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Abstract

Improving Effectiveness of Automated Software Testing

in the Absence of Speci�cations

Tao Xie

Chair of Supervisory Committee:

Professor David Notkin
Computer Science and Engineering

This dissertation presents techniques for improving effectiveness of automated software testing in

the absence of speci�cations, evaluates the ef�cacy of these techniques, and proposes directions for

future research.

Software testing is currently the most widely used method for detecting software failures. When

testing a program, developers need to generate test inputs for the program,run these test inputs on

the program, and check the test execution for correctness. It has been well recognized that software

testing is quite expensive, and automated software testing is important for reducing the laborious

human effort in testing. There are at least two major technical challenges inautomated testing: the

generation of suf�cient test inputs and the checking of the test executionfor correctness. Program

speci�cations can be valuable in addressing these two challenges. Unfortunately, speci�cations are

often absent from programs in practice.

This dissertation presents a framework for improving effectiveness of automated testing in the

absence of speci�cations. The framework supports a set of related techniques. First, it includes

a redundant-test detector for detecting redundant tests among automaticallygenerated test inputs.

These redundant tests increase testing time without increasing the ability to detect faults or increas-

ing our con�dence in the program. Second, the framework includes a non-redundant-test generator

that employs state-exploration techniques to generate non-redundant tests in the �rst place and uses





symbolic execution techniques to further improve the effectiveness of testgeneration. Third, be-

cause it is infeasible for developers to inspect the execution of a large number of generated test

inputs, the framework includes a test selector that selects a small subset oftest inputs for inspection;

these selected test inputs exercise new program behavior that has not been exercised by manually

created tests. Fourth, the framework includes a test abstractor that produces succinct state transition

diagrams for inspection; these diagrams abstract and summarize the behavior exercised by the gen-

erated test inputs. Finally, the framework includes a program-spectra comparator that compares the

internal program behavior exercised by regression tests executed ontwo program versions, exposing

behavioral differences beyond different program outputs.

The framework has been implemented and empirical results have shown that the developed tech-

niques within the framework improve the effectiveness of automated testing bydetecting high per-

centage of redundant tests among test inputs generated by existing tools, generating non-redundant

test inputs to achieve high structural coverage, reducing inspection efforts for detecting problems in

the program, and exposing more behavioral differences during regression testing.
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Chapter 1

INTRODUCTION

Software permeates many aspects of our life; thus, improving software reliability is becoming

critical to society. A recent report by National Institute of Standards andTechnology found that

software errors cost the U.S. economy about $60 billion each year [NIS02]. Although much progress

has been made in software veri�cation and validation, software testing is still themost widely used

method for improving software reliability. However, software testing is labor intensive, typically

accounting for about half of the software development effort [Bei90].

To reduce the laborious human effort in testing, developers can conduct automated software

testing by using tools to automate some activities in software testing. Software testingactivities

typically include generating test inputs, creating expected outputs, running test inputs, and verifying

actual outputs. Developers can use some existing frameworks or tools such as the JUnit testing

framework [GB03] to write unit-test inputs and their expected outputs. Thenthe JUnit framework

can automate running test inputs and verifying actual outputs against the expected outputs. To

reduce the burden of manually creating test inputs, developers can use some existing test-input

generation tools [Par03,CS04,Agi04] to generate test inputs automatically.After developers modify

a program, they can conductregression testingby rerunning the existing test inputs in order to assure

that no regression faults are introduced. Even when expected outputs are not created for the existing

test inputs, the actual outputs produced by the new version can be automatically compared with the

ones produced by the old version in order to detect behavioral differences.

However, the existing test-generation tools often cannot effectively generate suf�cient test inputs

to expose program faults or increase code coverage. In addition, when these tools are used to

generate test inputs automatically, expected outputs for these test inputs arestill missing, and it is

infeasible for developers to create expected outputs for this large numberof generated test inputs.
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Although speci�cations can be used to improve the effectiveness of generating test inputs and check

program correctness when running test inputs without expected outputs, speci�cations often do not

exist in practice. In regression testing, the existing approach of comparing observable outputs is

limited in exposing behavioral differences inside program execution; these differences could be

symptoms of potential regression faults.

Our research focuses on developing a framework for improving effectiveness of automated test-

ing in the absence of speci�cations. The framework includes techniques and tools for improving

the effectiveness of generating test inputs and inspecting their executions for correctness, two major

challenges in automated testing.

This chapter discusses activities and challenges of automated software testing (Section 1.1),

lists the contributions of the dissertation: a framework for improving effectiveness of automated

testing (Section 1.2), de�nes the scope of the research in the dissertation (Section 1.3), and gives an

organization of the remainder of the dissertation (Section 1.4).

1.1 Activities and Challenges of Automated Software Testing

Software testing activities consist of four main steps in testing a program: generating test inputs,

generating expected outputs for test inputs, run test inputs, and verify actual outputs. To reduce

the laborious human effort in these testing activities, developers can automate these activities to

some extent by using testing tools. Our research focuses on developing techniques and tools for

addressing challenges of automating three major testing activities: generatingtest inputs, generating

expected outputs, and verifying actual outputs, particularly in the absence of speci�cations, because

speci�cations often do not exist in practice. The activities and challengesof automated software

testing are described below.

Generate (suf�cient ) test inputs. Test-input generation (in short, test generation) often occurs when

an implementation of the program under test is available. However, before aprogram imple-

mentation is available, test inputs can also be generated automatically during model-based

test generation [DF93,GGSV02] or manually during test-driven development [Bec03], a key

practice of Extreme Programming [Bec00]. Because generating test inputsmanually is often

labor intensive, developers can use test-generation tools [Par03,CS04,Agi04] to generate test
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inputs automatically or use measurement tools [Qui03, JCo03, Hor02] to help developers de-

termine where to focus their efforts. Test inputs can be constructed based on the program's

speci�cations, code structure, or both. For an object-oriented program such as a Java class, a

test input typically consists of a sequence of method calls on the objects of theclass.

Although the research on automated test generation is more than three decades old [Hua75,

Kin76,Cla76,RHC76], automatically generating suf�cient test inputs still remains a challeng-

ing task. Early work as well as some recent work [Kor90, DO91, KAY96, GMS98, GBR98,

BCM04] primarily focuses on procedural programs such as C programs. More recent re-

search [KSGH94, BOP00, Ton04, MK01, BKM02, KPV03, VPK04] also focuses on gener-

ating test inputs for object-oriented programs, which are increasingly pervasive. Generat-

ing test inputs for object-oriented programs adds additional challenges, because inputs for

method calls consist of not only method arguments but also receiver-object states, which

are sometimesstructurally complexinputs, such as linked data structures that must satisfy

complex properties. Directly constructing receiver-object states requires either dedicated al-

gorithms [BHR+ 00] or class invariants [LBR98, LG00] for specifying properties satis�ed by

valid object states; however, these dedicated algorithms or class invariantsare often not read-

ily available in part because they are dif�cult to write. Alternatively, method sequences can

be generated to construct desired object states indirectly [BOP00,Ton04]; however, it is gen-

erally expensive to enumerate all possible method sequences even givena small number of

argument values and a small bound on the maximum sequence length.

Generate expected outputs (for alargenumber of test inputs). Expected outputs are generated

to help determine whether the program behaves correctly on a particular execution during

testing. Developers can generate an expected output for each speci�ctest input to form pre-

computed input/output pair [Pan78,Ham77]. For example, the JUnit testing framework [GB03]

allows developers to write assertions in test code for specifying expectedoutputs. Devel-

opers can also write checkable speci�cations [Bei90, BGM91, DF93, MK01, CL02, BKM02,

GGSV02] for the program and these speci�cations offer expected outputs (more precisely,

expected properties) for any test input executed on the program.
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It is tedious for developers to generate expected outputs for a large number of test inputs. Even

if developers are willing to invest initial effort in generating expected outputs, it is expensive

to maintain these expected outputs when the program is changed and some of these expected

outputs need to be updated [KBP02,MS03].

Run test inputs (continuouslyand ef�ciently ). Some testing frameworks such as the JUnit testing

framework [GB03] allow developers to structure severaltest cases(each of which comprises

a test input and its expected output) into atest suite, and provide tools to run a test suite

automatically. For graphical user interface (GUI) applications, running test inputs especially

requires dedicated testing frameworks [OAFG98,Mem01,Rob03,Abb04].

In software maintenance, it is important to run regression tests frequently inorder to make

sure that new program changes do not break the program. Developers can manually start the

execution of regression tests after having changed the program or con�gure to continuously

run regression tests in the background while changing the program [SE03]. Sometimes run-

ning regression tests is expensive; then developers can use mock objects [MFC01, SE04] to

avoid rerunning the parts of the program that are slow and expensive torun. Developers can

also use regression test selection [RH97, GHK+ 01, HJL+ 01] to select a subset of regression

tests to rerun or regression test prioritization [WHLB97,RUCH01,EMR02] to sort regression

tests to rerun. Although some techniques proposed in our research can be used to address

some challenges in running test inputs, our research primarily addressesthe challenges in the

other three steps.

Verify actual outputs (in the absenceof expected outputs).A test oracleis a mechanism for check-

ing whether the actual outputs of the program under test is equivalent to the expected out-

puts [RAO92,Ric94,Hof98,MPS00,BY01]. When expected outputs are unspeci�ed or spec-

i�ed but in a way that does not allow automated checking, the oracle often relies on de-

velopers' eyeball inspection. If expected outputs are directly written as executable asser-

tions [And79,Ros92] or translated into runtime checking code [GMH81,Mey88,MK01,CL02,

BKM02, GGSV02], verifying actual outputs can be automated. When no expected outputs

are available, developers often rely on program crashes [MFS90, KJS98] or uncaught excep-
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tions [CS04] as symptoms for unexpected behavior. When no expected outputs are speci�ed

explicitly, in regression testing, developers can compare the actual outputsof a new version

of the program with the actual outputs of a previous version [Cha82].

As has been discussed in the second step, it is challenging to generate expected outputs for a

large number of test inputs. In practice, expected outputs often do not exist for automatically

generated test inputs. Without expected outputs, it is often expensive and prone to error for

developers to manually verify the actual outputs and it is limited in exploiting these generated

test inputs by verifying only whether the program crashes [MFS90,KJS98] or throws uncaught

exceptions [CS04]. In regression testing, the actual outputs of a new version can be compared

with the actual outputs of its previous version. However, behavioral differences between

versions often cannot be propagated to the observable outputs that arecompared between

versions.

A test adequacy criterionis a condition that an adequate test suite must satisfy in exercising a

program's properties [GG75]. Common criteria [Bei90] include structuralcoverage: code coverage

(such as statement, branch, or path coverage) and speci�cation coverage [CR99]. Coverage mea-

surement tools can be used to evaluate a test suite against a test adequacycriterion automatically.

A test adequacy criterion provides a stopping rule for testing (a rule to determine whether suf�cient

testing has been performed and it can be stopped) and a measurement of test-suite quality (a degree

of adequacy associated with a test suite) [ZHM97]. A test adequacy criterion can be used to guide

the above four testing activities. For example, it can be used to help determinewhat test inputs are

to be generated and which generated test inputs are to be selected so that developers can invest ef-

forts in equipping the selected inputs with expected outputs, run these inputs,and verify their actual

outputs. After conducting these four activities, a test adequacy criterioncan be used to determine if

the program has been adequately tested and to further identify which partsof the program have not

been adequately tested.
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Figure 1.1: Framework for improving effectiveness of automated testing.

1.2 Contributions

This dissertation presents a framework for improving effectiveness of automated testing, address-

ing the challenges discussed in the preceding section. As is shown in Figure1.1, the framework

consists of two groups of components. The �rst group of components —the redundant-test detector

and non-redundant-test generator— address the issues in generatingtest inputs. The second group

of components (the test selector, test abstractor, and program-spectracomparator) infer program

behavior dynamically in order to address the issues in checking the correctness of test executions.

The second group of components further send feedback information to the �rst group to guide test

generation.

Redundant-test detector.Existing test generation tools generate a large number of test inputs1 (in

short, tests) to exercise different sequences of method calls in the interface of the class under

test. Different combinations of method calls on the class under test result in acombinatorial

explosion of tests. Because of resource constraints, existing test generation tools often gener-

ate different sequences of method calls whose lengths range from one [CS04] to three [Par03].

1In the rest of the dissertation, we useteststo denotetest inputsfor the sake of simplicity.
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However, sequences of up-to-three method calls are often insuf�cientfor detecting faults or

satisfying test adequacy criteria. In fact, a large portion of these different sequences of method

calls exercise no new method behavior; in other words, the tests formed by this large portion

of sequences areredundant tests. We have de�ned redundant tests by using method-input

values (including both argument values and receiver-object states). When the method-input

values of each method call in a test have been exercised by the existing tests, the test is con-

sidered as a redundant test even if the sequence of method calls in the testis different from the

one of any existing test. We have developed a redundant-test detector, which can post-process

a test suite generated by existing test generation tools and output a reducedtest suite contain-

ing no redundant tests. Our approach not only presents a foundation for existing tools that

generate non-redundant tests [MK01,BKM02,KPV03,VPK04] but also enables any other test

generation tools [Par03,CS04,Agi04] to avoid generating redundant tests by incorporating the

redundant-test detection in their test generation process. We present experimental results that

show the effectiveness of the redundant-test detection tool: about 90%of the tests generated

by a commercial testing tool [Par03] are detected and reduced by our toolas redundant tests.

Non-redundant-test generator. Based on the notion of avoiding generating redundant-tests, we

have developed a non-redundant-test generator, which explores theconcrete or symbolic

receiver-object state space by using method calls (through normal program execution or sym-

bolic execution). Like some other software model checking tools based on stateful explo-

ration [DIS99, VHBP00, CDH+ 00, MPC+ 02, RDH03], the test generator based on concrete-

state exploration faces the state explosion problem. Symbolic representationsin symbolic

model checking [McM93] alleviate the problem by describing not only singlestates but sets

of states; however, existing software model checking tools [BR01, HJMS03] based on sym-

bolic representations are limited for handling complex data structures. Recently, symbolic

execution [Kin76, Cla76] has been used to directly construct symbolic states for receiver ob-

jects [KPV03, VPK04]; however, the application of symbolic execution requires the user to

provide specially constructed class invariants [LG00], which effectively describe an over-

approximation of the set of reachable object graphs. Without requiring any class invariant, our

test generator can also use symbolic execution of method sequences to explore the symbolic
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receiver-object states and prune this exploration based on novel statecomparisons (compar-

ing both heap representations and symbolic representations). Our extension and application

of symbolic execution in state exploration not only alleviate the state explosion problem but

also generate relevant method arguments for method sequences automaticallyby using a con-

straint solver [SR02]. We present experimental results that show the effectiveness of the test

generation based on symbolic-state exploration: it can achieve higher branch coverage faster

than the test generation based on concrete-state exploration.

Test selector.Because it is infeasible for developers to inspect the actual outputs of a large num-

ber of generated tests, we have developed a test selector to select a smallvaluable subset of

generated tests for inspection. These selected tests exercise new behavior that has not been

exercised by the existing test suite. In particular, we use Daikon [Ern00]to infer program be-

havior dynamically from the execution of the existing (manually) constructed test suite. We

next feed inferred behavior in the form of speci�cations to an existing speci�cation-based test

generation tool [Par03]. The tool generates tests to violate the inferred behavior. These vio-

lating tests are selected for inspection, because these violating tests exhibit behavior different

from the behavior exhibited by the existing tests. Developers can inspect these violating tests

together with the violated properties, equip these tests with expected outputs, and add them

to the existing test suite. We present experimental results to show that the selected tests have

a high probability of exposing anomalous program behavior (either faults or failures) in the

program.

Test abstractor. Instead of selecting a subset of generated tests for inspection, a test abstractor

summarizes and abstracts the receiver-object-state transition behavior exercised by all the

generated tests. Because the concrete-state transition diagram for receiver objects is too com-

plicated for developers to inspect, the test abstractor uses a state abstraction technique based

on the observers in a class interface; these observers are the public methods whose return

types are not void. An abstract state for a concrete state is representedby the concrete state's

observable behavior, consisting of the return values of observer-method calls on the concrete

state. The abstract states and transitions among them are used to constructsuccinct state tran-
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sition diagrams for developers to inspect. We present an evaluation to showthat the abstract-

state transition diagrams can help discover anomalous behavior, debug exception-throwing

behavior, and understand normal behavior in the class interface.

Program-spectra comparator. In regression testing, comparing the actual outputs of two program

versions is limited in exposing the internal behavioral differences during the program ex-

ecution, because internal behavioral differences often cannot be propagated to observable

outputs. A program spectrum is used to characterize a program's behavior [RBDL97]. We

propose a new class of program spectra, calledvalue spectra, to enrich the existing pro-

gram spectra family, which primarily include structural spectra (such as path spectra [BL96,

RBDL97,HRS+ 00]). Value spectra capture internal program states during a test execution. A

deviationis the difference between the value of a variable in a new program versionand the

corresponding one in an old version. We have developed a program-spectra comparator that

compares the value spectra from an old version and a new version, and uses the spectra differ-

ences to detect behavior deviations in the new version. Furthermore, value spectra differences

can be used to locate deviation roots, which are program locations that trigger the behavior

deviations. Inspecting value spectra differences can allow developersto determine whether

program changes introduce intended behavioral differences or regression faults. We present

experimental results to show that comparing value spectra can effectivelyexpose behavioral

differences between versions even when their actual outputs are the same, and value spectra

differences can be used to locate deviation roots with high accuracy.

Dynamic behavior inference requires a good-quality test suite to infer behavior that is close

to what shall be described by a speci�cation (if it is manually constructed).On the other hand,

speci�cation-based test generation can help produce a good-quality test suite but requires speci�-

cations, which often do not exist in practice. There seems to be a circular dependency between

dynamic behavior inference and (speci�cation-based) test generation.To exploit the circular de-

pendency and alleviate the problem, we propose a feedback loop betweenbehavior inference and

test generation. The feedback loop starts with an existing test suite (constructed manually or au-

tomatically) or some existing program runs. By using one of the behavior-inference components

(the test selector, test abstractor, or program-spectra comparator), we �rst infer behavior based on
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the existing test suite or program runs. We then feed inferred behavior toa speci�cation-based test

generation tool or a test generation tool that can exploit the inferred behavior to improve its test

generation. The new generated tests can be used to infer new behavior.The new behavior can be

further used to guide test generation in the subsequent iteration. Iterations terminate until a user-

de�ned maximum iteration number has been reached or no new behavior hasbeen inferred from

new tests. We show several instances of the feedback loop in differenttypes of behavior inference.

This feedback loop provides a means to producing better tests and better approximated speci�ca-

tions automatically and incrementally. In addition, the by-products of the feedback loop are a set of

selected tests for inspection; these selected tests exhibit new behavior thathas not been exercised by

the existing tests.

1.3 Scope

The approaches presented in this dissertation focus on automated software testing. The activities

of automated software testing are not limited to automating the execution of regression tests, for

example, by writing them in the JUnit testing framework [GB03] or test scripts [Rob03,Abb04], or

by capturing and replaying them with tools [SCFP00]. Our focused activities of automated software

testing have been described in Section 1.1.

The approaches presented in this dissertation focus on testing sequentialprograms but not con-

current programs. Most approaches presented in this dissertation focus on testing a program unit

(such as a class) written in modern object-oriented languages (such as Java). But the regression

testing approach focuses on testing a system written in procedural languages (such as C). All the

approaches assume that the unit or system under test is a closed unit or system and there is a well-

de�ned interface between the unit or system and its environment. The approaches focus on testing

functional correctness or program robustness but not other quality attributes such as performance

and security. Chapter 8 discusses future directions of extending the approaches to test new types of

programs and new types of quality attributes.

1.4 Outline

The remainder of this dissertation is organized as follows.
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Chapter 2 introduces the background information of automated software testing and surveys

related work. Chapter 3 describes the techniques for detecting redundant tests among automatically

generated tests. Chapter 4 further presents the techniques for generating nonredundant tests in the

�rst place. Chapter 5 describes the techniques for selecting a small subset of generated tests for

inspection. Chapter 6 introduces the techniques that abstract the behavior of test executions for

inspection. Chapter 7 describes the techniques for comparing value spectra in regression testing in

order to expose behavioral differences between versions. Chapter8 presents suggestions for future

work. Finally, Chapter 9 concludes with a summary of the contributions and lessons learned.
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Chapter 2

BACKGROUND AND RELATED WORK

This chapter presents background information and discusses how our research relates to other

projects in software testing. Section 2.1 discusses test adequacy criteria,which usually specify

the objectives of testing. Section 2.2 presents existing automated test generation techniques. Sec-

tion 2.3 describes existing test selection techniques. Section 2.4 reviews existing regression testing

techniques. Section 2.5 presents existing techniques in behavior inference, and Section 2.6 discusses

existing feedback loops in program analysis.

2.1 Test Adequacy Criteria

A test adequacy criterion provides a stopping rule for testing and a measurement of test-suite

quality [ZHM97]. (A test adequacy criterion can be used to guide test selection, which shall be

discussed in Section 2.3.) Based on the source of information used to specify testing require-

ments, Zhu et al. [ZHM97] classi�ed test adequacy criteria into four groups: program-based crite-

ria, speci�cation-based criteria, combined speci�cation- and program-based criteria, and interface-

based criteria.Program-based criteriaspecify testing requirements based on whether all the iden-

ti�ed features in a program have been fully exercised. Identi�ed features in a program can be

statements, branches, paths, or de�nition-use paths.Speci�cation-based criteriaspecify testing re-

quirements based on whether all the identi�ed features in a speci�cation have been fully exercised.

