the same experiment with reduced

packet sets to further investigate whether this reduction sig-

nificantly affects their fault-detection capability.

For each policy and packet set, the following metrics

are measured: structural coverage percentage (rule cover-

age, predicate coverage, and clause coverage percentage),

mutant-killing ratios, the number of packets in generated

packet sets and reduced sets, and packet generation time.

9.1 Instrumentation

We conducted experiments on 14 real-life firewall poli-

cies collected from a variety of sources. We obtained 42

real-life firewall policies from distinct network services.

As some firewall policies from the same network service

provider have similar structure, we choose 14 real-life fire-

wall policies with distinct structures. These policies’ format

is the same as described in Figure 1.

We generated about two packets per rule for each pol-

icy and packet-generation technique. The random packet-

generation technique generated n × 2 random packets,

where n is the number of rules. For the local and global

constraint-solving packet-generation techniques, we first

generated the following two constraints for each rule: (1)

a constraint for evaluating every clause in the rule to true

and (2) a constraint for evaluating clauses, each of which is

within (but not equal to) its domain, to false and the remain-

ing clauses (which subsume their domains) to true. Because

many clauses in firewall policies subsume their domains

(e.g., clauses with “*” marks in Figure 1) and these clauses

cannot be evaluated to false, we evaluated such clauses to

true in the second constraint as described earlier. The lo-

��� ���� ����	
�� ��
� ���
� 	�	
�� 	���
� 	����
� ���
�� ������
���� � �� � � � � � � ���� �������� !����� " ��" �# �# $ � " % ���� ���!�&�'����� �(�"" "� "� %� � �� �� �#%#% �)� ��*��)�&�'����� �(%(� �� �� �� � �# $ ���" �)� �+&*'�&�'����� �� �($ "� "� %% � �(�$ ($�� �)� �+&*'��&�'����� �� �#� "� "� �$ � �% �% $�$� �)� �+&*'��&�'����� �� ��% "% "% %� � �" �" $(�(�)� �+&*'%�&�'����� �(��# "� "� "� � �% �� $�$$ �!,-*�&�'����� �% ��# �(�(�" � �� �� %(��# �!*��&�'����� �� %"$ �% �% �$ � �� �� "�$�� �	��	&'&�)&��&�'��� �� �%# %� %� �% � �% �� (�#�� �	��	&'&�).��&�'��� � ��� �� �� �� � � " ��"�� �**+�&�'����� �� %�� �� �� �� � (� "%��% �-�!� !����� �% �"(%(%(%# � �$ �� (%����
/� �(0�% %$%0�� ��0�$ ��0�$ �#0�� �0�� ��0"# ��0�$ �"�0#%
1)2�
���1 	2��� 1 	��2��� 3
�4�������5 1 �
�4���

Figure 4. Experimental results on firewall policies

6768696:6
;66

< = > ? @ A B C D <E << <= <> <? FGHIJKLMNOLPQRLSTU
VWXY Z[\W] ^][_W]

Figure 5. Rule coverage
achieved by each packet

set

`a`b`c`d`
e``

f g h i j k l m n fo ff fg fh fipqrstuvwxyzu{|}uty~
u��� ���� ����� ������
Figure 6. Predicate cov-
erage achieved by each
packet set

���������
���

� � � � � � � � � �� �� �� �� �� ���� ¡¢£¤�¥¦¤§¡̈¤©
ª« ¬®¯ °±²³ ´³±µ³
Figure 7. Clause coverage
achieved by each packet
set

cal constraint-solving packet-generation technique gener-

ated n × 2 packets. The global constraint-solving packet-

generation technique conjuncts the path constraint for a tar-

get rule with its two preceding constraints to form a new

constraint for solving. If the new constraint is found to

be infeasible (due to the impact of the path condition),

this technique cannot generate packets to satisfy such con-

straints and may include fewer than n × 2 packets.

When generating mutants, mutation operators may gen-

erate a mutated policy that is the same (syntactically) as the

original policy. As such a mutant does not include any fault,

we excluded the mutant.

9.2 Comparison of Structural Coverage

Figure 4 shows the basic statistics of each firewall pol-

icy. Columns 1-3 show subject names, numbers of rules,

and generated mutants for each firewall policy. Column “#

Packets” shows the size of the generated packet sets Rand,

Local, and Global, respectively for each packet genera-

tion technique. Columns 7-9 show the size of their reduced

packet sets (R−Rand, R−Local, and R−Global), respec-

tively. Column 10 shows the analysis time (in milliseconds)

for generating Global (the most costly one among the three

techniques) and this analysis time also includes the time to

generate and solve constraints.

Global may contain fewer packets than Rand and

Local. The reason is that when solving a global constraint,

the constraint can be infeasible to be solved and a con-

straint solver returns a decision of unsolvable — no packets

are generated based on the decision. The analysis time for

Rand and Local is not shown in Figure 4. The reason is

that the time is too short to be measured in milliseconds and

negligible (in comparison with that of Global).