Combined speci�cation- and program-based criteriaspecify testing requirements based on both

speci�cation-based criteria and program-based criteria.Interface-based criteriaspecify testing re-

quirements based on only the interface information (such as type and rangeof program inputs) with-

out referring to any internal features of a speci�cation or program.Random testingis often based on

interface-based criteria. Speci�cation-based criteria and interface-based criteria are types ofblack-

box testing, whereas program-based criteria and combined speci�cation- and program-based criteria
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are types ofwhite-box testing.

Our testing research in this dissertation mostly relies on method inputs (both receiver-object

states and argument values in an object-oriented program) and method outputs (both receiver-object

states and return values in an object-oriented program). This is related to interface-based criteria.

But our research on test selection and abstraction is performed based on inferred behavior, which is

often in the form of speci�cations; therefore, the research is also related to speci�cation-based crite-

ria (but without requiring speci�cations). Our research on test generation additionally uses symbolic

execution to explore paths within a method; therefore, the research is also related to program-based

criteria.

In particular, our testing research is related to program-based test adequacy criteria proposed to

operate in the semantic domain of program properties rather than the syntacticdomain of program

text, which is the traditional focus of most program-based criteria. Hamlet's probable correctness

theory [Ham87] suggestsdata-coverage testingto uniformly sample the possible values of all in-

ternal variables at each control point in a program. However, it is oftendif�cult or undecidable to

determine the possible values for variables in a program; therefore, we cannot compute the goal of

100 percent coverage (denominator) for data coverage criteria like for code coverage criteria (such

as statement or branch coverage) but use the data coverage of a given test suite as a baseline for com-

parison. Harder et al. [HME03] use operational abstractions [ECGN01] inferred from a test suite

to reduce the samples needed to cover the data values for variables in a program. Ball [Bal04] pro-

poses predicate-complete coverage with the goal of covering all reachable observable states de�ned

by program predicates (either speci�ed by programmers or generated through automatic predication

abstractions [GS97,VPP00,BMMR01]). These program predicates also partition the data values for

variables in a program.

Recently a speci�cation-based test adequacy criterion calledbounded exhaustive testing[MK01,

BKM02, SYC+ 04, Khu03, Mar05] has been proposed to test a program, especially onethat has

structurally complex inputs. Bounded exhaustive testing tests a program on all valid inputs up to

a given bound; the numeric bound, called the scope, is de�ned for the size of input structures.

Experiments [MAD+ 03,Khu03,SYC+ 04,Mar05] have shown that exhaustive testing within a small

bound can produce a high-quality test suite in terms of fault detection capability and code coverage.

Test generation techniques for bounded exhaustive testing often require developers to specify a class
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invariant [LBR98, LG00], which describes the properties of a valid input structure, and a range of

(sampled) data values for non-reference-type variables in an input structure. In bounded exhaustive

testing, developers can specify a scope so that testing stops when a program is tested on all valid

inputs up to the scope. Alternatively, without requiring a prede�ned scope, exhaustive testing can

test a program on all valid inputs by starting from the smallest ones and iteratively increasing the

input size until time runs out. Our research on test generation is a type of bounded exhaustive testing

but does not require speci�cations.

2.2 Test Generation

Generating test inputs for an object-oriented program involves two tasks:(1) directly constructing

relevant receiver-object states or indirectly constructing them throughmethod sequences, and (2)

generating relevant method arguments. For the �rst task, some speci�cation-based approaches rely

on a user-de�ned class invariant [LBR98, LG00] to know whether a directly-constructed receiver-

object state is valid, and to directly construct all valid receiver-object states up to a given bound.

TestEra [MK01, Khu03] relies on a class invariant written in the Alloy language [JSS01] and sys-

tematically generates tests by using Alloy Analyzer [JSS00], which does bounded-exhaustive, SAT-

based checking. Korat [BKM02, Mar05] relies on an imperative predicate, an implementation for

checking class invariants. Korat monitors �eld accesses within the execution of an imperative pred-

icate and uses this information to prune the search for all valid object states up to a given bound.

Inspired by Korat, the AsmLT model-based testing tool [GGSV02, Fou] alsoincludes a solver for

generating bounded-exhaustive inputs based on imperative predicates. Some other test generation

approaches rely on an application-speci�c state generator to constructvalid receiver-object states.

Ball et al. [BHR+ 00] present a combinatorial algorithm for generating states based on a dedicated

generator for complex data structures. Different from these previousapproaches, our test generation

approach does not require class invariants or dedicated state generators because our approach does

not directly construct receiver-object states but indirectly constructsreceiver-object states through

bounded-exhaustive method sequences.

Some test generation tools also generate different method sequences foran object-oriented pro-

gram. Tools based on (smart) random generation include Jtest [Par03] (a commercial tool for
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Java) and Eclat [PE05] (a research prototype for Java). Tonella [Ton04] uses a genetic algo-

rithm to evolve a randomly generated method sequence in order to achieve higher branch cov-

erage. Buy et al. [BOP00] use data �ow analysis, symbolic execution, and automated deduc-

tion to generate method sequences exercising de�nition-use pairs of object �elds. Our test gen-

eration approach generates bounded-exhaustive tests, which can achieve both high code cover-

age and good fault-detection capability, whereas these previous approaches cannot guarantee the

bounded-exhaustiveness of the generated tests. Like our approach, both Java Path�nder input gen-

erator [VPK04] and the AsmLT model-based testing tool [GGSV02,Fou] use state exploration tech-

niques [CGP99] to generate bounded-exhaustive method sequences but these two tools require de-

velopers to carefully choose suf�ciently large concrete domains for method arguments and AsmLT

additionally requires developers to choose the right abstraction functionsto guarantee the bounded-

exhaustiveness. Our approach uses symbolic execution to automatically derive relevant arguments

and explore the symbolic-state space, whose size is much smaller than the concrete-state space

explored by Java Path�nder input generator and AsmLT.

Existing test generation tools use different techniques to achieve the second task in object-

oriented test generation: generating relevant method arguments. Both TestEra [MK01, Khu03] and

Korat [BKM02, Mar05] use a range of user-de�ned values for generating primitive-type arguments

(as well as primitive-type �elds in receiver-object states) and use their bounded-exhaustive test-

ing techniques to generate reference-type arguments if their class invariants are provided. In order

to generate primitive-type arguments, some tools such as JCrasher [CS04]and Eclat [PE05] use

prede�ned default values or random values for speci�c primitive types. For a non-primitive-type

argument, these tools use random method sequences where the last method call's return is of the

non-primitive type. Jtest [Par03] uses symbolic execution [Kin76, Cla76]and constraint solving to

generate arguments of primitive types. Java Path�nder input generator [KPV03, VPK04] can gen-

erate both method arguments and receiver-object states by using symbolic execution and constraint

solving; its test generation feature is implemented upon its explicit-state model checker [VHBP00].

Symbolic execution is also the foundation of static code analysis tools. These tools typically do

not generate test data, but automatically verify simple properties of programs. Recently, tools such

as SLAM [BMMR01, Bal04] and Blast [HJMS03, BCM04] were adapted for generating inputs to

test C programs. However, neither of them can deal with complex data structures, which are the
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focus of our test generation approach. Our test generation approach also uses symbolic execution;

however, in contrast to the existing testing tools that use symbolic execution, our test generation

approach uses symbolic execution to achieve both tasks (generation of receiver-object states and

method arguments) systematically without requiring class invariants.

2.3 Test Selection

There are different de�nitions of test selection. One de�nition of test selection is related to test

generation (discussed in Section 2.2): selecting which test inputs to generate. Some other de�nitions

of test selection focus on selecting tests among tests that have been generated because it is costly

to run, rerun, inspect, or maintain all the generated tests. Our test selectionapproach focuses on

selecting tests for inspection.

Test adequacy criteria (discussed in Section 2.1) can be directly used to guide test selection:

a test is selected if the test can enhance the existing test suite toward satisfying a test adequacy

criterion. In partition testing [Mye79], a test input domain is divided into subdomains based on

some criteria (such as those test adequacy criteria discussed in Section 2.1), and then we can select

one or more representative tests from each subdomain. If a subdomain is not covered by the existing

test suite, we can select a generated test from that subdomain.

Pavlopoulou and Young [PY99] proposed residual structural coverage to describe the structural

coverage that has not been achieved by the existing test suite. If the execution of a later gener-

ated test exercises residual structural coverage, the test is selected for inspection and inclusion in

the existing test suite. If we use residual statement coverage or branch coverage in test selection,

we may select only a few tests among generated tests although many unselectedtests may provide

new value like exposing new faults or increasing our con�dence on the program. But if we use

residual path coverage, we may select too many tests among generated testsalthough only some

of the selected tests may provide new value. Instead of selecting every testthat covers new paths,

Dickinson et al. [DLP01a, DLP01b] use clustering analysis to partition executions based on path

pro�les, and use sampling techniques to select executions from clusters for observations. Regres-

sion test prioritization techniques [WHLB97,RUC01,ST02], such as additional structural coverage

techniques, can produce a list of sorted tests for regression testing; thesame idea can also be applied
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to prioritize tests for inspection. Our test selection approach complements these existing structural-

coverage-based test selection approaches because our approachoperates in the semantic domain

of program properties rather than the syntactic domain of program text, which is used by previous

program-based test selection approaches.

Goodenough and Gerhart [GG75] discussed the importance of speci�cation-based test selec-

tion in detecting errors of omission. Chang and Richardson use speci�cation-coverage criteria for

selecting tests that exercise new aspects of a unit's speci�cations [CR99]. Given algebraic speci�ca-

tions [GH78] a priori, several testing tools [GMH81, BGM91, DF94, HS96, CTCC98] generate and

select a set of tests to exercise these speci�cations. Unlike these speci�cation-based approaches, our

test selection approach does not require speci�cations a priori but uses Daikon [ECGN01] to infer

operational abstractions, which are used to guide test selection.

Harder et al. [HME03] present a testing technique based on operational abstractions [ECGN01].

Their operational difference technique starts with an operational abstraction generated from an ex-

isting test suite. Then it generates a new operational abstraction from the test suite augmented by

a candidate test case. If the new operational abstraction differs from the previous one, it adds the

candidate test case to the suite. This process is repeated until some numbern of candidate cases

have been consecutively considered and rejected. Both the operational difference approach and our

approach use the operational abstractions generated from test executions. Our approach exploits

operational abstractions' guidance to test generation, whereas the operational difference approach

operates on a �xed set of given tests. In addition, their operational difference approach selects tests

mainly for regression testing, whereas our approach selects tests mainly for inspection.

Hangal and Lam's DIDUCE tool [HL02] detects bugs and tracks down their root causes. The

DIDUCE tool can continuously check a program's behavior against the incrementally inferred op-

erational abstractions during the run(s), and produce a report of alloperational violations detected

along the way. A usage model of DIDUCE is proposed, which is similar to the unit-test selection

problem addressed by our test selection approach. Both DIDUCE and our approach make use of

violations of the inferred operational abstractions. The inferred abstractions used by our approach

are produced by Daikon [ECGN01] at method entry and exit points, whereas DIDUCE infers a lim-

ited set of simpler abstractions from procedure call sites and object/static variable access sites. Also

DIDUCE does not investigate the effects of operational abstractions on test generation.
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Our redundant-test detection can be seen as a type of test selection: selecting non-redundant

tests out of automatically generated tests. Our test selection approach minimizesgenerated tests by

selecting a small number of most useful tests for inspection, whereas our redundant-test detection

approach tries to conservatively minimize generated tests from the other end: removing useless tests.

Our redundant-test detection detects no redundant tests among tests generated by some tools, such

as TestEra [MK01], Korat [BKM02], and Java Path�nder input generator [VPK04], because these

tools intentionally avoid generating redundant tests in their test generation process. Different from

the redundant-test avoidance mechanisms built in these tools, the mechanisms inour redundant-test

detection are more general and can be embedded in any test generation tools as a part of the test

generation process or a post-processing step after the test generationprocess.

2.4 Regression Testing

Regression testing validates a modi�ed program by retesting it. Regression testing is used to ensure

that no new errors are introduced to a previously tested program when the program is modi�ed.

Because it is often expensive to rerun all tests after program modi�cations, one major research

effort in regression testing is to reduce the cost of regression testing without sacri�cing the bene�t

or sacri�cing as little bene�t as possible. For example, when some parts of aprogram are changed,

regression test selection techniques [CRV94, RH97, GHK+ 01] select a subset of the existing tests

to retest the new version of the program. Asaferegression test selection technique [RH97] ensures

that the selected subset of tests contain all the tests that execute the code that was modi�ed from the

old version to the new version. Sometimes the available resource might not even allow rerunning

the subset of regression tests selected by regression test selection techniques. Recently regression

test prioritization techniques [WHLB97,RUCH01,EMR02] have been proposed to order regression

tests such that their execution provides bene�ts such as earlier detection of faults.

Regression-test quality is not always suf�cient in exhibiting output differences caused by newly

introduced errors in a program. Some previous test-generation approaches generate new tests to

exhibit behavior deviations caused by program changes. For example,DeMillo and Offutt [DO91]

developed a constraint-based approach to generate unit tests that can exhibit program-state devi-

ations caused by the execution of a slightly changed program line (in a mutantproduced during
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mutation testing [DLS78,How82]). Korel and Al-Yami [KAY98] created driver code that compares

the outputs of two program versions, and then leveraged the existing white-box test-generation ap-

proaches to generate tests for which the two versions will produce different outputs. However, this

type of test-generation problem is rather challenging and it is in fact an undecidable problem. Our

regression testing research tries to tackle the problem by exploiting the existing regression tests and

checking more-detailed program behavior exercised inside the program.

Regression testing checks whether the behaviors of two program versions are the same given the

same test input. Reps et al. [RBDL97] proposed aprogram spectrum1 to characterize a program's

behavior. One of the earliest proposed program spectra arepath spectra[BL96,RBDL97,HRS+ 00],

which are represented by the executed paths in a program. Harrold et al.[HRS+ 00] later proposed

several other types of program spectra and investigated their potential applications in regression

testing. Most of these proposed spectra are de�ned by using the structural entities exercised by

program execution. We refer to these types of program spectra assyntactic spectra. Harrold et

al. [HRS+ 00] empirically investigated the relationship between syntactic spectra differences and

output differences of two program versions in regression testing. Their experimental results show

that when a test input causes program output differences between versions, the test input is likely

to cause syntactic spectra differences. However their results show thatthe reverse is not true. Our

regression testing research takes advantage of this phenomenon to expose more behavioral devia-

tions by comparing program spectra instead of just comparing program outputs in regression testing.

To better characterize program behavior in regression testing, our research proposes a new class of

program spectra, value spectra, that enriches the existing program spectra family. Value spectra are

de�ned by using program states (variable values) and we refer to this type of program spectra as

semantic spectra. Ernst [Ern00, ECGN01] developed the Daikon tool to infer operational abstrac-

tions from program execution and these dynamically inferred abstractionscan also be considered as

a type of semantic spectra.

Memon et al. [MBN03] model a GUI state in terms of the widgets that the GUI contains, their

properties, and the values of the properties. A GUI state corresponds toa function-entry or function-

exit state in our approach. Their experimental results show that comparingmore-detailed GUI

1The name ofspectrumcomes frompath spectrum[BL96, RBDL97], which is a distribution of paths derived from a
run of the program.
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states (e.g., GUI states associated with all or visible windows) from two versions can detect faults

more effectively than comparing less-detailed GUI states (e.g., GUI states associated with the active

window or widget). Our approach also shows that checking more-detailedbehavior inside the black

box can more effectively expose behavioral deviations than checking just the black-box output.

Our approach differs from their approach in two main aspects: our approach is not limited to GUI

applications and our approach additionally investigates deviation propagation and deviation-root

localization.

Abramson et al. [AFMS96] developed the relative debugging technique that uses a series of user-

de�ned assertions between a reference program and a suspect program. These assertions specify

key data structures that must be equivalent at speci�c locations in two programs. Then a relative

debugger automatically compares the data structures and reports any differences while both versions

are executed concurrently. Our approach does not require user-de�ned assertions but compares

states at the entries and exits of user functions. The relative debugging technique mainly aims at

those data-centric scienti�c programs that are ported to, or rewritten for,another computer platform,

e.g., a sequential language program being ported to a parallel language.Our approach can be applied

in the evolution of a broader scope of programs.

Jaramillo et al. [JGS02] developed the comparison checking approach to compare the outputs

and values computed by source level statements in the unoptimized and optimized versions of a

source program. Their approach requires the optimizer writer to specify the mappings between the

unoptimized and optimized versions in the optimization implementation. Their approachlocates the

earliest point where the unoptimized and optimized programs differ during thecomparison check-

ing. Our approach operates at the granularity of user-function executions and uses two heuristics to

locate deviation roots instead of using the earliest deviation points. Moreover, our approach does

not require any extra user inputs and targets at testing general applications rather than optimizers in

particular.

2.5 Behavior Inference

Ernst et al. [ECGN01] developed the Daikon tool to dynamically infer operational abstractions

from test executions. Operational abstractions are reported in the formof axiomatic speci�ca-
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tions [Hoa69, Gri87]. Our test selection approach uses these operational abstractions to guide test

generation and selection. These abstractions describe the observed relationships among the values

of object �elds, arguments, and returns of a single method in a class interface, whereas the ob-

server abstractions inferred in our test abstraction approach describe the observed state-transition

relationships among multiple methods in a class interface and use the return values of observers

to represent object states, without explicitly referring to object �elds. Henkel and Diwan [HD03]

discover algebraic abstractions (in the form of algebraic speci�cations [GH78]) from the execu-

tion of automatically generated unit tests. Their discovered algebraic abstractions usually present

a local view of relationships between two methods, whereas observer abstractions present a global

view of relationships among multiple methods. Observer abstractions are a useful form of behavior

inference, complementing operational or algebraic abstractions.

Whaley et al. [WML02] extract Java component interfaces from system-test executions. The

extracted interfaces are in the form of multiple �nite state machines, each of which contains the

methods that modify or read the same object �eld. The observer abstractions inferred by our test

abstraction approach are also in the form of multiple �nite state machines, eachof which is with

respect to a set of observers (containing one observer by default).Their approach maps all concrete

states that are at the same state-modifying method's exits to the same abstract state. Our test abstrac-

tion approach maps all concrete states on which observers' return values are the same to the same

abstract state. Although their approach is applicable to system-test executions, it is not applicable

to the executions of automatically generated unit tests, because their resulting�nite state machine

would be a complete graph of methods that modify the same object �eld. Ammons etal. [ABL02]

mine protocol speci�cations in the form of a �nite state machine from system-test executions. Yang

and Evans [YE04] also infer temporal properties in the form of the strictest pattern any two meth-

ods can have in execution traces. These two approaches face the same problem as Whaley et al.'s

approach when being applied on the executions of automatically generated unit tests. In summary,

the general approach developed by Whaley et al. [WML02], Ammons et al. [ABL02], or Yang and

Evans [YE04] does not capture object states as accurately as our approach and none of them can be

applied to the executions of automatically generated unit tests.

Given a set of predicates, predicate abstraction [GS97, BMMR01] mapsa concrete state to an

abstract state that is de�ned by the boolean values of these predicates onthe concrete state. Given a
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set of observers, observer abstraction maps a concrete state to an abstract state that is de�ned by the

return values (not limited to boolean values) of these observers on the concrete state. Concrete states

considered by predicate abstractions are usually those program states between program statements,

whereas concrete states considered by observer abstractions are those object states between method

calls. Predicate abstraction is mainly used in software model checking, whereas observer abstraction

in our approach is mainly used in helping inspection of test executions.

Kung et al. [KSGH94] statically extract object state models from class source code and use them

to guide test generation. An object state model is in the form of a �nite state machine: the states

are de�ned by value intervals over object �elds, which are derived from path conditions of method

source; the transitions are derived by symbolically executing methods. Ourapproach dynamically

extracts �nite state machines based on observers during test executions.

Grieskamp et al. [GGSV02] generate �nite state machines from executable abstract state ma-

chines. Manually speci�ed predicates are used to group states in abstract state machines to hyper-

states during the execution of abstract state machine. Finite state machines, abstract state machines,

and manually speci�ed predicates in their approach correspond to observer abstractions, concrete

object state machines, and observers in our approach, respectively.However, our approach is totally

automatic and does not require programmers to specify any speci�cations or predicates.

2.6 Feedback Loop in Program Analysis

There have been several lines of static analysis research that use feedback loops to get better pro-

gram abstractions and veri�cation results. Ball and Rajamani construct afeedback loop between

program abstraction and model checking to validate user-speci�ed temporal safety properties of in-

terfaces [BMMR01]. Flanagan and Leino use a feedback loop betweenannotation guessing and

theorem proving to infer speci�cations statically [FL01]. Guesses of annotations are automatically

generated based on heuristics before the �rst iteration. Human interventions are needed to insert

manual annotations in subsequent iterations. Giannakopoulou et al. construct a feedback loop be-

tween assumption generation and model checking to infer assumptions for a user-speci�ed property

in compositional veri�cation [CGP03, GPB02]. Given crude program abstractions or properties,

these feedback loops in static analysis use model checkers or theorem provers to �nd counterexam-
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ples or refutations. Then these counterexamples or refutations are usedto re�ne the abstractions or

properties iteratively. Our work is to construct a feedback loop in dynamicanalysis, correspond-

ing to the ones in static analysis. Our work does not require users to specify properties, which are

inferred from test executions instead.

Naumovich and Frankl propose to construct a feedback loop between �nite state veri�cation

and testing to dynamically con�rm statically detected faults [NF00]. When a �nitestate veri�er

detects a property violation, a testing tool uses the violation to guide test data selection, execution,

and checking. The tool hopes to �nd test data that shows the violation to be real. Based on the

test information, human intervention is used to re�ne the model and restart theveri�er. This is an

example of a feedback loop between static analysis and dynamic analysis. Another example of a

feedback loop between static analysis and dynamic analysis is pro�le-guided optimization [PH90].

Our work focuses instead on the feedback loop on dynamic analysis.

Peled et al. present the black box checking [PVY99] and the adaptive model checking ap-

proach [GPY02]. Black box checking tests whether an implementation with unknown structure

or model satis�es certain given properties. Adaptive model checking performs model checking in

the presence of an inaccurate model. In these approaches, a feedback loop is constructed between

model learning and model checking, which is similar to the preceding feedback loops in static anal-

ysis. Model checking is performed on the learned model against some given properties. When

a counterexample is found for a given property, the counterexample is compared with the actual

system. If the counterexample is con�rmed, a fault is reported. If the counterexample is refuted,

it is fed to the model learning algorithm to improve the learned model. Another feedback loop is

constructed between model learning and conformance testing. If no counterexample is found for

the given property, conformance testing is conducted to test whether the learned model and the sys-

tem conform. If they do not conform, the discrepancy-exposing test sequence is fed to the model

learning algorithm, in order to improve the approximate model. Then the improved model is used

to perform model checking in the subsequent iteration. The dynamic speci�cation inference in our

feedback loop is corresponding to the model learning in their feedback loop, and the speci�cation-

based test generation in our feedback loop is corresponding to the conformance testing in their

feedback loop. Our feedback loop does not require some given properties, but their feedback loop

requires user-speci�ed properties in order to perform model checking.
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2.7 Conclusion

This chapter has laid out the background for the research developed inthis dissertation and discussed

how our research is related to other previous research in software testing. In particular, our research

does not require speci�cations; therefore, it is related to program-based or interface-based test ade-

quacy criteria. However, our research operates on the semantic domain of program properties rather

than the syntactic domain of program text, which is often the focus of program-based criteria. From

test executions, our research infers behavior, which is often in the form of speci�cations, and further

uses the inferred behavior to aid testing activities. In this perspective, our research is also related

to speci�cation-based testing. Our test generation approach is a type of bounded-exhaustive test-

ing; however, unlike previous research on bounded-exhaustive testing, our research does not require

speci�cations such as class invariants. Our test generation approach exploits symbolic execution

to achieve the generation of both receiver-object states (through methodsequences) and relevant

method arguments; previous testing research based on symbolic execution either requires speci�ca-

tions or generates relevant arguments for a single method given a speci�creceiver object. Different

from previous testing approaches based on structural coverage, either our redundant-test detection

or test selection approach keeps or selects a test if the test exercises new behavior inferred in the

semantic domain of program properties; in addition, the inferred behavior isused to guide test gen-

eration. Different from previous regression testing approach, whichcompares the black-box outputs

between program versions, our regression testing approach compares the semantic spectra inside

the black box. Finally, we have proposed a feedback loop between test generation and behavior

inference by using behavior inferred from generated tests to guide better test generation and then

using new generated tests to achieve better behavior inference.
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Chapter 3

REDUNDANT-TEST DETECTION

Automatic test-generation tools for object-oriented programs, such as Jtest[Par03] (a commer-

cial tool for Java) and JCrasher [CS04] (a research prototype forJava), test a class by generating a

test suite for it. A test suite comprises a set of tests, each of which is a sequence of method invoca-

tions. When the sequences of two tests are different, these tools conservatively judge that these two

tests are not equivalent and thus both are needed. However, there are many situations where different

method sequences exercise the same behavior of the class under test. Twosequences can produce

equivalent statesof objects because some invocations do not modify state or because different state

modi�cations produce the same state. Intuitively, invoking the same methods with the same inputs

(i.e., the equivalent states of receiver objects and arguments) is redundant. A test isredundantif

the test includes no new method invocation (i.e., method invocation whose input isdifferent from

the input of any method invocation in previous tests). These redundant testsincrease the cost of

generating, running, inspecting, maintaining a test suite but do not increase a test suite's ability to

detect faults or increase developers' con�dence on the code under test.

This chapter presents our Rostra approach for detecting redundant tests based on state equiva-

lence. In the Rostra approach, we include �ve techniques for representing the incoming program

state of a method invocation. These �ve state-representation techniques fall into two types: one is

based on the method sequence that leads to the state, and the other is based on concrete states of the

objects in the program state. If the representations of two states are the same, we then determine that

two states are equivalent. Based on state equivalence, we have de�nedredundant tests and imple-

mented a tool that dynamically detects redundant tests in an existing test suite. We have evaluated

Rostra on 11 subjects taken from a variety of sources. The experimentalresults show that around

90% of the tests generated by Jtest for all subjects and 50% of the tests generated by JCrasher for

almost half of the subjects are redundant. The results also show that removing these redundant tests

does not decrease the branch coverage, exception coverage, andfault detection capability of the test
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suites.

The next section introduces a running example that is used to illustrate our approach. Section 3.2

presents the �ve techniques for representing states. Section 3.3 de�nesstate equivalence based

on comparing state representation. Section 3.4 de�nes redundant tests based on state equivalence.

Section 3.5 describes the experiments that we conducted to assess the approach and then Section 3.6

concludes.

3.1 Example

We use an integer stack implementation (earlier used by Henkel and Diwan [HD03]) as a running

example to illustrate our redundant-test detection techniques. Figure 3.1 shows the relevant parts

of the code. The arraystore contains the elements of the stack, andsize is the number of the

elements and the index of the �rst free location in the stack. The methodpush /pop appropri-

ately increases/decreases the size after/before writing/reading the element. Additionally, push /pop

grows/shrinks the array when thesize is equal to the whole/half of the array length. The method

isEmpty is an observer that checks if the stack has any elements, and the methodequals compares

two stacks for equality.

The following is an example test suite (written in the JUnit framework [GB03]) with three tests

for the IntStack class:

public class IntStackTest extends TestCase f

public void test1() f

IntStack s1 = new IntStack ();

s1.isEmpty();

s1.push(3);

s1.push(2);

s1.pop();

s1.push(5);

g

public void test2() f

IntStack s2 = new IntStack ();

s2.push(3);

s2.push(5);

g
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public class IntStack f

private int [] store;

private int size;

private static final int INITIAL_CAPACITY = 10;

public IntStack () f

this .store = new int [INITIAL_CAPACITY];

this .size = 0;

g

public void push( int value) f

if ( this .size == this .store.length) f

int [] store = new int [ this .store.length * 2];

System .arraycopy( this .store, 0, store, 0, this .size);

this .store = store;

g

this .store[ this .size++] = value;

g

public int pop() f

return this .store[-- this .size];

g

public boolean isEmpty() f

return ( this .size == 0);

g

public boolean equals( Object other) f

if (!(other instanceof IntStack )) return false ;

IntStack s = ( IntStack )other;

if ( this .size != s.size) return false ;

for ( int i = 0; i < this .size; i++)

if ( this .store[i] != s.store[i]) return false ;

return true ;

g

g

Figure 3.1: An integer stack implementation

public void test3() f

IntStack s3 = new IntStack ();

s3.push(3);

s3.push(2);

s3.pop();

g

g
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Table 3.1: State representation and comparison

type technique representation comparison

method sequencesWholeSeq the entire method sequence equality

ModifyingSeq a part of the method sequenceequality

concrete states WholeState the entire concrete state isomorphism

MonitorEquals a part of the concrete state isomorphism

PairwiseEquals the entire concrete state equals

A test suiteconsists of a set of tests, each of which is written as a public method. Eachtesthas

a sequence of method invocations on the objects of the class as well as the argument objects of the

class's methods. For example,test2 creates a stacks2 and invokes twopush methods on it. Some

existing test-generation tools such as Jtest [Par03] and JCrasher [CS04] generate tests in such a form

as speci�ed by the JUnit framework [GB03]. For these generated tests,the correctness checking

often relies on the code's design-by-contract annotations [Mey92, LBR98], which are translated

into run-time checking assertions [Par03, CL02]. If there are no annotations in the code, the tools

only check the robustness of the code: whether the test execution on the code throws uncaught

exceptions [CS04].

3.2 State Representation

To de�ne a redundant test (described in Section 3.4), we need to characterize a method invocation's

incoming program state, which is calledmethod-entry state. A method-entry state describes the

receiver object and arguments before a method invocation. Table 3.1 shows the techniques that we

use to represent and compare states. Different techniques use different representations for method-

entry states and different comparisons of state representations. Each of these �ve techniques uses

one of the two types of information in representing states: 1) method sequences and 2) concrete

states of the objects. We next explain the details of these two types and all �vetechniques.
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3.2.1 Method Sequences

Each execution of a test creates several objects and invokes methods onthese objects. The rep-

resentation based on method sequences represents states using sequences of method invocations,

following Henkel and Diwan's representation [HD03]. The state representation uses symbolic ex-

pressions with the concrete grammar shown below:

exp ::= primj invoc “.state ” j invoc “.retval ”

args ::=² j expj args “, ” exp

invoc ::= method “( ” args “) ”

prim ::= “null ” j “ true ” j “ false ” j “0” j “1” j “ -1 ” j : : :

Each object or value is represented with an expression. Arguments for amethod invocation

are represented as sequences of zero or more expressions (separated by commas); the receiver of

a non-static, non-constructor method invocation is treated as the �rst methodargument. A static

method invocation or constructor invocation does not have a receiver. The .state and .retval

expressions denote the state of the receiver after the invocation and the return of the invocation,

respectively. For brevity, the grammar shown above does not specify types, but the expressions are

well-typed according to the Java typing rules [AGH00]. A method is represented uniquely by its

de�ning class, name, and the entire signature. For brevity, we do not show a method's de�ning class

or signature in the state-representation examples below.

For example, the state ofs2 at the end oftest2 is represented as

push(push(<init>().state, 3).state, 5).state ,

where<init> represents the constructor that takes no receiver and<init>().state represents

the object created by the constructor invocation. This object becomes the receiver of the method

invocationpush(3) , and so on.

A method-entry state is represented by using tuples of expressions (two tuples are equivalent if

and only if their expressions are component-wise identical). For example, the method-entry state

of the last method invocation oftest2 is represented by<push(<init>().state, 3).state,

5>, where the �rst expressionpush(<init>().state, 3).state denotes the receiver-object

state and the second expression5 denotes the argument value. When collecting method sequences

for state representation, if a later-encountered expression (or sub-expression) is aliased with an
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earlier-encountered expression (or sub-expression) in a method-entry state's representation, we

can replace the representation of the later-encountered expression withthe identi�er of the �rst-

encountered aliased expression in the representation. Under this situation, each non-primitive-type

expression in the representation needs to be associated with a unique identi�er. For example, con-

sider the following two teststest4 andtest5 :

public void test4() f

IntStack s4 = new IntStack ();

IntStack s = new IntStack ();

s4.equals(s);

g

public void test5() f

IntStack s5 = new IntStack ();

s5.equals(s5);

g

If we do not consider aliasing relationships among expressions in state representation, the method-

entry states of the last method invocation (equals ) of the both tests are represented by the same

expression:<<init>().state, <init>().state> . However, these twoequals method in-

vocations may exhibit different program behaviors if object identities arecompared during the

equals method executions. After aliasing relationships are considered, the method-entry state

representation ofequals in test4 is different from the one intest5 , which is then represented

by <<init>().state@1, @1> , where@1denotes the identi�er oft5 .

The state representation based on method sequences allows tests to contain loops, arithmetic,

aliasing, and/or polymorphism. Consider the following manually written teststest6 andtest7 :

public void test6() f

IntStack t = new IntStack ();

IntStack s6 = t;

for ( int i = 0; i <= 1; i++)

s6.push(i);

g

public void test7() f

IntStack s7 = new IntStack ();

int i = 0;
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s7.push(i);

s7.push(i + 1);

g

Our implementation dynamically monitors the invocations of the methods on the actual objects

created in the tests and collects the actual argument values for these invocations.1 It represents each

object using a method sequence; for example, it represents boths6 ands7 at the end oftest6 and

test7 aspush(push(<init>().state, 0).state, 1).state .

We next describe two techniques that include different methods in the methodsequences for

state representation: WholeSeq and ModifyingSeq.

WholeSeq

This WholeSeq technique represents the state of an object with an expression that includesall meth-

ods invoked on the object since it has been created, including the constructor. Our implementation

obtains this representation by executing the tests and keeping a mapping fromobjects to their cor-

responding expressions.

Recall that each method-entry state is represented as a tuple of expressions that represent the

receiver object and the arguments. Two state representations are equivalent if and only if the tuples

are identical. For example, WholeSeq represents the states beforepush(2) in test3 andtest1 as

<push(<init>().state, 3).state, 2> and<push(isEmpty(<init>().state).state,

3).state, 2> , respectively, and these two state representations are not equivalent.

The WholeSeq technique maintains a table that maps each object to a method sequence that

represents that object. At the end of each method call, the sequence that represents the receiver

object is extended with the appropriate information that represents the call.

ModifyingSeq

The ModifyingSeq technique represents the state of an object with an expression that includesonly

those methods that modi�ed the state of the object since it has been created, including the construc-

1Although our implementation needs to run the tests to detect redundant tests and the cost of running redundant tests
is not saved, Section 3.4 presents the practical applications of our approach.
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tor. Our implementation monitors the method executions to determine at run time whetherthey

modify the state.

Similar to the WholeSeq technique, the ModifyingSeq technique also maintains a table that

maps each object to a method sequence that represents that object. The sequence is extended with

the appropriate information that represents the call only when the method execution has modi�ed

the receiver. ModifyingSeq dynamically monitors the execution and determines that the receiver

is modi�ed if there is a write to a �eld that is reachable from the receiver. ModifyingSeq builds

and compares method-entry states in the same way as WholeSeq; however, because ModifyingSeq

uses a coarser representation for objects than WholeSeq, ModifyingSeq can �nd the representations

of more method-entry states to be equivalent. For example,isEmpty does not modify the state

of the stack, so ModifyingSeq represents the states beforepush(2) in both test3 andtest1 as

<push(<init>().state, 3).state, 2> and thus �nds their representations to be equivalent.

3.2.2 Concrete States

The execution of a method operates on the program state that includes a program heap. The repre-

sentation based on concrete states considers only parts of the heap that are relevant for affecting a

method's execution; we also call each part a “heap” and view it as a graph: nodes represent objects

and edges represent �elds. LetP be the set consisting of all primitive values, includingnull , inte-

gers, etc. LetO be a set of objects whose �elds form a setF . (Each object has a �eld that represents

its class, and array elements are considered index-labeled object �elds.)

De�nition 1. A heapis an edge-labelled graphhO; Ei , whereE = fho; f; o0ij o 2 O; f 2 F; o0 2

O [ Pg.

Heap isomorphism is de�ned as graph isomorphism based on node bijection [BKM02].

De�nition 2. Two heapshO1; E1i andhO2; E2i are isomorphiciff there is a bijection½: O1 ! O2

such that:

E2 = fh½(o); f; ½(o0)ijho; f; o0i 2 E1; o0 2 O1g [

fh½(o); f; o 0ijho; f; o0i 2 E1; o0 2 Pg:
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Map ids; // maps nodes into their unique ids

int [] linearize( Node root, Heap <O,E>) f

ids = new Map();

return lin(root, <O,E>);

g

int [] lin( Node root, Heap <O,E>) f

if (ids.containsKey(root))

return singletonSequence(ids.get(root));

int id = ids.size() + 1;

ids.put(root, id);

int [] seq = singletonSequence(id);

Edge[] fields = sortByField( f <root, f, o> in E g);

foreach (<root, f, o> in fields) f

if (isPrimitive(o))

seq.add(uniqueRepresentation(o));

else

seq.append(lin(o, <O,E>));

g

return seq;

g

Figure 3.2: Pseudo-code of linearization

The de�nition allows only object identities to vary: two isomorphic heaps have the same �elds

for all objects and the same values for all primitive �elds.

Because only parts of the program heap before a method invocation are relevant for affecting the

method's execution, a method-entry state of a method invocation is represented with rootedheaps,

instead of the whole program heap.

De�nition 3. A rooted heap is a pairhr; h i of a root objectr and a heaph whose all nodes are

reachable fromr .

Although no polynomial-time algorithm is known for checking isomorphism of general graphs,

it is possible to ef�ciently check isomorphism of rooted heaps. Our implementation linearizes

rooted heaps into sequences such that checking heap isomorphism corresponds to checking sequence

equality. Figure 3.2 shows the pseudo-code of the linearization algorithm; similar linearization

algorithms [VHBP00, RDHI03, Ios02, AQR+ 04] have been used in model checking [CGP99]. The
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linearization algorithm traverses the entire rooted heap in the depth-�rst order, starting from the

root. When the algorithm visits a node for the �rst time, it assigns a unique identi�er to the node,

keeping this mapping inids to use again for nodes that appear in cycles. We can show that the

linearization normalizes rooted heaps into sequences.

Theorem 1. Two rooted heapsho1; h1i andho2; h2i are isomorphic ifflinearize (o1; h1) = linearize (o2; h2).

We next describe three techniques that use concrete states in state representation: WholeState,

MonitorEquals, and PairwiseEquals.

WholeState

The WholeState technique represents the method-entry state of a method invocation using the heap

rooted from the receiver object and the arguments.2 Two state representations are equivalent iff

the sequences obtained from their linearized rooted heaps are identical. Our implementation uses

Java re�ection [AGH00] to recursively collect all the �elds that are reachable from the receiver and

arguments before a method invocation.

For example, the following left and right columns show the state representations ofs1 ands2

beforepush(5) in test1 andtest2 , respectively:

// s1 before push(5) // s2 before push(5)

store = @1 store = @1

store.length = 10 store.length = 10

store[0] = 3 store[0] = 3

store[1] = 2 store[1] = 0

store[2] = 0 store[2] = 0

... ...

store[9] = 0 store[9] = 0

size = 1 size = 1

In both state representations, being of the integer array type, thestore �eld is considered as a

node (not being a primitive value); therefore, the linearization algorithm assigns a unique identi�er

2The linearization algorithm in Figure 3.2 assumes only one root; however,the method-entry state of a method in-
vocation is represented by the heap rooted from multiple nodes including both the receiver object and the arguments,
when some arguments are also object references. To handle multiple roots, we can create a virtual node that points to
the receiver object and the arguments, and then use the algorithm to linearize the heap rooted from this virtual node.
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@1to store . These two state representations are not equivalent, because the primitive values of the

store[1] �eld are different.

MonitorEquals

Like WholeState, MonitorEquals also represents a state with a rooted heap, but this heap is only a

subgraph of the entire rooted heap. The MonitorEquals technique leverages user-de�nedequals

methods to extract only the relevant parts of the rooted heap. MonitorEquals obtains the values

hv0; : : : ; vn i of a method invocation's receiver and arguments. It then invokesvi .equals( vi )

for each non-primitivevi and monitors the �eld accesses that these executions make. Then the

linearization algorithm in Figure 3.2 is revised to linearize only nodes (�elds) that are accessed

during theequals executions. The rationale behind MonitorEquals is that these executions access

only the relevant object �elds that de�ne an abstract state.

MonitorEquals represents each method-entry state as a rooted heap whose edges consist only

of the accessed �elds and the edges from the root. Two state representations are equivalent iff the

sequences obtained from their linearized rooted heaps are identical.

For example, the following left and right columns show the state representations ofs1 ands2

beforepush(5) in test1 andtest2 , respectively:

// s1.equals(s1) // s2.equals(s2)

// before s1.push(5) // before s2.push(5)

store = @1 store = @1

store[0] = 3 store[0] = 3

size = 1 size = 1

The execution ofs1.equals(s1) or s2.equals(s2) beforepush(5) accesses only the

�elds size , store , and elements ofstore whose indices are up to the value ofsize . Then

although WholeState �nds the state representations of the method-entry statesbeforepush(5) in

test1 andtest2 are not equivalent, MonitorEquals �nd them to be equivalent.

To collect the representation for the method-entry state of a method invocation,our implemen-

tation inserts at the method entry the code that invokesvi .equals( vi ) for the receiver and each

non-primitive argumentvi before a method invocation. It then inserts code before �eld-access byte-

code instructions to monitor their executions so that it can collect all �elds thatare accessed within
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the equals executions. The MonitorEquals technique needs to carefully avoid the common opti-

mization pattern that compares the receiver and the argument for identitythis == other within

equals methods; if the pattern appears withinequals methods, MonitorEquals may collect fewer

�elds than desired.

PairwiseEquals

Like MonitorEquals, the PairwiseEquals technique also leverages user-de�ned equals methods

to consider only the relevant parts of the rooted heap. It implicitly uses the entire program heap

to represent method-entry states. However, it does not compare (partsof) states by isomorphism.

Instead, it runs the test to build the concrete objects that correspond to thereceiver and arguments,

and then uses theequals method to compare pairs of states. It assigns a unique identi�er to

a states1 as its state representation if there exists no previously encountered states2 such that

s1.equals( s2) returnstrue ; otherwise,s1's representation is the unique identi�er assigned tos2.

The state representations of two statess1 ands2 are equivalent iff the states' assigned identi�ers are

identical (that is,s1.equals( s2) returnstrue ).

PairwiseEquals can �nd more object's representations to be equivalent than MonitorEquals. For

example, consider a class that implements a set using an array. PairwiseEquals reports the represen-

tations of two objects to be equivalent if they have the same set of array elements, regardless of the

order, whereas MonitorEquals reports the representations of two objects with the same elements but

different order to be nonequivalent. However, when representing the method-entry state of a method

invocation, unlike MonitorEquals, PairwiseEquals fails to include aliasing relationships among the

receiver, arguments, and their object �elds. For example, the method-entry state representations

of equals in both test4 and test5 are the same, being<e1, e1> , wheree1 is the identi�er

assigned tos , s4 , ands5 .