Figures 5, 6, and 7 show the rule, predicate, clause

coverage metrics, respectively, of each policy achieved by

Rand, Local, and Global. We observe that Rand achieved

the lowest structural coverage. The reason is that ran-

domly generated field values in generated packets have a

low chance of satisfying constraints for a rule, predicate, or

clause. We observe that Global achieves higher rule/clause

coverage than other packet sets. This observation is consis-

tent with our expectation described in Section 5. On aver-

age, the Global is approximately 2% and 56% higher than

Local and Rand in terms of rule/clause coverage.

We also observe that for clause coverage, Global
achieves approximately similar (sometimes less) coverage

with Local. As illustrated earlier, Global may include

fewer packets based on the constructed constraints. When a

constraint is found to be infeasible, we did not take into ac-

count other clause-constraint combinations, which may be

feasible to solve for covering some of uncovered clauses.

¶·¸¶¸·¹¶¹·º¶
º·»¶»·

¸ ¹ º » · ¼ ½ ¾ ¿ ¸¶ ¸¸ ¸¹ ¸º ¸» ÀÁÂÃÄÅÆÇÅÈÉÊÊÉÇËÌÆÅÉÍÎÏÐÑ Ò
ÓÔÕÖ Ó×ÓÔÕÖ ØÙÚÔÛ Ó×ØÙÚÔÛ ÜÛÙÝÔÛ Ó×ÜÛÙÝÔÛ

Figure 8. Mutant-killing ratios for all opera-

tors by subjects.

ÞßÞàÞáÞâÞãÞäÞ
åÞæÞçÞßÞÞ

èéê èéë èìê èìë ìèíî ìèïî ìèíð ìèïð ìèð ìèñ èòèóôõö÷õøùúúù÷ûüöõùýþ
ÿ�� ���� ������ ��	�
 ����	�
 �
���
 ���
���

Figure 9. Mutant-killing ratios for all sub-
jects by operators.

Instead, Local may cover some (but not all) target clauses

among such uncovered clauses. Furthermore, as our sub-

jects have only a few or no overlapping predicates across

rules, the packet-generation technique based on local con-

straint solving could generate a packet set with almost the

highest structural coverage. If predicates are more complex,

we expect that Global shall perform better than Local.

9.3 Comparison of Fault-Detection Capa-
bility

To find correlation between each structural coverage and

mutation-killing ratios, we classify mutation operations into

two categories, rule-level and clause-level mutation opera-

tors (explained in Section 7).

Figure 8 shows the average mutant killing ratios for all

operators by policies. We observe that the mutant killing

ratios are similar over the generated packet sets and their

reduced packet set. The largest ratio difference between the

generated packet sets and their reduced packet set is less

than 2%. Rand and R−Rand show the lowest mutant-

killing ratios. As Rand contains the largest number of

packets and the lowest mutant-killing ratios, we observe

that the size of a packet set is not highly correlated with

fault-detection capability. We also observe that Global and

R−Global achieve the highest mutant-killing ratios. This

result is expected as the evaluation of these packet sets can

involve more structural entities than the other packet sets.

We next present more details about mutants being killed.

Figure 9 shows the average mutant killing ratios for all poli-

cies by operators. For rule-level mutation operators, we ob-

serve that Global and R−Global achieve highest mutant-

killing ratios. The reason is that the highest rule/predicate

coverage achieved by Global and R−Global helps exercise

more rules and detect faults in rules.

Among clause-level mutation operations, Local and R−
Local achieve the highest mutant-killing ratios over RCT ,

RCF , CREV , and CREO mutated policies. As Local

and R−Local evaluate more clauses to true or false, the

packet sets are more effective to detect faults in a larger

portion of clauses in the policy. Global and R−Global de-

tect more faults in CRSV and CRSO mutated policies.

The reason is that a packet in Global is based on a solu-

tion for a given constraint, which is solved by the constraint

solver Z3. Among all the possible solutions, Z3 tries to out-

put solutions with lower-boundary values in the constraint.

Therefore, Global and R − Global are effective to detect

faults caused by the change of the start value of a clause

over other packet sets.

10 Related Work

For testing access control policies such as XACML poli-

cies [1], Martin et al. [13] proposed policy testing ap-

proaches that define and measure policy structural coverage.

They also proposed to mutate policies [12], and generate

random requests automatically. Their proposed structural

coverage criteria and mutation operators are not directly ap-

plicable to firewall policies due to the semantic and syntac-

tic difference. Our approach includes more advanced test

generation techniques (based on local and global constraint

solving) than random techniques.

Some researchers proposed firewall testing with test

cases generated based on their proposed criteria. Jürjens

et al. [8] proposed specification-based testing, which gen-

erates test sequences to cover a state transition model of a

firewall and its surrounding network. El-Atawy et al. [5]

proposed policy criteria identified by interactions between

rules. Their proposed criteria are used to test the correctness

of a firewall implementation instead of that of the firewall

policy itself, which our approach focuses on. In addition,

we also use mutation testing to evaluate our approach.