Our implementation collects the objects for the receiver and arguments and thencompares them

by using Java re�ection [AGH00] to invokeequals methods. Note that subsequent test execu-

tion can modify these objects, so PairwiseEquals needs to reproduce them for later comparison.

Our implementation re-executes method sequences to reproduce objects; analternative would be to

maintain a copy of the objects.
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3.3 State Equivalence

In the previous section (Section 3.2), we have presented �ve techniquesfor representing the method-

entry state of a method invocation, and have also described how to determine whether twostate

representationsareequivalent. Our objective is to determine whether twomethod-entry statesare

equivalentsuch that invoking the same method on these two method-entry states exhibits the same

program behavior, thus having the same fault-detection capability. Several previous projects [BGM91,

DF94, HD03] de�ned state equivalence by using observational equivalence [DF94, LG00]. How-

ever, checking it precisely is expensive: by de�nition it takes in�nite time (tocheck all method

sequences), so we use state-representation equivalence presentedin the previous section to approx-

imate state equivalence. Observational equivalence, as well as our whole approach, assumes that

method executions are deterministic. For example, it is assumed that there is no randomness or

multi-threading interaction during method executions; otherwise, different executions for the same

method input may produce different results, so model-checking techniques [CGP99] may be more

applicable than testing.

When we use state-representation equivalence to approximate state equivalence, the �ve tech-

niques have different tradeoffs in the following aspects:

Safety. We want to keep two method executions if their method invocations are on two nonequiva-

lent method-entry states; otherwise, discarding one of them may decreasea test suite's fault-

detection capability. Our approximation issafe(or conservative) if the approximation pro-

duces no false negative, where a false negative is de�ned as a state that is not equivalent to

another one but their state representations are equivalent.

Precision. We want to reduce the testing efforts spent on invoking methods on equivalent method-

entry states; therefore, we want to reduce false positives, where a false positive is de�ned as a

state that is equivalent to another one but their state representations are not equivalent.

Requirements. Different techniques have different requirements in the access of the bytecode un-

der test, time overhead, space overhead, etc.
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3.3.1 Safety

We next discuss under what conditions our techniques are not safe and propose extensions for our

techniques to make our techniques safe. Two techniques based on method sequences (WholeSeq

and ModifyingSeq) are not safe: because the grammar shown in Section 3.2.1 does not capture a

method execution's side effect on an argument, a method can modify the state of a non-primitive-

type argument and this argument can be used for another later method invocation. Following Henkel

and Diwan's suggested extension [HD03], we can enhance the �rst grammar rule to address this

issue:

exp ::= primj invoc “.state ” j invoc “.retval ” j invoc “. argi ”

where the added expression (invoc “. argi ”) denotes the state of the modi�edi th argument after the

method invocation.

Two techniques based on method sequences (WholeSeq and ModifyingSeq) are not safe if test

code modi�es directly some public �elds of an object without invoking any of itsmethods, because

these side effects on the object are not captured by method sequences.To address this issue, the

implementation of the techniques can be extended to create a public �eld-writing method for each

public �eld of the object, and monitor the static �eld access in the test code. If our implementation

detects at runtime the execution of a �eld-write instruction in test code, it inserts a corresponding

�eld-writing method invocation in the method-sequence representation.

WholeState, MonitorEquals, and PairwiseEquals are not safe when the execution of a method

accesses some public static �elds that are not reachable from the receiver or arguments, or accesses

the content of a database or �le uncontrolled through the receiver or arguments. We can use static

analysis to determine a method execution's extra inputs besides the receiverand arguments, and

then collect the state of these extra inputs as a part of the method-entry state.

Two techniques based on user-de�nedequals methods (MonitorEquals and PairwiseEquals)

are not safe if theequals methods are implemented not to respect observation equivalence, such

as not respecting the contract injava.lang.Object [SM03]. The contract requires that each

equals implements an equivalence relation, i.e., it should be re�exive, symmetric, andtransitive.

In practice, we have found mostequals methods to implement observational equivalence; however,

if equals is weaker (i.e., returnstrue for some objects that are not observationally equivalent),
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our techniques based onequals may not be safe. Although the user need to carefully implement

theequals methods in order to guarantee the safety, our implementation can dynamically check an

approximation of observational equivalence forequals and help the user tune the method.

PairwiseEquals is not safe when aliasing relationships among the receiver, arguments, and their

object �elds can affect the observational equivalence, because PairwiseEquals cannot capture alias-

ing relationships in its representation, as we discussed in Section 3.2.

3.3.2 Precision

When all �ve techniques are safe, determined by the mechanisms of representing states, their preci-

sion is in increasing order from the lowest to highest: WholeSeq, ModifyingSeq, WholeState, Moni-

torEquals, and PairwiseEquals. We next discuss under what conditionsone technique may generally

achieve higher precision than its preceding technique in the list. ModifyingSeq may achieve higher

precision than WholeSeq when there are invocations of state-preservingmethods (e.g.,isEmpty )

and these invocations appear in method sequences that represent object states. WholeState may

achieve higher precision than ModifyingSeq when there are invocations of state-modifying meth-

ods (e.g.,remove ) that revert an object's state back to an old state that was reached previously

with a shorter method sequence. MonitorEquals may achieve higher precision than WholeState

when some �elds of an object are irrelevant for affecting observational equivalence. PairwiseE-

quals may achieve higher precision than MonitorEquals when there are two objectss1 ands2 where

s1.equals( s2) returnstrue but they have different linearized heaps that consist of �elds accessed

within s1.equals( s1) or s2.equals( s2) . The precision of MonitorEquals or PairwiseEquals re-

lies on the user-de�nedequals method. Ifequals is stronger (i.e., returnsfalse for two objects

that are observationally equivalent), MonitorEquals or PairwiseEquals may not achieve 100% pre-

cision.

3.3.3 Requirements

Our implementations of �ve techniques operate on Java bytecode without requiring Java source

code. Unlike WholeState or MonitorEquals, our implementation of WholeSeq, ModifyingSeq, or

PairwiseEquals does not require to access the internal states or the bytecode of the class under test.
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These three techniques can be applied when the internal states or the bytecode of the class under

test are not available, for example, when testing components [HC01] or web services [ACKM02].

Although our implementation of WholeSeq or ModifyingSeq uses dynamic analysis, we can per-

form a static analysis on the test code to gather the method sequence without executing the test code.

Although this static analysis would be conservative and less precise than thedynamic analysis, it

would enable the determination of state equivalence and the detection of redundant tests (described

in the next section) without executing them.

Generally WholeSeq and ModifyingSeq require less analysis time than WholeState and Mon-

itorEquals, because WholeSeq and ModifyingSeq do not require the collection of object-�eld val-

ues. ModifyingSeq requires more time than WholeSeq, because our implementation of Modify-

ingSeq also needs to dynamically determine whether a method execution is a state-modifying one.

When there are a relatively large number of nonequivalent states, PairwiseEquals typically requires

more time than MonitorEquals because PairwiseEquals compares the state under consideration with

those previously encountered nonequivalent objects one by one, whereas our implementation of

MonitorEquals uses ef�cient hashing and storing to check whether the state under consideration

is equivalent to one of those previously encountered states, because we know the representation

(sequence).

ModifyingSeq requires less space than WholeSeq. When tests contain relatively short sequences,

WholeSeq or ModifyingSeq may require less space than WholeState or MonitorEquals for storing

the state representation of a single nonequivalent state; however, the total number of nonequivalent

states determined by WholeSeq or ModifyingSeq is larger than the total numberof nonequiva-

lent states determined by WholeState or MonitorEquals. MonitorEquals requires less space than

WholeState. PairwiseEquals may require less space for storing state representations (being just

unique identi�ers) than WholeState or MonitorEquals, whose state representations consist of se-

quences linearized from object �elds; however, our implementation of PairwiseEquals needs to keep

a copy of each nonequivalent object around for later comparison, aswas described in Section 3.2.
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3.4 Redundant Tests

We next show how equivalent states give rise to equivalent method executions and de�ne redundant

tests and test-suite minimization.

Each test execution produces several method executions.

De�nition 4. A method executionhm; si is a pair of a methodm and a method-entry states.

We denote by[[t]] the sequence of method executions produced by a testt, and we writehm; si 2

[[t]] when a method executionhm; si is in the sequence fort. We de�ne equivalent method executions

based on equivalent states.

De�nition 5. Two method executionshm1; s1i andhm2; s2i areequivalentiff m1 = m2 ands1 and

s2 are equivalent.

We further consider minimal test suites that contain no redundant tests.

De�nition 6. A testt is redundantfor a test suiteS iff for each method execution of[[t]], there exists

an equivalent method execution of some test fromS.

De�nition 7. A test suiteS is minimal iff there is not 2 S that is redundant forSnf tg.

Minimization of a test suiteS0 �nds a minimal test suiteS µ S0 that exercises the same set of

nonequivalent method executions asS0does.

De�nition 8. A test suiteS minimizesa test suiteS0 iff S is minimal and for eacht0 2 S0and each

hm0; s0i 2 [[t0]], there existt 2 S andhm; si 2 [[t]] such thathm0; s0i andhm; si are equivalent.

Given a test suiteS0, there can be several test suitesS µ S0 that minimizeS0. Among the test

suites that minimizeS0, we could �nd a test suite that has the smallest possible number of tests or the

smallest possible total number of method executions for the tests. Finding suchtest suites reduces to

optimization problems called “minimum set cover” and “minimum exact cover”, respectively; these

problems are known to be NP complete, and in practice approximation algorithms are used [Joh74].

Our implementation runs the tests in a given test suite with its default test-executionorder (such

as the one controlled by the JUnit framework [GB03]) and then minimizes the test suite by using

a greedy algorithm. Running the tests in different orders can cause our implementation to produce
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different minimized test suites; however, these different minimized test suitesproduce the same total

number of nonequivalent method executions.

In particular, our implementation collects method-entry states dynamically during test execu-

tions. We use the Byte Code Engineering Library [DvZ03] to instrument the bytecodes of the

classes under test at the class-loading time. The instrumentation adds the code for collecting state

representations at the entry of each method call in a test. For some techniques, it also adds the code

for monitoring instance-�eld reads and writes. Our instrumentation collects themethod signature,

the receiver-object reference, and the arguments at the beginning ofeach method call in the test. The

receiver of these calls is usually an instance object of the class under test. The instrumentation does

not collect the method-entry states for calls that are internal to these objects. Different techniques

also collect and maintain additional information. After �nishing running the given test suite, our

implementation outputs a minimized test suite in the form of a JUnit test class [GB03].

Our redundant-test detection techniques can be used in the following fourpractical applications:

test-suite assessment, test selection, test-suite minimization, and test generation.

Assessment:Our techniques provide a novel quantitative comparison of test suites, especially

those generated by automatic test-generation tools. For each test suite, ourtechniques can �nd

nonequivalent object states, nonequivalent method executions, and non-redundant tests. We can

then use their metrics to compare the quality of different test suites.

Selection: Our techniques can be used to select a subset of automatically generated tests to

augment an existing (manually or automatically generated) test suite. We feed the existing test suite

and the new tests to our techniques, running the existing test suite �rst. The minimal test suite that

our techniques then produce will contain those new tests that are non-redundant with respect to the

existing test suite.

Minimization: Our techniques can be used to minimize an automatically generated test suite

for correctness inspection and regression executions. Without a priori speci�cations, automatically

generated tests typically do not have test oracles for correctness checking, and the tester needs to

manually inspect the correctness of (some) tests. Our techniques help the tester to focus only on the

non-redundant tests, or more precisely the nonequivalent method executions. Running redundant

tests is inef�cient, and our techniques can remove these tests from a regression test suite. However,

we need to be careful because changing the code can make a test that is redundant in the old code
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to be non-redundant in the new code. If two method sequences in the old code produce equivalent

object states,andthe code changes do not impact these two method sequences [RT01], we can still

safely determine that the two sequences in the new code produce equivalent object states. Addition-

ally, we can always safely use our techniques to perform regression test prioritization [RUC01,ST02]

instead of test-suite minimization.

Generation: Existing test-generation tools can incorporate our techniques to avoid generating

and executing redundant tests. Although our implementations of the techniques are using dynamic

analysis, they can determine whether a method executionme is equivalent to some other execution

beforerunningme; the method-entry state required for determining equivalence is available before

the execution. Test-generation tools that execute tests, such as Jtest [Par03] or AsmLT [GGSV02],

can easily integrate our techniques. Jtest executes already generated tests and observes their behav-

ior to guide the generation of future tests. Running Jtest is currently expensive—it spends over 10

minutes generating the tests for relatively large classes in our experiments (Section 3.5)—but much

of this time is spent on redundant tests. In the next chapter, we will present how our techniques can

be incorporated to generate only non-redundant tests.

3.5 Evaluation

This section presents two experiments that assess how well Rostra detects redundant tests: 1) we

investigate the bene�t of applying Rostra on tests generated by existing tools; and 2) we validate

that removing redundant tests identi�ed by Rostra does not decrease thequality of test suites. We

have performed the experiments on a Linux machine with a Pentium IV 2.8 GHz processor using

Sun's Java 2 SDK 1.4.2 JVM with 512 MB allocated memory.

3.5.1 Experimental Setup

Table 3.2 lists the 11 Java classes that we use in our experiments. TheIntStack class is our running

example. TheUBStack class is taken from the experimental subjects used by Stotts et al. [SLA02].

The ShoppingCart class is a popular example for JUnit [Cla00]. TheBankAccount class is

an example distributed with Jtest [Par03]. The remaining seven classes aredata structures used to

evaluate Korat [BKM02, MAD+ 03]. The �rst four columns show the class name, the number of
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Table 3.2: Experimental subjects

class meths public ncnb Jtest JCrasher

meths loc tests tests

IntStack 5 5 44 94 6

UBStack 11 11 106 1423 14

ShoppingCart 9 8 70 470 31

BankAccount 7 7 34 519 135

BinSearchTree 13 8 246 277 56

BinomialHeap 22 17 535 6205 438

DisjSet 10 7 166 779 64

FibonacciHeap 24 14 468 3743 150

HashMap 27 19 597 5186 47

LinkedList 38 32 398 3028 86

TreeMap 61 25 949 931 1000

methods, the number of public methods, and the number of non-comment, non-blank lines of code

for each subject.

We use two third-party test generation tools, Jtest [Par03] and JCrasher [CS04], to automatically

generate test inputs for program subjects. Jtest allows the user to set thelength of calling sequences

between one and three; we set it to three, and Jtest �rst generates all calling sequences of length

one, then those of length two, and �nally those of length three. JCrasher automatically constructs

method sequences to generate non-primitive arguments and uses default data values for primitive

arguments. JCrasher generates tests as calling sequences with the length of one. The last two

columns of Table 3.2 show the number of tests generated by Jtest and JCrasher.

Our �rst experiment uses the �ve techniques to detect redundant tests among those generated

by Jtest and JCrasher. Our second experiment compares the quality of original and minimized

test suites using 1) branch coverage, 2) nonequivalent, uncaught-exception count, and 3) fault-

detection capability. We adapted Hansel [Han03] to measure branch coverage and nonequivalent,

uncaught-exception count. (Two exceptions are equivalent if they have the same throwing location
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and type.) To estimate the fault-detection capability, we use two mutation-analysis tools for Java:

Jmutation [MKO02] and Ferastrau [MAD+ 03]. We select the �rst 300 mutants (i.e., 300 versions

each of which is seeded with a bug) produced by Jmutation and con�gure Ferastrau to produce

around 300 mutants for each subject. We estimate the fault-detection capability of a test suite by

using the mutant killing ratio of the test suite, which is the number of the killed mutants divided by

the total number of mutants. To determine whether a test kills a mutant, we have written speci�ca-

tions and used the JML runtime veri�er [CL02] to compare the method-exit states and returns of the

original and mutated method executions.

3.5.2 Experimental Results

Figures 3.3 and 3.4 show the results of the �rst experiment—the percentageof redundant tests

generated—for Jtest and JCrasher, respectively. We also measuredthe percentages of equivalent

object states and equivalent method executions; they have similar distributions as the redundant

tests. We observe that all techniques except WholeSeq identify around 90% of Jtest-generated tests

to be redundant for all subjects and 50% of JCrasher-generated teststo be redundant for �ve out

of 11 subjects. Possible reasons for higher redundancy of Jtest-generated tests include: 1) Jtest

generates more tests; and 2) Jtest-generated tests have longer call length.

We observe a signi�cant improvement achieved by ModifyingSeq over WholeSeq in detecting

redundant tests. In Figure 3.3, this improvement forIntStack is not so large as the one for other

subjects, becauseIntStack has only one state-preserving method (isEmpty ), whereas other sub-

jects have a higher percentage of state-preserving methods in their class interfaces. There are some

improvements achieved by the last three techniques based on concrete states over ModifyingSeq.

But there is no signi�cant difference in the results for the last three techniques. We hypothesize that

our experimental subjects do not have many irrelevant object �elds for de�ning object states and/or

the irrelevant object �elds do not signi�cantly affect the redundant test detection.

Figures 3.5 and 3.6 show the elapsed real time of running our implementation to detect redundant

tests generated by Jtest and JCrasher, respectively. We observe that the elapsed time is reasonable:

it ranges from a couple of seconds up to several minutes, determined primarily by the class com-

plexity and the number of generated tests. In Figures 3.5, the elapsed time of MonitorEquals for
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Figure 3.3: Percentage of redundant tests among Jtest-generated tests

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

IntStack

UBStack

ShoppingCart

BankAccount

BinSearchTree

Binom
ialHeap

DisjSet

FibonacciHeap

HashM
ap

LinkedList

TreeM
ap

WholeSeq

ModifyingSeq

WholeState

MonitorEquals

PairwiseEquals

Figure 3.4: Percentage of redundant tests among JCrasher-generated tests



47

0

20

40

60

80

100

120

140

160

180

200

220

240

260

IntStack

UBStack

ShoppingCart

BankAccount

BinSearchTree

Binom
ialHeap

DisjSet

FibonacciHeap

HashMap

LinkedL ist

TreeM
ap

WholeSeq

ModifyingSeq

WholeState

MonitorEquals

PairwiseEquals

(seconds)

Figure 3.5: Elapsed real time of detecting redundant tests among Jtest-generated tests

(seconds)

0

20

40

60

80

100

120

140

160

180

200

220

240

260

IntStack

UBStack

ShoppingCart

BankAccount

BinSearchTree

Binom
ialHeap

DisjSet

FibonacciHeap

HashMap

LinkedList

TreeM
ap

WholeSeq

ModifyingSeq

WholeState

MonitorEquals

PairwiseEquals

Figure 3.6: Elapsed real time of detecting redundant tests among JCrasher-generated tests



48

BinomialHeap is relatively expensive, because the number of generated tests forBinomialHeap

is relatively large and invoking itsequals is relatively expensive.

To put the analysis time of our techniques into perspective, we need to consider the whole

test generation: if test-generation tools such as Jtest incorporated our techniques into generation,

the time savings achieved by avoiding redundant tests would signi�cantly exceed the extra cost of

running our techniques. The next chapter will show how we can avoid generating redundant tests

based on our techniques.

Table 3.3 shows the results of the second experiment: nonequivalent, uncaught-exception counts

(columns 2 and 3), branch-coverage percentages (columns 4 and 5),killing ratios for Ferastrau mu-

tants (columns 6 and 7), and killing ratios for Jmutation mutants (columns 8 and 9).The columns

marked “jte” and “jcr” correspond to Jtest and JCrasher, respectively. The original Jtest-generated

and JCrasher-generated test suites have the same measures as their corresponding Rostra-minimized

test suites in all cases except for the four cases whose entries are marked with “*”. The differences

are due only to the MonitorEquals and PairwiseEquals techniques. The minimized Jtest-generated

test suites forIntStack andTreeMap cannot kill three Ferastrau-generated mutants that the origi-

nal test suites can kill. This shows that minimization based onequals can reduce the fault-detection

capability of a test suite, but the probability is very low. The minimized Jtest-generated test suites

for HashMap andTreeMap cannot cover two branches that the original test suites can cover. We

have reviewed the code and found that two �elds of these classes are used for caching; these �elds

do not affect object equivalence (de�ned byequals ) but do affect branch coverage. These four

cases suggest a further investigation on the use ofequals methods in detecting redundant tests as

future work.

3.5.3 Threats to Validity

The threats to external validity primarily include the degree to which the subjectprograms and

third-party test generation tools are representative of true practice. Our subjects are from various

sources and the Korat data structures have nontrivial size for unit tests. Of the two third-party tools,

one—Jtest—is popular and used in industry. These threats could be further reduced by experiments

on various types of subjects and third-party tools. The main threats to internal validity include
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Table 3.3: Quality of Jtest-generated, JCrasher-generated, and minimizedtest suites

class excptn branch Ferastrau Jmutation

count cov [%] kill [%] kill [%]

jte jcr jte jcr jte jcr jte jcr

IntStack 1 1 67 50 *45 40 24 23

UBStack 2 0 94 56 57 25 78 37

ShoppingCart 2 1 93 71 57 51 80 20

BankAccount 3 3 100 100 98 98 89 89

BinSearchTree 3 0 67 14 33 5 57 11

BinomialHeap 3 3 90 66 89 34 64 48

DisjSet 0 0 61 51 26 18 40 29

FibonacciHeap 2 2 86 58 73 21 68 35

HashMap 1 1 *72 43 52 23 48 24

LinkedList 19 10 79 48 24 7 25 9

TreeMap 4 3 *33 11 *16 4 16 7

instrumentation effects that can bias our results. Faults in our implementation, Jtest, JCrasher,

or other measurement tools might cause such effects. To reduce these threats, we have manually

inspected the collected execution traces for several program subjects.

3.6 Conclusion

Object-oriented unit tests consist of sequences of method invocations. Behavior of an invocation

depends on the state of the receiver object and method arguments at the beginning of the invocation.

Existing tools for automatic generation of object-oriented test suites, such asJtest and JCrasher for

Java, typically ignore this state and thus generate redundant tests that exercise the same method

behavior, which increases the testing time without increasing the ability to detectfaults.

We have developed �ve fully automatic techniques for detecting redundantobject-oriented unit

tests. We have proposed four practical applications of the framework. We have conducted exper-

iments that evaluate the effectiveness of our techniques on detecting redundant tests in test suites
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generated by two third-party test-generation tools. The results show that our techniques can sub-

stantially reduce the size of these test suites without decreasing their quality.These results strongly

suggest that tools and techniques for generation of object-oriented testsuites must consider avoiding

redundant tests.
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Chapter 4

NON-REDUNDANT-TEST GENERATION

Unit tests are becoming an important component of software development. The Extreme Pro-

gramming discipline [Bec00, Bec03], for example, leverages unit tests to permit continuous and

controlled code changes. Although manually created unit tests are valuable, they often do not cover

suf�cient behavior of the class under test, partly because manual test generation is time consuming

and developers often forget to create some important test inputs. While recognizing the impor-

tance of unit tests, many companies have provided tools, frameworks, andservices around unit

tests, ranging from specialized test frameworks, such as JUnit [GB03]or Visual Studio's new team

server [Mic04], to automatic unit-test generation tools, such as Parasoft'sJtest [Par03] and Aigtar's

Agitator [Agi04]. However, within constrained resources, existing test-generation tools often do

not generate suf�cient unit tests to fully exercise the behavior of the class under test, for exam-

ple, by satisfying the branch-coverage test criterion [Bei90], let alonea stronger criterion, such as

the bounded intra-method path coverage [BL00] of the class under test. As we have discussed in

Chapeter 3, wasting time on generating and running redundant tests is one main reason for existing

tools not to generate suf�cient unit tests given constrained resources.

In order not to be redundant, a test needs to exercise at least one newmethod execution (one that

is not equivalent to any of those exercised by earlier executed tests). Assume that we have a �xed set

of values for method arguments, then in order to generate a non-redundant test, we need to exercise

at least one new receiver-object state. In other words, we need to explore (new) receiver-object states

in order to generate non-redundant tests. In this chapter, we �rst present a test-generation approach

that explores concrete states with method invocations (the approach was developed by us [XMN04a]

and Visser et al. [VPK04] independently). Roughly this approach generates non-redundant tests

only. However, this approach has two issues. First, this approach assumes that a �xed set of relevant

values for method arguments are provided beforehand; supplying theserelevant argument values is

often a challenging task for either developers or a third-party testing tool. Second, this approach
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faces a similar state exploration problem as in explicit-state model checking [CGP99].

To tackle these two issues, we have developed a test-generation approach, called Symstra, that

uses symbolic execution [Kin76] of methods to explore symbolic states. Symbolicstates, symbolic

representations of states, describe not only single concrete states, butsets of concrete states, and

when applicable, symbolic representations can yield large improvements, alsopreviously witnessed

for example by symbolic model checking [McM93]. We use symbolic executionto produce sym-

bolic states by invoking a method with symbolic variables for primitive-type arguments, instead of

requiring argument values to be provided beforehand. Each symbolic argument represents a set of

all possible concrete values for the argument. We present novel techniques for comparing symbolic

states of object-oriented programs. These techniques allow our Symstra approach to prune the ex-

ploration of object states and thus generate tests faster, without compromising the exhaustiveness of

the exploration. In particular, the pruning preserves the intra-method pathcoverage of the generated

test suites. We have evaluated our Symstra approach on 11 subjects, mostof which are complex

data structures taken from a variety of sources. The experimental results show that our Symstra

approach generates tests faster than the existing concrete-state approaches [VPK04,XMN04b]. Fur-

ther, given the same time for generation, our new approach can generatetests that achieve better

branch coverage than the existing approaches.

The remainder of this chapter is structured as follows: Section 4.1 presentsa running example.

Section 4.2 describes the concrete-state approach that generates tests by exploring concrete states.

Section 4.3 introduces the representation of symbolic states produced by symbolic execution. Sec-

tion 4.4 presents the subsumption relationship among symbolic states and Section 4.5 introduces

the Symstra approach that uses state subsumption relationship to prune symbolic-state exploration.

Section 4.6 presents the experiments that we conducted to assess the approach and then Section 4.7

concludes.

4.1 Example

We use a binary search tree implementation as a running example to illustrate our Symstra approach.

Figure 4.1 shows the relevant parts of the code. The binary search treeclassBST implements a set

of integers. Each tree has a pointer to the root node. Each node has an element and pointers to the
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class BST implements Set f

Node root;

static class Node f

int value;

Node left;

Node right;

g

public void add( int value) f

if (root == null ) f root = new Node(); root.value = value; g

else f

Node t = root;

while ( true ) f

if (t.value < value) f /* c1 */

if (t.right == null ) f

t.right = new Node(); t.right.value = value;

break ;

g else f t = t.right; g

g else if (t.value > value) f /* c2 */

if (t.left == null ) f

t.left = new Node(); t.left.value = value;

break ;

g else f t = t.left; g

g else f /* no duplicates*/ return ; g /* c3 */

g

g

g

public void remove( int value) f ... g

public boolean contains( int value) f ... g

g

Figure 4.1: A set implemented as a binary search tree

left and right children. The class also implements the standard set operations: add adds an element,

if not already in the tree, to a leaf;remove deletes an element, if in the tree, replacing it with the

smallest larger child if necessary; andcontains checks if an element is in the tree. The class also

has a default constructor that creates an empty tree.

Some tools such as Jtest [Par03] or JCrasher [CS04] test a class by generating random sequences

of methods; forBST, they could for example generate the following tests (written in the JUnit
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framework [GB03]):

public class BSTTest extends TestCase f

public void test1() f

BST t1 = new BST();

t1.add(0);

t1.add(-1);

t1.remove(0);

g

public void test2() f

BST t2 = new BST();

t2.add(2147483647);

t2.remove(2147483647);

t2.add(-2147483648);

g

g

Each test has a method sequence on the objects of the class, e.g.,test1 creates a treet1 ,

invokes twoadd methods on it, and then oneremove . One strategy adopted by existing tools is

to exhaustively explore all method sequences or randomly explore some method sequences up to a

given length. These tools consider that two tests are both generated if theyhave different method

sequences. As we have shown in Chapter 3, the conservative strategyproduces a high percentage

of redundant testes. The remainder of the chapter shows how to effectively generate non-redundant

tests that exercise the same program behavior as exercised by those testsgenerated by exhaustively

exploring all method sequences up to a given length.

4.2 Concrete-State Exploration

Unit-test generation for object-oriented programs consists of two parts: setting up receiver-object

states and generating method arguments. The �rst part puts an object of the class under test into a

particular state before invoking methods on it. The second part producesparticular arguments for

a method to be invoked on the receiver-object state. The concrete-state approach presented in this

section assumes a �xed set of method arguments have been provided beforehand and invoke these

method arguments to explore and set up object states.
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A method-argument stateis characterized by a method and the values for the method arguments,

where a method is represented uniquely by its de�ning class, name, and the entire signature. Two

method-argument states are equivalent iff their methods are the same and theheaps rooted from

their method arguments are equivalent (isomorphic).

Each test execution produces several method executions.

De�nition 9. A method executionhsa; sr i is a pair of a method-argument statesa and a receiver-

object statesr .1

Then we de�ne equivalent method executions based on equivalent states.

De�nition 10. Two method executionshsa1; sr 1i and hsa2; sr 2i are equivalentiff sa1 and sa2 are

equivalent, andsr 1 andsr 2 are equivalent.2

Our test generation approach is a type of combinatorial testing. We generatetests to exer-

cise each possible combination of nonequivalent receiver-object states and nonequivalent method-

argument states. In order to generate method-argument states, our implementation monitors and

collects method arguments from the executions of existing tests. This mechanismcomplements

existing method argument generation based on a dedicated test data pool, which contains default

data values [Par03,CS04] or user-de�ned data values [Par03]. Inpractice, programmers often write

unit tests [Bec00, Bec03], and these tests often contain some representative argument values. Our

approach takes advantage of these tests, rather than requiring programmers to explicitly de�ne rep-

resentative argument values. When there are no manually written tests for aclass, we collect method

arguments exercised by tests generated by existing test-generation tools, such as Jtest [Par03] and

JCrasher [CS04].

In order to prepare nonequivalent receiver-object states, initially wegenerate a set of tests each

of which consist of only one constructor invocation. These initial tests setup “empty” receiver-

object states. Then we generate new tests to exercise each nonequivalent “empty” object state with

1The de�nition of a method execution is different from the one presented inSection 3.4 of Chapter 3. This chapter rep-
resents the states of argument states and receiver states separately for the convenience of test generation, whereas Chap-
ter 3 represents the states of argument states and receiver states in a single representation for the safety of redundant-test
detection, because there may be some aliasing relationships between an argument and the receiver object, and repre-
senting them in a single representation is needed to capture these relationships conveniently.

2We can show that if two method executions are nonequivalent based on the preceding de�nition, then these two
method executions are nonequivalent based on the previous de�nition inSection 3.4 of Chapter 3.
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all nonequivalent method-argument states. After we execute the new generated tests, from the exe-

cution, we collect new object states that are not equivalent to any of those object states that have been

exercised by all all nonequivalent method-argument states. Then we generate new tests to exercise

each new object state with all nonequivalent method-argument states. Thesame iteration continues

until we run of memory or time, encounter no new object state, or reach a user-speci�ed iteration

number. The iterations of generating tests are basically a process of exploring object states with

method invocations in a breadth-�rst manner. The pseudo-code of the test-generation algorithm is

presented in Figure 4.2.

The inputs to our test-generation algorithm include a set of existing tests and auser-de�ned max-

imum iteration number, which is the maximum length of method sequences in the generated tests.

Our algorithm �rst runs the existing tests and collects runtime information, including nonequivalent

constructor-argument states and nonequivalent method-argument states. We also collect the method

sequence that leads to a nonequivalent object state or an argument in a method-argument state. We

use these method sequences to reproduce object states or arguments.

Then for each collected nonequivalent constructor-argument state, we create a new test that

invokes the constructor with the arguments. We run the new test that produces an “empty” receiver-

object state. From the runtime information collected from running the new test, we determine

whether the receiver-object state produced by the constructor execution is a new one (not being

equivalent to any previously collected one); if so, we put it into a frontierset.

Then we iterate each object state in the frontier set and invoke each nonequivalent method-

argument state on the object state. Each combination of an object state and a method argument list

forms a new test. We run the new test and collect runtime information. If the receiver-object state

produced by the last method execution in the new test is a new one, we put thenew receiver-object

state into the new frontier set for the next iteration. In the end of the current iteration, we replace

the content of the current frontier set with the content of the new frontierset. We next start the

subsequent iteration until we have reached the maximum iteration number or thefrontier set has no

object state. In the end of the algorithm, we return the generated tests collected over all iterations.

These tests are exported to a test class written in the JUnit framework [GB03].

Since invoking a state-preserving method on an object state does not change the state, we can

still invoke other methods on the object state in the same test. We merge generatedtests as much
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Set testGenConcreteExp( Set existingTests, int maxIterNum) f

Set newTests = new Set ();

RuntimeInfo runtimeInfo = execAndCollect(existingTests);

Set nonEqConstructorArgStates = runtimeInfo.getNonEqConst ructorArgStates();

Set nonEqMethodArgStates = runtimeInfo.getNonEqMethodArgS tates();

//create empty symbolic states

Set frontiers = new Set ();

foreach (constructorArgState in nonEqConstructorArgStates) f

Test newTest = makeTest(constructorArgState);

newTests.add(newTest);

runtimeInfo = execAndCollect(newTest);

frontiers.add(runtimeInfo.getNonEqObjState());

g

//exercise new states from each iteration with each method- argument state

for ( int i=1;i<=maxIterNum && frontiers.size()>0;i++) f

Set frontiersForNextIter = new Set ();

foreach (objState in frontiers) f

foreach (argState in nonEqMethodArgStates) f

Test newTest = makeTest(objState, argState);

newTests.add(newTest);

runtimeInfo = execAndCollect(newTest);

frontiersForNextIter.add(runtimeInfo.getNonEqObjSta te());

g

g

frontiers.clear();

frontiers.addAll(frontiersForNextIter);

g

return newTests;

g

Figure 4.2: Pseudo-code implementation of the test-generation algorithm based on exploring con-
crete states.

as possible by reusing and sharing the same object states among multiple method-argument state.

This reduces the number of the generated tests and the execution cost of thegenerated test suite.

The generated test suite contains no redundant tests, since our combinatorial generation mechanism

guarantees that the last method execution produced by each test is not equivalent to any method

execution produced by earlier executed tests.

Our implementation uses Java re�ection mechanisms [AGH00] to generate and execute new
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Figure 4.3: A part of the explored concrete states

tests online. In the end of test generation, we export the tests generated after each iteration to a

JUnit test class code [GB03], based on JCrasher's test code generation functionality [CS04].

When we testBST by using the test generation algorithm in Figure 4.2, we can provide three

values foradd 's argument:add(1) , add(2) , andadd(3) , and set the maximum iteration number

as three. Figure 4.3 shows a part of the explored concrete states for theBST class. Each explored

state has a heap, which is shown graphically in the �gure. The constructor�rst creates an empty tree.

In the �rst iteration, invokingadd on the empty tree with three arguments (1, 2, and3) produces

three new states (S2, S3, andS4), respectively. In the second iteration, invokingadd(1) onS2 does

not modify the receiver-object state, still beingS2. Invoking add(2) andadd(3) on S2 produces

two new states (S5 andS6), respectively. Similar cases occur onS3 andS4.

After exploring an edge (state transition), we generate a speci�c test to exercise this edge. We

generate the test by traversing the shortest path starting from the edge ofconstructor invocation (new

BST() ) to the current edge, and outputting the method invocations along the path. For example, the

test that we generate to exercise the edge fromS5 to S8 is:
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public void testEdgeFromS5ToS8() f

BST t = new BST();

t.add(1);

t.add(3);

t.add(2);

g

We can see that there are two major issues when we use the test generation algorithm in Fig-

ure 4.2 to testBST. First, the algorithm assumes that developers or third-party tools provide aset of

relevant values for the method arguments. For example, if we want to generate tests to reach aBST

object with eight elements, we need to provide at least eight different values foradd 's argument. For

complex classes, it is often a challenging task for developers or third-party tools to produce relevant

values for their method arguments. Second, the algorithm faces the state explosion problem when

exploring concrete states with a even relatively small number of provided method-argument values.

For example, the algorithm runs out of memory when it is used to testBST with seven different

values for the arguments ofadd andremove and with the maximum iteration number as seven.

In fact, invoking threeadd method invocations on the empty tree to reachS1, S2, andS3 exercise

the same program behavior: basically these method invocations put an integer into an empty binary

search tree. Invokingadd(3) on S2 exercises the same program behavior as invokingadd(3)

on S3: basically each method invocation inserts an integer into a binary search treecontaining a

smaller integer. To tackle the state exploration problem, we can construct an abstraction function

that maps similar concrete states into a single abstract state. One challenge here is to construct this

abstraction function automatically. The next section presents our new approach, called Symstra,

that uses symbolic execution to automatically group several concrete states into a single symbolic

state, if these concrete states are isomorphic in an abstract level and they are reached by executing

the same path of the program.

4.3 Symbolic-State Representation

The symbolic execution [Kin76] of a method accepts method inputs in the form ofsymbolic vari-

ables, instead of actual arguments values. In the symbolic execution of an object-oriented program,

the receiver object of a method invocation can be insymbolic states. Symbolic states differ from
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concrete states, on which the usual program executions operate, in thatsymbolic states contain

a symbolic heap that includes symbolic expressions with symbolic variables (such as symbolic

variables connected with their associated types' operators), and containalso constraints on these

variables.

We view a symbolic heap as a graph: nodes represent objects (as well asprimitive values and

symbolic expressions) and edges represent object �elds. LetO be some set of objects whose �elds

form a setF . Each object has a �eld that represents its class. We consider arrays as objects whose

�elds are labelled with (integer) array indexes and point to the array elements.

De�nition 11. A symbolic heap is an edge-labelled graphhO; Ei , whereE µ O £ F £ (O [

f null g [ U) such that for each �eldf of eacho 2 O exactly oneho; f; o0i 2 E . A concrete heap

has only concrete values:o0 2 O [ f null g [ P.

Given the de�nition of a symbolic heap, we can then de�ne a symbolic state formally:

De�nition 12. A symbolic statehC; H i is a pair of a constraint and a symbolic heap.

The usual execution of a method starts with a concrete state of the receiverobject and method-

argument values, and then produces one return value and one concrete state of the receiver object.

In contrast, the symbolic execution of a method starts with a symbolic state of the receiver object

and symbolic variables of method arguments, and then produces several return values and several

symbolic states of the receiver object. Asymbolic execution treecharacterizes the execution paths

followed during the symbolic execution of a program. An edge represents amethod invocation

whose symbolic execution follows a speci�c path. A node in the tree represents a symbolic state

produced by symbolically executing a speci�c path of a method. Figure 4.4 shows a part of the

symbolic execution tree forBST when we invoke a method sequence consisting of only theadd

method.

The constructor ofBST �rst creates an empty treeS1, whose constraint istrue . Then we invoke

add on S1 with symbolic variablex1 as the argument. The symbolic execution ofadd on S1 can

explore one path, producing a symbolic stateS2 whose heap contains the elementx1 and constraint

is still true . In general, while an execution of a method with concrete arguments produces one

state, the symbolic execution of a method with symbolic arguments can produce several states, thus
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Figure 4.4: A part of the symbolic execution tree

resulting in an execution tree. For example, the symbolic execution of theadd onS2 with symbolic

variablex2 as the argument produces three symbolic states (S3, S4, andS5), which are produced

by following three different paths withinadd , in particular, taking three different branches (c1, c2,

andc3) labeled in the method body ofadd (Figure 4.1): ifx1 = x2, the tree does not change, and if

x2 > x 1 (or x2 < x 1), x2 is added in the right (or left) subtree.

Following the typical symbolic executions [Kin76, KPV03, VPK04], our implementation sym-

bolically explores both branches ofif statements, modifying the constraint with a conjunct that

needs to hold for the execution to take a certain branch. In this context, the constraint is calledpath

condition, because it is a conjunction of conditions that need to hold for the executionto take a

certain path and reach the current address. This symbolic execution directly explores every path of

the method under consideration. The common issue in the symbolic execution is that the number of

paths may be in�nite (or too large as it grows exponentially with the number of branches). In such

cases, we can use the standard set of heuristics to explore only some of the paths [VPK04,BPS00].

Our implementation executes code on symbolic states by rewriting the code to operate on sym-

bolic expressions [KPV03, VPK04]. Furthermore, Symstra implements the exploration of different

branches by re-executing the method from the beginning for each path, without storing any inter-

mediate states. Note that Symstra re-executes only one method (for different paths), not the whole
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method sequence. This effectively produces a depth-�rst explorationof paths within one method,

while the exploration of states between methods is breadth-�rst as explainedin the next section.

Our Symstra prototype also implements the standard optimizations for symbolic execution. First,

Symstra simpli�es the constraints that it builds at branches; speci�cally, before conjoining the path

condition so farC and the current branch conditionC0 (whereC0 is a condition from anif or its

negation), Symstra checks if some of the conjuncts inC impliesC0; if so, Symstra does not conjoin

C0. Second, Symstra checks if the constraintC&& C0 is unsatis�able; if so, Symstra stops the cur-

rent path of symbolic execution, because it is an infeasible path. The current Symstra prototype can

use the Simplify [DNS03] theorem prover or the Omega library [Pug92] to check unsatis�ability.

4.4 Symbolic-State Subsumption

This section presents techniques that compare two symbolic states: checkingisomorphism of their

symbolic heaps and checking implication relationships between their constraints. These techniques

help determine symbolic-state subsumption: whether one symbolic state subsumesthe other. We

use symbolic-state subsumption to effectively prune the exploration of symbolic states (Section 4.5).

4.4.1 Heap-Isomorphism Checking

We de�ne heap isomorphism as graph isomorphism based on node bijection [BKM02]. We want

to detect isomorphic heaps because invoking the same methods on them leads toequivalent method

behaviors and redundant tests; therefore, it suf�ces to explore onlyone representative from each

isomorphism partition. Nodes in symbolic heaps contain symbolic variables, so we �rst de�ne a

renamingof symbolic variables. Given a bijection¿ : V ! V , we extend it to the whole¿ :

U ! U as follows: ¿(p) = p for all p 2 P, and¿(¯ u1; : : : ; un ) = ¯ ¿(u1); : : : ; ¿(un ) for all

u1; : : : ; un 2 U and operations̄ . We further extend¿ to substitute free variables in formulas with

bound variables, avoiding capture as usual.