Several firewall policy testing techniques [7, 9, 11] in-

ject packets into a firewall and check whether the decisions

of the firewall concerning the injected packets are correct.

These techniques lack rigorousness such as the use of cover-

age criteria and effective tools for generating covering tests.

In contrast, our approach is based on solid foundations and

advanced test-packet generation techniques.

11 Discussion and Future Work

We believe that our approach could be practical and ef-

fective to detect real faults in firewall policies. Real faults

may consist of one or several simple faults described in our

proposed mutation operators (in Table 2). Therefore, the

detection of real faults often depends on that of the simple

faults, which are shown to be detected more effectively by

a packet set with higher structural coverage. In addition,

the policy testers manually compare the evaluated decisions

and their expected decisions to detect such faults. In such

cases, our packet-reduction mechanism is useful to reduce

the size of test packets.

Our current approach tests a (stateless) firewall policy.

We plan to extend our approach to a stateful firewall. In a

stateful firewall, the decision is not solely dependent on a

packet itself, but also on other resources such as previously

accepted packets and dynamic features in a firewall [6].

Testing such firewalls, which are represented as finite state

machines (FSM), requires to generate a series of packets to

cover states, edges, or paths in the FSM. We plan to ex-

tend our proposed test coverage criteria to address covering

states, edges, or paths in the FSM.

12 Conclusion

We have developed a systematic structural testing ap-

proach for firewall policies. We defined three types of

structural coverage for firewall policies: rule, predicate,

and clause coverage criteria. Among the three proposed

packet generation techniques, the global constraint solving

technique often generated packet sets to achieve the high-

est structural coverage. Generally, our experimental results

showed that a packet set with higher structural coverage

has higher fault-detection capability (i.e., detecting more

injected faults). Our experimental results showed that a re-

duced packet set (maintaining the same level of structural

coverage with the corresponding original packet set) main-

tains similar fault-detection capability with the original set.

Acknowledgment

This work is supported in part by NSF grant CNS-

0716579, NSF grant CNS-0716407, and MSU IRGP Grant.

References

[1] OASIS eXtensible Access Control Markup Language

(XACML). http://www.oasis-open.org/

committees/xacml/, 2007.

[2] E. Al-Shaer and H. Hamed. Discovery of policy anomalies

in distributed firewalls. In Proc. 23rd Conf. IEEE Commu-

nications Soc., pages 2605–2616, 2004.

[3] P. Ammann, J. Offutt, and H. Huang. Coverage criteria for

logical expressions. In Proc. 14th International Symposium

on Software Reliability Engineering, pages 99–107, 2003.

[4] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test

data selection: Help for the practicing programmer. IEEE

Computer, 11(4):34–41, April 1978.

[5] A. El-Atawy, T. Samak, Z. Wali, E. Al-Shaer, F. Lin,

C. Pham, and S. Li. An automated framework for validating

firewall policy enforcement. In Proc. 8th IEEE International

Workshop on Policies for Distributed Systems and Networks,

pages 151–160, 2007.

[6] M. G. Gouda and A. X. Liu. A model of stateful firewalls

and its properties. In Proc. International Conference on De-

pendable Systems and Networks, pages 128–137, 2005.

[7] D. Hoffman and K. Yoo. Blowtorch: a framework for fire-

wall test automation. In Proc. 20th IEEE/ACM international

Conference on Automated software engineering, pages 96 –

103, 2005.

[8] J. Jürjens and G. Wimmel. Specification-based testing

of firewalls. In Proc. 4th International Andrei Ershov

Memorial Conference on Perspectives of System Informat-

ics, pages 308–316, 2001.

[9] A. X. Liu, M. G. Gouda, H. H. Ma, and A. H. Ngu. Non-

intrusive testing of firewalls. In Proc. 1st International Com-

puter Engineering Conference, pages 196–201, 2004.

[10] S. W. Lodin and C. L. Schuba. Firewalls fend off invasions

from the net. IEEE Spectr., 35(2):26–34, 1998.

[11] M. R. Lyu and L. K. Y. Lau. Firewall security: Policies, test-

ing and performance evaluation. In Proc. 24th International

Conference on Computer Systems and Applications, pages

116–121, 2000.

[12] E. Martin and T. Xie. A fault model and mutation testing of

access control policies. In Proc. 16th International Confer-

ence on World Wide Web, pages 667–676, 2007.

[13] E. Martin, T. Xie, and T. Yu. Defining and measuring pol-

icy coverage in testing access control policies. In Proc. 8th

International Conference on Information and Communica-

tions Security, pages 139–158, 2006.

[14] A. Wool. A quantitative study of firewall configuration er-

rors. Computer, 37(6):62–67, 2004.

[15] L. Yuan, J. Mai, Z. Su, H. Chen, C.-N. Chuah, and P. Mo-

hapatra. FIREMAN: A toolkit for FIREwall Modeling and

ANalysis. In Proc. IEEE Symposium on Security and Pri-

vacy, pages 199–213, 2006.

[16] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test

coverage and adequacy. ACM Comput. Surv., 29(4):366–

427, 1997.