De�nition 13. Two symbolic heapshO1; E1i andhO2; E2i are isomorphiciff there are bijections
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½: O1 ! O2 and¿ : V ! V such that:

E2 = fh½(o); f; ½(o0)ijho; f; o0i 2 E1; o0 2 O1g [ fh ½(o); f; null ijho; f; null i 2 E1g [

fh½(o); f; ¿ (o0)ijho; f; o0i 2 E1; o0 2 Ug:

The de�nition allows only object identities and symbolic variables to vary: two isomorphic

heaps have the same �elds for all objects and equal (up to renaming) symbolic expressions for all

primitive �elds.

Our test generation based on state exploration does not consider the entire program heap but

focuses on the state of several objects (including the receiver object and arguments of a method

invocation); in this context, the state of an objecto is a rooted heap, which is characterized by the

values of the �elds ofo and �elds of all objectsreachablefrom o.

We linearizerooted symbolic heaps into integer sequences such that checking symbolic-heap

isomorphism corresponds to checking sequence equality. Figure 4.5 shows the linearization algo-

rithm for a symbolic rooted heap. It starts from the root and traverses theheap in a depth-�rst

manner. It assigns a unique identi�er to each object that is visited for the �rst time, keeps this map-

ping in objs , and reuses it for objects that appear in cycles. It also assigns a unique identi�er to

each symbolic variable, keeps this mapping invars , and reuses it for variables that appear several

times in the heap.

This algorithm extends the linearization algorithm shown in Figure 3.2 of Chapter 3 with linSymExp

that handles symbolic expressions; this improves on the approach of Khurshid et al. [KPV03,

VPK04] that does not use any comparison for symbolic expressions. Wecan show that our lin-

earization normalizes rooted heaps.

Theorem 2. Two rooted heapshO1; E1i (with root r1) andhO2; E2i (with root r2) are isomorphic

iff linearize (r1; hO1; E1i )= linearize (r2; hO2; E2i ).

4.4.2 State-Subsumption Checking

When the rooted heaps in two symbolic states are isomorphic, these two symbolic states are not

necessarily equivalent (based on the observational equivalence [DF94, LG00]), because the con-

straints in these two symbolic states may not be equivalent (two constraints areequivalent if they
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Map<Object,int> objs; // maps objects to unique ids

Map<SymVar,int> vars; // maps symbolic variables to unique ids

int [] linearize( Object root, Heap <O,E>) f

objs = new Map(); vars = new Map();

return lin(root, <O,E>>;

g

int [] lin( Object root, Heap <O,E>) f

if (objs.containsKey(root))

return singletonSequence(objs.get(root));

int id = objs.size() + 1; objs.put(root, id);

int [] seq = singletonSequence(id);

Edge[] fields = sortByField( f <root, f, o> in E g);

foreach (<root, f, o> in fields) f

if (isSymbolicExpression(o)) seq.append(linSymExp(o));

elseif (o == null ) seq.append(0);

else seq.append(lin(o, <O,E>)); // pointer to an object

g

return seq;

g

int [] linSymExp( SymExp e) f

if (isSymVar(e)) f

if (!vars.containsKey(e))

vars.put(e, vars.size() + 1);

return singletonSequence(vars.get(e));

g elseif (isPrimitive(e)) return uniqueRepresentation(e);

else f // operation with operands

int [] seq = singletonSequence(uniqueRepresentation(e.getO peration()));

foreach ( SymExp e' in e.getOperands())

seq.append(linSymExp(e'));

return seq;

g

g

Figure 4.5: Pseudo-code of linearization for a symbolic rooted heap

have the same set of solutions). Two symbolic states are equivalent if they represent the same set of

concrete states. To effectively prune the exploration of symbolic states, we de�ne the subsumption
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boolean checkSubsumes( Constraint C1, Heap H1,

Constraint C2, Heap H2) f

int [] i1 = linearize(root(H1), H1);

Map<SymVar,int> v1 = vars; // at the end of previous linearization

Set<SymVar> n1 = variables(C1) - v1.keys(); // variables not in the heap

int [] i2 = linearize(root(H2), H2);

Map<SymVar,int> v2 = vars; // at the end of previous linearization

Set<SymVar> n2 = variables(C2) - v2.keys(); // variables not in the heap

if (i1 <> i2) return false ;

Renaming ¿ = v2 ± v1 ¡ 1 // compose v2 and the inverse of v1

return checkValidity( ¿(9n2 : C2 ) ) 9 n1 : C1 );

g

Figure 4.6: Pseudo-code of subsumption checking for symbolic states

relationships among symbolic states. Intuitively a symbolic stateS subsumes another oneS0 if the

concrete states represented byS are a superset of the concrete states represented byS0; then if we

have exploredS, we do not need to exploreS0, because the behaviors exercised by invoking meth-

ods onS0would have been exercised by invoking methods onS. We can more effectively prune the

exploration of symbolic states based on symbolic-state subsumption than basedon symbolic-state

equivalence.

We next formally de�ne symbolic state subsumption based on the concrete heaps that each

symbolic state represents. To instantiate a symbolic heap into a concrete heap,we replace the

symbolic variables in the heap with primitive values that satisfy the constraint in the symbolic state.

De�nition 14. An instantiationI (hC; H i ) of a symbolic statehC; H i is a set of concrete heapsH 0

such that there exists a valuation´ : V ! P for which´ (C) is true andH 0 is the evaluatioń (H )

of all expressions inH according tó .

De�nition 15. A symbolic statehC1; H1i subsumesanother symbolic statehC2; H2i , in notation

hC1; H1i ¶ h C2; H2i , iff for each concrete heapH 0
2 2 I (hC2; H2i ), there exists a concrete heap

H 0
1 2 I (hC1; H1i ) such thatH 0

1 andH 0
2 are isomorphic.

We use the algorithm in Figure 4.6 to check if the constraint ofhC2; H2i , after suitable renaming,

implies the constraint ofhC1; H1i . When some symbolic variables are removed from the heaps, for
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example, by aremove method, these symbolic variables do not appear in the heaps but may appear

in a constraint. Therefore, the implication is universally quanti�ed over onlythe (renamed) symbolic

variables that appear in the heaps and existentially quanti�ed over the symbolic variables that do not

appear in the heaps (more precisely only inH1, because the existential quanti�er forn2 in the

premise of the implication becomes a universal quanti�er for the whole implication).

We can show that this algorithm is a conservative approximation of subsumption.

Theorem 3. If checkSubsumes (hC1; H1i ; hC2; H2i ) thenhC1; H1i subsumeshC2; H2i .

For example, we can show that the heaps inS2 and S4 (Figure 4.4) are isomorphic and the

implication(8x19x2(x1 = x2) ) true ) holds. Then we can determineS2 subsumesS4. Similarly

we can determineS6 subsumesS7. Note that the renaming operation on constraints (shown in

Figure 4.6) is necessary for us to show that the constraint ofS7 implies the constraint ofS6.

Our Symstra approach gains the power and inherits the limitations from the technique used

to check the implication on the (renamed) constraints. Our implementation uses the Omega li-

brary [Pug92], which provides a complete decision procedure for Presburger arithmetic, and CVC

Lite [BB04], an automatic theorem prover, which has decision procedures for several types of con-

straints, including real linear arithmetic, uninterpreted functions, arrays,etc. Because these checks

can consume a lot of time, our implementation further uses the following conservative approxima-

tion: if free-variables(9n1: C1) are not a subset of free-variables(¿(9n2: C2)), returnfalse without

checking the implication.

4.5 Symbolic-State Exploration

We next present how our Symstra approach systematically explores the symbolic-state space. The

state space consists of all symbolic states that are reachable with the symbolic execution of a method

for the class under test. Our Symstra approach exhaustively explores abounded part of the sym-

bolic state space using a breadth-�rst search. The pseudo-code of the test-generation algorithm is

presented in Figure 4.7.

The inputs to our test-generation algorithm include a set of constructorC and non-constructor

methodsM of the class under test, and a user-de�ned maximum iteration number, which isthe

maximum length of method sequences in the generated tests. We �rst invoke each constructor on
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Set testGenSymExp( Set C, Set M, int maxIterNum) f

Set newTests = new Set ();

//create empty symbolic states

Set frontiers = new Set ();

foreach (constructor in C) f

RuntimeInfo runtimeInfo = symExecAndCollect(constructor);

newTests.addAll(runtimeInfo.solveAndGenTests());

frontiers.addAll(runtimeInfo.getNonSubsumedObjState s());

g

//exercise non-subsumed symbolic states with symbolic exe cution of methods

for ( int i=1;i<=maxIterNum && frontiers.size()>0;i++) f

Set frontiersForNextIter = new Set ();

foreach (objState in frontiers) f

foreach (method in M) f

RuntimeInfo runtimeInfo = symExecAndCollect(objState, method);

newTests.addAll(runtimeInfo.solveAndGenTests());

frontiersForNextIter.addAll(runtimeInfo.getNonSubsu medObjStates());

g

g

frontiers.clear();

frontiers.addAll(frontiersForNextIter);

g

return newTests;

g

Figure 4.7: Pseudo-code implementation of the test-generation algorithm based on exploring sym-
bolic states.

the initial symbolic state, which iss0 = htrue ; fgi : the constraint is true, and the heap is empty.

The symbolic execution of the constructor produces some “empty” receiver-object states. Then

for each symbolic state produced by the symbolic execution, we generate a test. We also determine

whether the symbolic state is subsumed by any previously collected symbolic state; if not, we collect

it into a frontier set.

Then we iterate each symbolic-object state collected in the frontier set and invoke each method

in M on the object state. We create a new test for each symbolic stateS produced by the symbolic

execution of the method. IfS is not subsumed by any previously collected symbolic state, we collect

S into the new frontier set for the next iteration. Otherwise, we prune the further exploration ofS: S
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represents only a subset of the concrete heaps that are representedby some symbolic state previously

collected for exploration; it is thus unnecessary to exploreS further. Pruning based on subsumption

plays the key role in enabling our algorithm to explore large state spaces. For example,S4 andS7

in Figure 4.4 are pruned because we have collected and exploredS2 andS6, which subsumeS4 and

S7, respectively.

In the end of the current iteration, we replace the content of the currentfrontier set with the

content of the new frontier set. We next start the subsequent iteration until we have reached the

maximum iteration number or the frontier set has no symbolic state. In the end of the algorithm, we

return the generated tests collected over all iterations. These tests are exported to a test class written

in the JUnit framework [GB03].

During the symbolic-state exploration, we build speci�c concrete tests that lead to the states

explored through the symbolic execution of a method. Whenever we �nish a methodm's symbolic

execution that generates a symbolic statehC; H i , we �rst generate asymbolic test, which consists

of the constraintC and the sequence of method invocations along the shortest path starting from

the edge of constructor invocation to the edge form's symbolic execution. We then instantiate the

symbolic test using the POOC constraint solver [SR02] to solve the constraint C over the symbolic

arguments for methods in the sequence. Based on the produced solution, we obtain concrete argu-

ments for the sequence leading tohC; H i . We export such concrete test sequences into a JUnit test

class [GB03]. We also export the constraintC associated with the test as a comment for the test in

the JUnit test class.

For example, the tests that we generate to exercise the edge fromS2 to S3 and the edge fromS2

to S5 in Figure 4.4 are:

public void testEdgeFromS2ToS3() f

/* x1 > x2 */

int x1 = -999999;

int x2 = -1000000;

BST t = new BST();

t.add(x1);

t.add(x2);

g

public void testEdgeFromS2ToS5() f

/* x1 < x2 */
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int x1 = -1000000;

int x2 = -999999;

BST t = new BST();

t.add(x1);

t.add(x2);

g

A realistic suite of unit tests contains more sequences that test the interplay between add ,

remove , andcontains methods. Section 4.6 summarizes such suites.

At the class-loading time, our implementation instruments each branching point ofthe class

under test for measuring branch coverage at the bytecode level. It also instruments each method

of the class to capture uncaught exceptions at runtime. Given a symbolic state at the entry of

a method execution, our implementation uses symbolic execution to achieve structural coverage

within the method, because symbolic execution systematically explores all feasible paths within the

method. If the user of Symstra is interested in only the tests that achieve new branch coverage,

our implementation selects only the generated tests that increase branch coverage or throw new

uncaught exceptions. Our implementation can also be extended for selectingtests that achieve new

bounded intra-method path coverage [BL00].

4.6 Evaluation

This section presents our evaluation of Symstra for exploring states and generating tests. We com-

pare Symstra with the concrete-state approach shown in Section 4.2. We have developed both

approaches within the same infrastructure, so that the comparison does not give an unfair advan-

tage to either approach because of unrelated improvements. In these experiments, we have used

the Simplify [DNS03] theorem prover to check unsatis�ability of path conditions, the Omega li-

brary [Pug92] to check implications, and the POOC constraint solver [SR02] to solve constraints.

We have performed the experiments on a Linux machine with a Pentium IV 2.8 GHzprocessor

using Sun's Java 2 SDK 1.4.2 JVM with 512 MB allocated memory.

Table 4.1 lists the 11 Java classes that we use in the experiments. The �rst sixclasses were

previously used in evaluating our redundant-test detection approach presented in Chapter 3, and the

last �ve classes were used in evaluating Korat [BKM02]. The columns ofthe table show the class
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Table 4.1: Experimental subjects

class methods under test some private methods #ncnb #

lines branches

IntStack push,pop – 30 9

UBStack push,pop – 59 13

BinSearchTree add,remove removeNode 91 34

BinomialHeap insert,extractMin �ndMin,merge 309 70

delete unionNodes,decrease

LinkedList add,remove,removeLast addBefore 253 12

TreeMap put,remove �xAfterIns 370 170

�xAfterDel,delEntry

HeapArray insert,extractMax heapifyUp,heapifyDown 71 29

name, the public methods under test (that the generated sequences consist of), some private methods

invoked by the public methods, the number of non-comment, non-blank lines ofcode in all those

methods, and the number of branches for each subject.

We use both approaches to explore states up toN iterations; in other words, we generate tests

that consist of sequences with up toN methods. The concrete-state approach also requires concrete

values for arguments, so we set it to useN different arguments (the integers from 0 toN ¡ 1)

for methods under test. Table 4.2 shows the comparison between Symstra andthe concrete-state

approach. We considerN in the range from �ve to eight. (ForN < 5, both approaches generate

tests really fast, usually within a couple of seconds, but those tests do not have good quality.) We

tabulate the time to generate the tests (measured in seconds, Columns 3 and 7), the number of

explored symbolic and concrete object states (Columns 4 and 8), the number of generated tests

(Columns 5 and 9), and the branch coverage3 achieved by the generated tests (Columns 6 and 10).

In Columns 5 and 9, we report the total number of generated tests and, in theparentheses, the

cumulative number of tests that increase the branch coverage.

During test generation, we set a three-minute timeout for each iteration of thebreadth-�rst ex-

3We measure the branch coverage at the bytecode level during the state exploration of both approaches, and calculate
the total number of branches also at the bytecode level.



71

ploration: when an iteration exceeds three minutes, the exhaustive exploration of each approach is

stopped and the system proceeds with the next iteration. We use a “*” mark for each entry where

the test-generation process timed out; the state exploration of these entries is no longer exhaustive.

We use a “–” mark for each entry where its corresponding approach exceeded the memory limit.

The results indicate that Symstra generates method sequences of the same lengthN often much

faster than the concrete-state approach, thus enabling Symstra to generate longer method sequences

within a given time limit. Both approaches achieve the same branch coverage for method sequences

of the same lengthN . However, Symstra achieves higher coverage faster. It also takes less memory

and can �nish generation in more cases. These results are due to the factthat each symbolic state,

which Symstra explores at once, actually describes a set of concrete states, which the concrete-state

approach must explore one by one. The concrete-state approach often exceeds the memory limit

whenN = 7 or N = 8 , which is often not enough to guarantee full branch coverage.

4.7 Conclusion

We have proposed Symstra, an approach that uses symbolic execution to generate a small number

of non-redundant tests that achieve high branch and intra-method path coverage for complex data

structures. Symstra exhaustively explores symbolic states with symbolic arguments up to a given

length. It prunes the exploration based on state subsumption; this pruning speeds up the exploration,

without compromising its exhaustiveness. We have implemented the approach and evaluated it on

11 subjects, most of which are complex data structures. The results show that Symstra generates

tests faster than the existing concrete-state approaches, and given the same time limit, Symstra can

generate tests that achieve better branch coverage than these existing approaches.

We �nally discuss how Symstra can be leveraged in speci�cation-based testing, and extended to

improve performance and address some inherent limitations of symbolic execution.

Speci�cations. Although the work in this dissertation including the Symstra approach has been

developed to be used in the absence of speci�cations, Symstra's test generation can be guided by

speci�cations if they are provided. These speci�cations can include method pre- and post-conditions

and class invariants, written in the Java Modelling Language (JML) [LBR98]. The JML tool-set
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transforms these constructs into run-time assertions that throw JML-speci�c exceptions when vi-

olated. Speci�cation-based testing normally needs to generatelegal method invocations whose

method-entry states satisfy pre-conditions and class invariants, i.e., no exceptions for these con-

structs are thrown at method entries. By default, Symstra does not explorefurther a state resulting

from an exception-throwing method execution; therefore, Symstra explores legal method sequences.

If during the exploration Symstra �nds a method invocation that violates a post-condition or invari-

ant, Symstra has discovered a bug; Symstra can be con�gured to generate such tests and continue or

stop test generation. If a class implementation is correct with respect to its speci�cation, paths that

throw post-condition or invariant exceptions should be infeasible.

Our implementation for Symstra operates on the bytecode level. It can perform testing of the

speci�cations woven into method bytecode by the JML tool-set or by similar tools. Note that in this

setting Symstra essentially uses black-box testing [VPK04] to explore only those symbolic states

that are produced by method executions that satisfy pre-conditions and class invariants; conditions

that appear in speci�cations simply propagate into the constraints associatedwith a symbolic state

explored by Symstra. Using symbolic execution, Symstra thus obtains the generation of legal test

sequences “for free”.

Performance. Based on state subsumption, our current implementation for Symstra exploresone

or more symbolic states that have the isomorphic heap. We can extend our implementation to

explore exactly oneunion symbolic state for each isomorphic heap. We can create a union state

using a disjunction of the constraints for all symbolic states with the isomorphic heap. Each union

state subsumes all the symbolic states with the isomorphic heap, and thus exploring only union

states can further reduce the number of explored states without compromising the exhaustiveness of

the exploration. (Subsumption is a special case of union; ifC2 ) C1, thenC1 _ C2 simpli�es to

C1.)

Symstra enables exploring longer method sequences than the concrete-state approaches. How-

ever, users may want to have an exploration of even longer sequencesto achieve some test purpose.

In such cases, the users can apply several techniques that trade the guarantee of the intra-method

path coverage for longer sequences. For example, the users may provide abstraction functions for

states [LG00], as used for instance in the AsmLT generation tool [Fou], or binary methods for com-
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paring states (e.g.equals ), as used for instance in our Rostra approach (Chapter 3). Symstra can

then generate tests that instead of subsumption use these user-provided functions for comparing

state. This leads to a potential loss of intra-method path coverage but enables faster, user-controlled

exploration. To explore longer sequences, Symstra can also use standard heuristics [VPK04,BPS00]

for selecting only a set of paths instead of exploring all paths.

Limitations. The use of symbolic execution has inherent limitations. For example, it cannotpre-

cisely handle array indexes that are symbolic variables. This situation occurs in some classes, such

as DisjSet andHashMap used previously in evaluating Rostra (Chapter 3). One solution is to

combine symbolic execution with (exhaustive or random) exploration based on concrete arguments:

a static analysis would determine which arguments can be symbolically executed,and for the rest,

the user would provide a set of concrete values [Fou].

So far we have discussed only methods that take primitive arguments. We cannot directly trans-

form non-primitive arguments into symbolic variables of primitive type. However, we can use

the standard approach for generating non-primitive arguments: generate them also as sequences of

method calls that may recursively require more sequences of method calls, but eventually boil down

to methods that have only primitive values (ornull ). (Note that this also handles mutually recursive

classes.) JCrasher [CS04] and Eclat [PE05] take a similar approach. Another solution is to trans-

form these arguments into reference-type symbolic variables and enhance the symbolic execution to

support heap operations on symbolic references. Concrete objects representing these variables can

be generated by solving the constraints and setting the instance �elds using re�ection. However, the

collected constraints are often not suf�cient to generate legal instances, in which case an additional

object invariant is required.
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Table 4.2: Experimental results of test generation using Symstra and the concrete-state approach

Symstra Concrete-State Approach

class N time states tests %cov time states tests %cov

UBStack 5 0.95 22 43(5) 92.3 4.98 656 1950(6) 92.3

6 4.38 30 67(6) 100.0 31.83 3235 13734(7) 100.0

7 7.20 41 91(6) 100.0 *269.68 *10735 *54176(7) *100.0

8 10.64 55 124(6) 100.0 - - - -

IntStack 5 0.23 12 18(3) 55.6 12.76 4836 5766(4) 55.6

6 0.42 16 24(4) 66.7 - - - -

7 0.50 20 32(5) 88.9 *689.02 *30080 *52480(5) *66.7

8 0.62 24 40(6) 100.0 - - - -

BinSearchTree 5 7.06 65 350(15) 97.1 4.80 188 1460(16) 97.1

6 28.53 197 1274(16) 100.0 23.05 731 7188(17) 100.0

7 136.82 626 4706(16) 100.0 - - - -

8 *317.76 *1458 *8696(16) *100.0 - - - -

BinomialHeap 5 1.39 6 40(13) 84.3 4.97 380 1320(12) 84.3

6 2.55 7 66(13) 84.3 50.92 3036 12168(12) 84.3

7 3.80 8 86(15) 90.0 - - - -

8 8.85 9 157(16) 91.4 - - - -

LinkedList 5 0.56 6 25(5) 100.0 32.61 3906 8591(6) 100.0

6 0.66 7 33(5) 100.0 *412.00 *9331 *20215(6) *100.0

7 0.78 8 42(5) 100.0 - - - -

8 0.95 9 52(5) 100.0 - - - -

TreeMap 5 3.20 16 114(29) 76.5 3.52 72 560(31) 76.5

6 7.78 28 260(35) 82.9 12.42 185 2076(37) 82.9

7 19.45 59 572(37) 84.1 41.89 537 6580(39) 84.1

8 63.21 111 1486(37) 84.1 - - - -

HeapArray 5 1.36 14 36(9) 75.9 3.75 664 1296(10) 75.9

6 2.59 20 65(11) 89.7 - - - -

7 4.78 35 109(13) 100.0 - - - -

8 11.20 54 220(13) 100.0 - - - -
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Chapter 5

TEST SELECTION FOR INSPECTION

In practice, developers tend to write a relatively small number of unit tests, which in turn tend to

be useful but insuf�cient for high software quality assurance. Some automatic test-generation tools,

such as Parasoft Jtest [Par03], attempt to �ll the gaps not covered byany manually generated unit

tests; these tools can automatically generate a large number of unit test inputs toexercise the pro-

gram. However, there are often no expected outputs (oracles) for these automatically generated test

inputs and the tools generally only check the program's robustness: checking whether any uncaught

exception is thrown during test executions [KJS98, CS04]. Manually verifying the outputs of such

a large number of test inputs requires intensive labor, which is usually impractical. Unit-test selec-

tion is a means to address this problem by selecting the most valuable subset ofthe automatically

generated test inputs. Then programmers can inspect the executions of this much smaller set of test

inputs to check the correctness or robustness, and to add oracles.

If a priori speci�cations are provided with a program, the execution of automatically gener-

ated test inputs can be checked against the speci�cations to determine the correctness. In addition,

speci�cations can guide test generation tools to generate test inputs. For example, the precondi-

tions in speci�cations can guide test generation tools to generate only valid test inputs that satisfy

the preconditions [Par03, BKM02]. The postconditions in speci�cations can guide test generation

tools to generate test inputs to try to violate the postconditions, which are fault-exposing test in-

puts [Par03,KAY96,Gup03]. Although speci�cations can bring us manybene�ts in testing, speci�-

cations often do not exist in practice.

We have developed theoperational violationapproach: a black-box test generation and selec-

tion approach that does not requirea priori speci�cations. Anoperational abstractiondescribes the

actual behavior during program execution of an existing unit test suite [HME03]. We use the gen-

erated operational abstractions to guide test generation tools, so that the tools can more effectively

generate test inputs that violate these operational abstractions. If the execution of an automati-
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cally generated test input violates an operational abstraction, we select this test input for inspection.

The key idea behind this approach is that the violating test exercises a new feature of program

behavior that is not covered by the existing test suite. We have implemented thisapproach by in-

tegrating Daikon [ECGN01] (a dynamic invariant detection tool) and the commercial Parasoft Jtest

4.5 [Par03].

The next section describes the example that we use to illustrate our approach. Section 5.2

presents the operational violation approach. Section 5.3 describes the experiments that we con-

ducted to assess the approach and then Section 5.4 concludes.

5.1 Example

This section presents an example to illustrate how programmers can use our approach to test their

programs. The example is a Java implementationUBStack of a bounded stack that stores unique

elements of integer type. Figure 5.1 shows the class including several methodimplementations that

we shall refer to in the rest of the chapter. Stotts et al. coded this Java implementation to experiment

with their algebraic-speci�cation-based approach for systematically creating unit tests [SLA02];

they provided a web link to the full source code and associated test suites.Stotts et al. also speci�ed

formal algebraic speci�cations for the bounded stack.

In the class implementation, the array �eldelems contains the elements of the stack, and the

integer �eld numberOfElements is the number of the elements and the index of the �rst free

location in the stack. The integer �eldmax is the capacity of the stack. Thepop method simply

decreasesnumberOfElements . The top method returns the element in the array with the index

of numberOfElements-1 if numberOfElements >= 0 . Otherwise, the method prints an error

message and returns-1 as an error indicator. ThegetSize method returnsnumberOfElements .

Given an element, theisMember method returnstrue if it �nds the same element in the subarray

of elems up tonumberOfElements , and returnsfalse otherwise.

Stotts et al. have created two unit test suites for this class: a basic JUnit [GB03] test suite (8

tests), in which one test method is generated for a public method in the target class; and a JAX test

suite (16 tests), in which one test method is generated for an axiom inUBStack 's algebraic speci�-

cations. The basic JUnit test suite does not expose any fault but one ofthe JAX test cases exposes
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public class UBStack f

private int [] elems;

private int numberOfElements;

private int max;

public UBStack() f

numberOfElements = 0;

max = 2;

elems = new int [max];

g

public void push( int k) f ... g

public void pop() f numberOfElements--; g

public int top() f

if (numberOfElements < 1) f

System .out.println("Empty Stack");

return -1;

g else f

return elems[numberOfElements-1];

g

g

public int getSize() f return numberOfElements; g

public boolean isMember( int k) f

for ( int index=0; index<numberOfElements; index++)

if (k==elems[index])

return true ;

return false ;

g

...

g

Figure 5.1: TheUBStack program

one fault (handling apop operation on an empty stack incorrectly). In practice, programmers usu-

ally �x the faults exposed by the existing unit tests before they augment the unit test suite. In this

example and for our analysis of our approach, instead of �xing the exposed fault, we remove this

fault-revealing test case from the JAX test suite to make all the existing test cases pass.
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5.2 Operational Violation Approach

In this work, the objective ofunit-test selectionis to select the most valuable subset of automatically

generated tests for inspection and then use these selected tests to augment the existing tests for a

program unit. More precisely, we want to select generated tests to exercise a program unit's new

behavior that is not exercised by the existing tests. Since manual effort isrequired to verify the

results of selected test inputs, it is important to select a relatively small numberof tests. This is

different from the problems that traditional test selection techniques address [CR99, HME03]. In

those problems, there are test oracles for unselected test inputs. Therefore, selecting a relatively

large number of tests during selection is usually acceptable for those problems, but is not practical

in this work. More formally, the objective of unit-test selection in this context isto answer the

following question as inexpensively as possible:

Problem. Given a program unit u, a set S of existing tests for u, and a test t from a setS' of

generated tests for u, does the execution of t exercise at least one new feature that is not exercised

by the execution of any test in S?

If the answer is yes,t is removed fromS' and put intoS. Otherwise,t is removed fromS' and

discarded. In this work, the initial setS comprises the existing unit tests, which are usually manually

written. The setS' of unselected tests is automatically generated tests.

The termfeatureis intentionally vague, since it can be de�ned in different ways. For example, a

new feature could be fault-revealing behavior that does not occur during the execution of the existing

tests. A new feature could be a predicate in the speci�cations for the unit [CR99]. A new feature

could be program behavior exhibited by executing a new structural entity,such as statement, branch,

or def-use pair.

Our operational violation approach uses operational abstractions to characterize program fea-

tures. Anoperational abstractionis a collection of logical statements that abstract the program's

runtime behavior [HME03]. It is syntactically identical to a formal speci�cation. In contrast to a for-

mal speci�cation, which expresses desired behavior, an operational abstraction expresses observed

behavior. Daikon [ECGN01], a dynamic invariant detection tool, can be used to infer operational

abstractions (also called invariants) from program executions of test suites. These operational ab-

stractions are in the form of DbC annotations [Mey92, LBR98, Par02]. Daikon examines variable
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values computed during executions and generalizes over these values to obtain operational abstrac-

tions. Like other dynamic analysis techniques, the quality of the test suite affects the quality of the

analysis. De�cient test suites or a subset of suf�cient test suites may not help to infer a generaliz-

able program property. Nonetheless, operational abstractions inferred from the executed test suites

constitute a summary of the test execution history. In other words, the executions of the test suites

all satisfy the properties in the generated operational abstractions.

Our approach leverages an existing speci�cation-based test generation tool to generate new tests

and selects those generated tests that violate the operational abstractions inferred from the existing

tests. Our implementation uses Parasoft Jtest 4.5 [Par03]. Jtest can automatically generate unit

tests for a Java class. When speci�cations are provided with the class, Jtest can make use of them

to perform black-box testing. The provided preconditions, postconditions, or class invariants give

extra guidance to Jtest in its test generation. If the code has preconditions, Jtest tries to generate

test inputs that satisfy all of them. If the code has postconditions, Jtest generates test inputs that

verify whether the code satis�es these conditions. If the code has class invariants, Jtest generates

test inputs that try to make them fail. By default, Jtest tests each method by generating arguments

for them and calling them independently. In other words, Jtest basically tries the calling sequences

of length one by default. Tool users can set the length of calling sequences in the range of one to

three. If a calling sequence of length three is speci�ed, Jtest �rst tries all calling sequences of length

one followed by all those of length two and three sequentially.

Section 5.2.1 next explains the basic technique of the approach. Section 5.2.2 presents the

precondition removal technique to complement the basic technique. Section 5.2.3 describes the

iterative process of applying these techniques.

5.2.1 Basic technique

In the basic technique (Figure 5.2), we run the existing unit test suite on the program that is instru-

mented by the Daikon front end. The execution produces a data trace �le,which contains variable

values computed during execution. Then we use Daikon to infer operational abstractions from the

data trace �le. We extend the Daikon toolset to insert the operational abstractions into the source

code as DbC annotations. We feed the resulting annotated code to Jtest, which automatically gener-
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Figure 5.2: An overview of the basic technique

ates and executes new tests. The two symptoms of an operational violation arethat an operational

abstraction is evaluated to befalse , or that an exception is thrown while evaluating an operational

abstraction. When a certain number of operational violations have occurred before Jtest exhausts

its testing repository, Jtest stops generating test inputs and reports operational violations. Jtest ex-

ports all the operational violations, including the violating test inputs, to a text �le. Given the

exported text �le, we automatically comment out the violated operational abstractions in the source

code. At the same time, we collect the operational violations. Then we invoke Jtest again, which

is given the program with reduced operational abstractions. We repeatthe preceding procedure it-

eratively until we cannot �nd any operational violations. We call these iterations asinner iterations

to avoid their being confused with the iterations described in Section 5.2.3. Theinner iterations

mainly comprise the activities of Jtest's test generation and execution, Jtest'sviolation report, and

our violated-operational-abstraction collection and removal. These inner iterations enable Jtest to

fully generate violating tests.

Given the collected operational violations, we select the �rst encountered test for each violated

operational abstraction. So when there are multiple tests that violate the same operational abstrac-

tion, we select only the �rst encountered one instead of all of them. Since aselected violating test
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might violate multiple operational abstractions, we group together all of the operational abstractions

violated by the same test. Then we sort the selected violating tests based on the number of their vi-

olated operational abstractions. We put the tests that violate more operational abstractions before

those that violate fewer ones. The heuristic behind this is that a test that violates more operational

abstractions might be more valuable than a test that violates fewer ones. When programmers cannot

afford to inspect all violating tests, they can inspect just the top parts of theprioritized tests.

We �nally produce a JUnit [GB03] test class, which contains the sorted listof violating test in-

puts as well as their violated operational abstractions. We developed a setof integration tools in Perl

to fully automate the preceding steps, including invoking Daikon and Jtest, andpostprocessing the

text �le. After running the integration tools, programmers can then execute or inspect the resulting

sorted tests to verify the correctness of their executions. Optionally, programmers can add assertions

for the test inputs as test oracles for regression testing.

One example of operational violations is shown in Figure 5.3. The example indicates a de�-

ciency of the JAX test suite. The top part of Figure 5.3 shows two relevanttests (JAX Tests 1 and 2)

used for inferring theisMember method's two violated postconditions (assertTrue in the tests is

JUnit's built-in assertion method). The postconditions are followed by the violating test input gen-

erated by Jtest. In the postconditions,@post is used to denote postconditions. The$pre keyword is

used to refer to the value of an expression immediately before calling the method; the syntax to use

$pre is $pre(expressionType, expression) . The $result keyword is used to represent

the return value of the method.

The violated postconditions show the following behavior exhibited by the existing tests:

² The isMember(3) method is invoked iff its return value istrue .

² The isMember(3) method is invoked iff thenumberOfElements (after the method invoca-

tion) is 1.

The test input of invokingisMember(3) method on an empty stack violates these two ungeneral-

izable postconditions.
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JAX Test 1:

UBStack stack = new UBStack();

assertTrue(!stack.isMember(2));

JAX Test 2:

UBStack stack1 = new UBStack();

UBStack stack2 = new UBStack();

stack1.push(3);

assertTrue(stack1.isMember(3));

stack1.push(2);

stack1.push(1);//because max is 2, this push cannot put 1 in to stack1

stack2.push(3);

stack2.push(2);

//the following assertion makes sure 1 is not in stack1

assertTrue(stack1.isMember(1) == stack2.isMember(1));

Inferred postconditions for isMember:

@post: [($pre(int, k) == 3) == ($result == true)]

@post: [($pre(int, k) == 3) == (this.numberOfElements == 1) ]

Violating Jtest-generated test input:

UBStack THIS = new UBStack ();

boolean RETVAL = THIS.isMember (3);

Figure 5.3: An example of operational violations using the basic technique

5.2.2 Precondition removal technique

In the basic technique, when the existing test suite is de�cient, the inferred preconditions might

be overconstrained so that Jtest �lters out valid test inputs during test generation and execution.

However, we often need to exercise the unit under more circumstances than what is constrained

by the inferred overconstrained preconditions. To address this, before we feed the annotated code

to Jtest, we use a script to automatically remove all inferred preconditions, and we thus enable

Jtest to exercise the unit under a broader variety of test inputs. Indeed, removing preconditions can

make test generation tools less guided, especially those tools that generate tests mainly based on

preconditions [BKM02]. Another issue with this technique is that removing inferred preconditions

allows test generation tools to generate invalid test inputs if some values of a parameter type are

invalid.
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Figure 5.4 shows one example of operational violations and the use of this technique.@invariant

is used to denote class invariants. The example indicates a de�ciency of the basic JUnit test suite,

and the violating test exposes the fault detected by the original JAX test suite. The violated post-

conditions and invariant show the following behavior exhibited by the existingtests:

² After the invocation of thepop() method, the element on top of the stack is equal to the

element on the second to top of the stack before the method invocation.

² After the invocation of thepop() method, thenumberOfElements is equal to0 or 1.

² In the entries and exits of all the public methods, thenumberOfElements is equal to0, 1,

or 2.

Since the capacity of the stack is2, the inferred behavior seems to be normal and consistent

with our expectation. Jtest generates a test that invokespop() on an empty stack. In the exit of

the pop() method, thenumberOfElements is equal to-1 . This value causes the evaluation of

the �rst postcondition to throw an exception, and the evaluation of the second postcondition or the

invariant to get thefalse value. By looking into the speci�cations [SLA02] forUBStack , we can

know that the implementation does not appropriately handle the case where thepop() method is

invoked on an empty stack; the speci�cations specify that the empty stack should maintain the same

empty state when thepop() method is invoked.

The example in Figure 5.5 shows a de�ciency of the JAX test suite, and the violating test exposes

another new fault. This fault is not reported in the original experiment [SLA02]. The inferred

postcondition states that the method return is equal to-1 iff the numberOfElements is equal to

0. The code implementer uses-1 as the error indicator for calling thetop() method on an empty

stack instead of antopEmptyStack exception speci�ed by the speci�cations [SLA02] . According

to the speci�cations, this stack should also accommodate negative integer elements; this operational

violation shows that using-1 as an error indicator makes thetop method work incorrectly when

the -1 element is put on top of the stack. This is a typical value-sensitive fault andeven a full-

path-coverage test suite cannot guarantee to expose this fault. The basic technique does not report

this violation because of the overconstrained preconditions. The existing tests push only positive

integers into the stack, so Daikon infers several preconditions for thetop method, which prevent
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Basic JUnit Test 1:

UBStack stack = new UBStack();

stack.push(3);

stack.pop();

Basic JUnit Test 2:

UBStack stack = new UBStack();

stack.push(3);

stack.push(2);

stack.pop();

Inferred postconditions for pop:

@post: [( this.elems[this.numberOfElements] ==

this.elems[$pre(int, this.numberOfElements)-1] )]

@post: [this.numberOfElements == 0 ||

this.numberOfElements == 1]

Inferred class invariant for UBStack:

@invariant: [this.numberOfElements == 0 ||

this.numberOfElements == 1 ||

this.numberOfElements == 2]

Violating Jtest-generated test input:

UBStack THIS = new UBStack ();

THIS.pop ();

Figure 5.4: The �rst example of operational violations using the precondition removal technique

the-1 element from being on top of the stack. One such precondition is:

@pre: for (int i = 0 ; i <= this.elems.length-1; i++)

$assert ((this.elems[i] >= 0));

where@pre is used to denote a precondition and$assert is used to denote an assertion statement

within the loop body. Both the loop and the assertion statement form the precondition.

5.2.3 Iterations

After we perform the test selection using the techniques in Sections 5.2.1 and5.2.2, we can further

run all the violating tests together with the existing ones to infer new operationalabstractions. By

doing so, we can automatically remove or weaken the operational abstractionsviolated by the vi-
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JAX Test 3:

UBStack stack = new UBStack();

stack.push(3);

stack.push(2);

stack.pop();

stack.pop();

stack.push(3);

stack.push(2);

int oldTop = stack.top();

JAX Test 4:

UBStack stack = new UBStack();

assertTrue(stack.top() == -1);

JAX Test 5:

UBStack stack1 = new UBStack();

UBStack stack2 = new UBStack();

stack1.push(3);

assertTrue(stack1.top() == 3);

stack1.push(2);

stack1.push(1);

stack2.push(3);

stack2.push(2);

assertTrue(stack1.top() == stack2.top());

stack1.push(3);

assertTrue(stack1.top() == 3);

Inferred postcondition for top:

@post: [($result == -1) == (this.numberOfElements == 0)]

Violating Jtest-generated test input:

UBStack THIS = new UBStack ();

THIS.push (-1);

int RETVAL = THIS.top ();

Figure 5.5: The second example of operational violations using the precondition removal technique

olating tests. Based on the new operational abstractions, Jtest might generate new violating tests

for the weakened or other new operational abstractions. We repeat theprocess described in Sec-

tions 5.2.1 and 5.2.2 until there are no reported operational violations or untilthe user-speci�ed

maximum number of iterations has been reached. We call these iterations asouter iterations. Dif-
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(1st iteration)

Inferred postcondition for isMember:

@post: [($result == true) == (this.numberOfElements == 1)]

Violating Jtest-generated test input:

UBStack THIS = new UBStack ();

THIS.top ();

THIS.push (2);

boolean RETVAL = THIS.isMember (1);

(2nd iteration)

Inferred postcondition for isMember:

@post:[($result == true) $implies (this.numberOfElement s == 1)]

Violating Jtest-generated test input:

UBStack THIS = new UBStack ();

THIS.push (2);

THIS.push (0);

boolean RETVAL = THIS.isMember (0);

Figure 5.6: Operational violations during iterations

ferent from the inner iterations described in Section 5.2.1, these outer iterations operate in a larger

scale. They mainly comprise the activities of the existing tests' execution, Daikon's operational-

abstraction generation, our DbC annotation insertion, the inner iterations, and our test selection and

augmentation. We have used a script to automate the outer iterations. In the rest of the chapter, for

the sake of brevity, iterations will refer to outer iterations by default.

Figure 5.6 shows two operational violations during the �rst and second iterations on the JAX

test suite. The JAX test suite exhibits that the return of theisMember() method istrue iff the

numberOfElements after the method execution is equal to1. In the �rst iteration, a violating

test shows that if thenumberOfElements after the method execution is equal to1, the return of

the isMember() method is not necessarilytrue (it can befalse ). After the �rst iteration, we

add this violating test to the existing test suite. In the second iteration, with the augmented test

suite, Daikon infers an updated postcondition by weakening the== predicate (meaning iff or, ) to

the $implies predicate (meaning) ). The updated postcondition shows that if the return of the
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isMember() method istrue , thenumberOfElements after the method execution is equal to1.

In the second iteration, another violating test shows that if the return of theisMember() method

is true , thenumberOfElements after the method execution is not necessarily equal to1 (it can

be equal to2). After the second iteration, we add this violating test to the existing test suite. In

the third iteration, Daikon eliminates this$implies predicate since Daikon does not observe any

correlation between the return of theisMember() method and thenumberOfElements .

5.3 Evaluation

Testing is used not only for �nding bugs but also for increasing our con�dence in the code under test.

For example, generating and selecting tests for achieving better structuralcoverage can increase our

con�dence in the code although they do not �nd bugs; indeed, these testscan be used as regression

tests executed on later versions for detecting regression bugs. Althoughour approach tries to �ll

gaps in the existing test suite or to identify its weakness in order to improve its quality, our approach

does not intend to be considered as a general approach for generating and selecting tests (based on

the current program version) to increase the existing test suite's capability of exposing future arbi-

trarily introduced bugs (on future program versions) during programmaintenance. Therefore, when

we designed our experiments for assessing the approach, we did not use mutation testing [BDLS80]

to measure the capability of the selected tests in �nding arbitrary bugs in general. Instead, we con-

ducted experiments to primarily measure the capability of the selected tests in revealing anomalous

behavior on the real code, such as revealing a fault in terms of correctness or a failure in terms of

robustness. We do not distinguish these two types of anomalous behavior because in the absence of

speci�cations we often could not distinguish these two cases precisely. For example, the violating

tests shown in Figure 5.4 and Figure 5.5 would have been considered as invalid tests for reveal-

ing failures if the actual precondition forpop() were(this.numberOfElements > 0) and the

actual precondition forpush(int k) were (k >= 0) ; however, these two tests are valid fault-

revealing tests based onUBStack 's speci�cations [SLA02]. Indeed, we could try to hand-construct

speci�cations for these programs; however, the code implementation and comments for these pro-

grams alone are not suf�cient for us to recover the speci�cations (especially preconditions) easily

and we do not have easy access to the program intentions originally residing in code authors' mind.
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Note that if a selected test does not expose anomalous behavior, it might stillprovide value in �lling

gaps in the existing test suite. However, in the absence of speci�cations, itwould be too subjective

in judging these tests in terms of providing value; therefore, we did not perform such a subjective

judgement in our experiments.

In particular, the general questions we wish to answer include:

1. Is the number of automatically generated tests large enough for programmers to adopt unit-

test selection techniques?

2. Is the number of tests selected by our approach small enough for programmers to inspect

affordably?

3. Do the tests selected by our approach have a high probability of exposing anomalous program

behavior?

4. Do the operational abstractions guide test generation tools to better generate tests for violating

the operational abstractions?

We cannot answer all of these questions easily, so we designed experiments to give an initial

sense of the general questions of ef�cacy of this approach. In the remaining of this section, we �rst

describe the measurements in the experiments. We then present the experiment instrumentation. We

�nally describe the experimental results and threats to validity.

5.3.1 Measurements

In particular, we collected the following measurements to address these questions directly or indi-

rectly:

² Automatically generated test count in the absence of any operational abstraction (#AutoT ):

We measured the number of tests automatically generated by Jtest alone in the absence of any

operational abstraction. We call these tests asunguided-generated tests. This measurement is

related to the �rst question.

² Selected test count (#SelT ): We measured the number of the tests selected by a test selection

technique. This measurement is related to the second question, as well as thefourth question.
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² Anomaly-revealing selected test count (#ART): We measured the number of anomaly-revealing

tests among the selected tests. These anomaly-revealing tests expose anomalous program be-

havior (related to either faults in terms of correctness or failures in terms of robustness). After

all the iterations terminate, we manually inspect the selected tests, violated postconditions,

and the source code to determine the anomaly-revealing tests. Although our test selection

mechanism described in Section 5.2.1 guarantees that no two selected tests violate the same

set of postconditions, multiple anomaly-revealing tests might suggest the same precondition

or expose the same fault in different ways. This measurement is related to the third question,

as well as the fourth question.

We collected the#AutoT measurement for each subject program. We collected the#SelT and

#ART measurements for each combination of the basic/precondition removal techniques, subject

programs, and number of iterations. These measurements help answer the �rst three questions.

To help answer the fourth question, we used Jtest alone to produce unguided-generated tests,

then ran the unguided-generated tests, and check them against the operational abstractions (keeping

the preconditions) generated from the existing tests. We selected those unguided-generated tests

that satis�ed preconditions and violated postconditions. We then collected the#SelT and#ART

measurements for each subject program, and compared the measurements with the ones for the

basic technique.

In addition, we used Jtest alone to produce unguided-generated tests, then ran the unguided-

generated tests, and check them against the operational abstractions (removing the preconditions)

generated from the existing tests. We selected those unguided-generatedtests that violated post-

conditions. We then collected the#SelT and#ART measurements for each subject program, and

compared the measurements with the ones for the precondition removal technique.

5.3.2 Experiment instrumentation

Table 5.1 lists the subject programs that we used in the experiments. Each subject program is a

Java class equipped with a manually written unit test suite. The �rst column shows the names

of the subject programs. The second and third columns show the number ofpublic methods, and

the number of lines of executable code for each program, respectively.The fourth column shows
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Table 5.1: Subject programs used in the experiments.

program #pmethod #loc #tests #AutoT #ExT

UB-Stack(JUnit) 11 47 8 96 1

UB-Stack(JAX) 11 47 15 96 1

RatPoly-1 13 161 24 223 1

RatPoly-2 13 191 24 227 1

RatPolyStack-1 13 48 11 128 4

RatPolyStack-2 12 40 11 90 3

BinaryHeap 10 31 14 166 2

BinarySearchTree 16 50 15 147 0

DisjSets 4 11 3 24 4

QueueAr 7 27 11 120 1

StackAr 8 20 16 133 1

StackLi 9 21 16 99 0

the number of test cases in the test suite of each program. The last two columnspresent some

measurement results that we shall describe in Section 5.3.3.

Among these subjects,UB-Stack(JUnit) andUB-Stack(JAX) are the example (Section 5.1)

with the basic JUnit test suite and the JAX test suite (with one failing test removed), respec-

tively [SLA02]. RatPoly-1 /RatPoly-2 andRatPolyStack-1 /RatPolyStack-2 are the stu-

dent solutions to two assignments in a programming course at MIT. These selected solutions passed

all the unit tests provided by instructors. The rest of the subjects come from a data structures text-

book [Wei99]. Daikon group members developed unit tests for 10 data structure classes in the

textbook. Most of these unit tests use random inputs to extensively exercise the programs. We ap-

plied our approach on these classes, and �ve classes (the last �ve at the end of Table 5.1) have at

least one operational violation.

In the experiments, we used Daikon and Jtest to implement our approach. Wedeveloped a set

of Perl scripts to integrate these two tools. In Jtest's con�guration for the experiments, we set the

length of calling sequence as two. We used Daikon's default con�guration for the generation of op-

erational abstractions except that we turned on the inference of conditional invariants. In particular,
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we �rst ran Jtest on each subject program to collect the#AutoT measurement in the absence of any

operational abstraction. We exported the unguided-generated tests foreach program to a JUnit test

class. Then for each program, we conducted the experiment using the basic technique, and repeated

it until we reached the third iteration or until no operational violations were reported for the opera-

tional abstractions generated from the previous iteration. At the end of each iteration, we collected

the#SelT and#ARTmeasurements. We performed a similar procedure for the precondition removal

technique.

5.3.3 Experimental results

The �fth column of Table 5.1 shows the#AutoT results. From the results, we observed that except

for the especially smallDisjSets program, Jtest automatically generated nearly 100 or more tests.

We also tried setting the length of the calling sequence to three, which caused Jtest to produce

thousands of tests for the programs. This shows that we need test selection techniques since it is not

practical to manually check the outputs of all these automatically generated tests.

The last column (#ExT) of Table 5.1 shows the number of the automatically generated tests that

cause uncaught runtime exceptions. In the experiments, since all the test selection methods under

comparison additionally select this type of tests, the#SelT and#ART measurements do not count

them for the sake of better comparison.

Table 5.2 and Table 5.3 show the#SelT and#ART measurements for the basic technique and

the precondition removal technique, respectively. In either table, theiteration 1, iteration 2, and

iteration 3columns show the results for three iterations. In Table 5.2, theunguidedcolumn shows

the results for selecting unguided-generated tests that satisfy preconditions and violate postcondi-

tions. In Table 5.3, theunguidedcolumn shows the results for selecting unguided-generated tests

that violate postconditions (no matter whether they satisfy preconditions). Ineither table, for those

#SelT with the value of zero, their entries and their associated#ART entries are left blank. The

bottom two rows of either table show the median and average percentages of#ART among#SelT .

In the calculation of the median or average percentage, the entries with a#SelT value of zero are

not included.

The numbers of tests selected by both techniques vary across differentprograms but on average
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Table 5.2: The numbers of selected tests and anomaly-revealing selected tests using the basic tech-
nique for each iteration and the unguided-generated tests

program iteration 1 iteration 2 iteration 3 unguided

#SelT #ART #SelT #ART #SelT #ART #SelT #ART

UB-Stack(JUnit) 1 0 2 0

UB-Stack(JAX) 3 0

RatPoly-1 2 2

RatPoly-2 1 1 1 1

RatPolyStack-1

RatPolyStack-2 1 0

BinaryHeap 3 2 1 0 2 2

BinarySearchTree

DisjSets 1 1 1 1

QueueAr 6 1 2 1

StackAr 5 1 1 0 1 1

StackLi

median(#ART/#SelT ) 20% 0% 0% 100%

average(#ART/#SelT ) 45% 25% 0% 88%

their numbers are not large, so their executions and outputs could be veri�ed with affordable human

effort. The basic technique selects fewer tests than the precondition removal technique. This is

consistent with our hypothesis that the basic technique might overconstraintest generation tools.

We observed that the number of tests selected by either technique is higher than the number of

tests selected by checking unguided-generated tests against operational abstractions. This indicates

that operational abstractions guide Jtest to better generate tests to violate them. Speci�cally, the

precondition removal technique gives more guidance to Jtest for generating anomaly-revealing tests

than the basic technique. There are only two subjects for which the basic technique generates

anomaly-revealing tests but Jtest alone does not generate any (shown inTable 5.2); however, the

precondition removal technique generates more anomaly-revealing tests than Jtest alone for most

subjects (shown in Table 5.3).

We observed that, in the experiments, the selected tests by either technique have a high probabil-

ity of exposing anomalous program behavior. In the absence of speci�cations, we suspect that many
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Table 5.3: The numbers of selected tests and anomaly-revealing selected tests using the precondition
removal technique for each iteration and the unguided-generated tests

program iteration 1 iteration 2 iteration 3 unguided

#SelT #ART #SelT #ART #SelT #ART #SelT #ART

UB-Stack(JUnit) 15 5 6 1 1 0 4 1

UB-Stack(JAX) 25 9 4 0 3 1

RatPoly-1 1 1

RatPoly-2 1 1 1 1

RatPolyStack-1 12 8 5 2 1 0

RatPolyStack-2 10 7 2 0

BinaryHeap 8 6 8 6 6 0 4 3

BinarySearchTree 3 3 1 1

DisjSets 2 2 1 1

QueueAr 11 1 4 1 4 1

StackAr 9 1 1 0 1 1

StackLi 2 0 1 0

median(#ART/#SelT ) 68% 17% 0% 75%

average(#ART/#SelT ) 58% 22% 0% 62%

of these anomaly-revealing tests are failure-revealing test inputs; programmers can add precondi-

tions, condition-checking code, or just pay attention to the undesirable behavior when the code's

implicit assumptions are not written down.

We describe a concrete case for operational violations in the experiments as follows.RatPoly-1

andRatPoly-2 are two student solutions to an assignment of implementingRatPoly , which rep-

resents an immutable single-variate polynomial expression, such as “0”, “ x ¡ 10”, and “x3 ¡ 2 ¤

x2 + 53 ¤ x + 3 ”. In RatPoly 's class interface, there is a methoddiv for RatPoly 's division

operation, which invokes another methoddegree ; degree returns the largest exponent with a non-

zero coef�cient, or 0 if theRatPoly is “0”. After we ran with Daikon the instructor-provided test

suite on bothRatPoly-1 andRatPoly-2 , we got the same DbC annotations for both student solu-

tions. The precondition removal technique selects one violating test for each student solution. The

selected violating test forRatPoly-1 is different from the one forRatPoly-2 ; this result shows

that Jtest takes the code implementation into account when generating tests to violate the given DbC
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Inferred postcondition for degree:

$result >= 0

Violating Jtest-generated test input (for RatPoly-1):

RatPoly t0 = new RatPoly(-1, -1);//represents -1*xˆ-1

RatPoly THIS = new RatPoly (-1, 0);//represents -1*xˆ0

RatPoly RETVAL = THIS.div (t0);//represents (-1*xˆ0)/(-1 *xˆ-1)

Violating Jtest-generated test input (for RatPoly-2):

RatPoly t0 = new RatPoly(1, 0);//represents 1*xˆ0

RatPoly THIS = new RatPoly (1, -1);//represents 1*xˆ-1

RatPoly RETVAL = THIS.div (t0);//represents (1*xˆ-1)/(1* xˆ0)

Figure 5.7: Operational violations forRatPoly-1 /RatPoly-2

annotations. The selected test forRatPoly-1 makes the program in�nitely loop until a Java out-

of-memory error occurs and the selected test forRatPoly-2 runs normally with termination and

without throwing exceptions. These tests are not generated by Jtest alone without being guided with

operational abstractions. After inspecting the code and its comments, we found that these selected

tests are invalid, because there is a preconditione >= 0 for RatPoly(int c, int e) . This case

shows that the operational abstraction approach can help generate testinputs to crash a program and

then programmers can improve their code's robustness when speci�cations are absent.

We observed that although those non-anomaly-revealing selected tests donot expose any fault,

most of them represent some special class of inputs, and thus may be valuable if selected for re-

gression testing. We observed, in the experiments, that a couple of iterations are good enough in

our approach. Jtest's test generation and execution time dominates the running time of applying our

approach. Most subjects took several minutes, but theBinaryHeap andRatPolyStack programs

took on the order of 10 to 20 minutes. We expect that the execution time can be optimized if fu-

ture versions of Jtest can better support the resumption of test generation and execution after we

comment out the violated operational abstractions.
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5.3.4 Threats to validity

The threats to external validity primarily include the degree to which integrated third-party tools, the

subject programs, and test cases are representative of true practice. These threats could be reduced

by more experiments on wider types of subjects and third-party tools. Parasoft Jtest 4.5 is one of

the testing tools popularly used in industry and the only speci�cation-based test generation tool

available to us at the moment. Daikon is the only publicly available tool for generating operational

abstractions. Daikon's scalability has recently been tackled by using incremental algorithms for

invariant detection [PE04]. In our approach, we use Daikon to infer invariants based on only manual

tests in addition to selected violating tests; the size of these tests is often small. However, Jtest 4.5

is not designed for being used in an iterative way; if some operational abstractions can be violated,

we observed that the number of inner iterations can be more than a dozen and the elapsed time

could be longer than �ve minutes for some subjects. We expect that the scalability of Jtest in

our setting could be addressed by enhancing it to support incremental test generation when DbC

annotations are being changed. Furthermore, the elapsed time for Jtest's test generation can be

reduced by enhancing it to avoid generating redundant tests (described in Chapter 4). Alternatively

we can use other speci�cation-based tools with more ef�cient mechanisms fortest generation, such

as Korat [BKM02].

We mainly used data structures as our subject programs and the programs are relatively small

(the scalability of Jtest 4.5 poses dif�culties for us to try large subjects, butnote that this is not

the inherent limitation of our approach but the limitation of one particular implementation of our

approach). Although data structures are better suited to the use of invariant detection and design-

by-contract speci�cations, Daikon has been used on wider types of programs [Dai04]. The success

of our approach on wider types of programs also depends on the underlying testing tool's capabil-

ity of generating test inputs to violate speci�cations if there exist violating test inputs. We expect

that the potential of our approach for wider types of programs could be further improved if we

use speci�cation-based testing tools with more powerful test generation capability, such as Ko-

rat [BKM02], CnC [CS05], and our Symstra tool presented in Chapter 4.

The main threats to internal validity include instrumentation effects that can bias our results.

Faults in our integration scripts, Jtest, or Daikon might cause such effects.To reduce these threats,
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we manually inspected the intermediate results of most program subjects. The main threats to

construct validity include the uses of those measurements in our experiments toassess our approach.

We measured the number of anomaly-revealing tests to evaluate the value of selected tests. In future

work, we plan to measure some other possible attributes of the selected tests.

5.4 Conclusion

Selecting automatically generated test inputs to check correctness and augment the existing unit

test suite is an important step in unit testing. Inferred operational abstractions act as a summary of

the existing test execution history. These operational abstractions can guide test generation tools to

better produce test inputs to violate the abstractions. We have developed theoperational violation

approach for selecting generated tests that violate operational abstractions; these selected violating

tests are good candidates for inspection, since they exercise new program features that are not cov-

ered by the existing tests. We have conducted experiments on applying the approach on a set of

data structures. Our experimental results have shown that the size of the selected tests is reasonably

small for inspection, the selected tests generally expose new interesting behavior �lling the gaps

not covered by the existing test suite, and the selected tests have a high probability of exposing

anomalous program behavior (either faults or failures) in the code.

Our approach shows a feedback loop between behavior inference and test generation. The feed-

back loop starts with existing tests (constructed manually or automatically) or someexisting pro-

gram runs. After running the existing tests, a behavior inference tool can infer program behavior

exercised by the existing tests. The inferred behavior can be exploited bya test-generation tool in

guiding its test generation, which generates new tests to exercise new behavior. Some generated

tests may violate the inferred proprieties (the form of the inferred behavior) and these violating tests

are selected for inspection. Furthermore, these selected tests are addedto the existing tests. The ex-

isting tests augmented by the new selected tests can be used by the behavior inference tool to infer

behavior that is closer to what shall be described by a speci�cation (if it ismanually constructed)

than the behavior inferred from the original existing tests. The new inferred behavior can be further

used to guide test generation in the subsequent iteration. Iterations terminateuntil a user-de�ned

maximum iteration number has been reached or no new behavior has been inferred from new tests.
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This feedback loop provides a means to producing better tests and better approximated speci�ca-

tions automatically and incrementally. The feedback loop not only allows us to gain bene�ts of

speci�cation-based testing in the absence of speci�cations, but also tackles one issue of dynamic

behavior inference: the quality of the analysis results (inferred behavior) heavily depends on the

quality of the executed tests.
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Chapter 6

TEST ABSTRACTION FOR INSPECTION

Automatic test-generation tools can generate a large number of tests for a class. Without a prior

speci�cations, developers usually rely on uncaught exceptions or inspect the execution of generated

tests to determine program correctness. However, relying on only uncaught exceptions for catching

bugs is limited and inspecting the execution of a large number of generated testsis impractical.

The operational violation approach presented in Chapter 5 selects a subset of generated tests for

inspection; these selected tests exhibit new behavior that has not been exercised by the existing

tests. In this chapter, we present theobserver abstractionapproach that abstracts and summarizes

the object-state-transition information collected from the execution of generated tests. Instead of

inspecting the execution of individual tests, developers can inspect the summarized object-state-

transition information for various purposes. For example, developers can inspect the information to

determine whether the class under test exhibits expected behavior. Developers can also inspect the

information to investigate causes of the failures exhibited by uncaught exceptions. Developers can

inspect the information for achieving better understanding of the class under test or even the tests

themselves.

From the execution of tests, we can construct an object state machine (OSM): a state in an OSM

represents the state that an object is in at runtime. A transition in an OSM represents method calls

invoked through the class interface transiting the object from one state to another. States in an OSM

can be represented by using concrete or abstract representation. Theconcrete-state representationof

an object, in short asconcrete object state, is characterized by the values of all the �elds transitively

reachable from the object (described in Section 3.2.2 of Chapter 3). A concrete OSM is an OSM

whose states are concrete object states. Because a concrete OSM is often too complicated to be

useful for understanding, we extract an abstract OSM that contains abstract states instead of concrete

states. Anabstract stateof an object is de�ned by anabstraction function[LG00]; the abstraction

function maps each concrete state to an abstract state. Our observer abstraction approach de�nes
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abstraction functions automatically by using anobserver, which is a public method with a non-void

return.1 In particular, the observer abstraction approach abstracts a concreteobject state exercised

by tests based on the return values of a set of observers that are invoked on the concrete object

state. Anobserver abstractionis an OSM whose states are represented by abstract representations

that are produced based on observers. We have implemented a tool, calledObstra, for the observer

abstraction approach. Given a Java class and its initial unit test (either manually constructed or

auotmatically generated), Obstra identi�es concrete object states exercised by the tests and generates

new tests to augment these initial tests. Based on the return values of a set ofobservers, Obstra maps

each concrete object state to an abstract state and constructs an OSM.

The next section describes the example that we use to illustrate our approach. Section 6.2

presents the observer abstraction approach. Section 6.3 describes our experiences of applying the

approach on several data structures and then Section 6.4 concludes.

6.1 Example

We use a binary search tree implementation as a running example to illustrate our observer abstrac-

tion approach. Figure 6.1 shows the relevant parts of the code. The class has 246 non-comment,

non-blank lines of code and its interface includes eight public methods (�ve of them are observers),

some of which are a constructor (denoted as[init]() ), boolean contains(MyInput info) ,

void add(MyInput info) , and boolean remove (MyInput info) . The MyInput argu-

ment type contains an integer �eldv , which is set through the class constructor.MyInput imple-

ments theComparable interface and twoMyInput are compared based on the values of theirv

�elds. Parasoft Jtest 4.5 [Par03] generates 277 tests for the class.

6.2 Observer Abstraction Approach

We �rst discuss the test argumentation technique that enables the dynamic extraction of observer

abstractions (Section 6.2.1). We next describe object state machines, being the representations of

1We follow the de�nition by Henkel and Diwan [HD03]. The de�nition differsfrom the more common de�nition that
limits an observer to methods that do not change any state. We have foundthat state-modifying observers also provide
value in our approach and state modi�cation does not harm our approach.
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class BST implements Set f

Node root;

static class Node f

MyInput info;

Node left;

Node right;

g

public void add( MyInput info) f

if (root == null ) f root = new Node(); root.info = info; g

else f

Node t = root;

while ( true ) f

if (t.info.compareTo(info) < 0) f ... g

else if (t.value.compareTo(info) > 0) f ... g

else f /* no duplicates*/ return ; g

g

g

g

public boolean remove( MyInput info) f

Node parent = null ; Node current = root;

while (current != null ) f

if (info.compareTo(current.info) < 0) f ... g

else if (info.compareTo(current.info) > 0) f ... g

else f break ; g

g

if (current == null ) return false ;

...

return true ;

g

public boolean contains( MyInput info) f ... g

...

g

Figure 6.1: A set implemented as a binary search tree

observer abstractions (Section 6.2.2). We then de�ne observer abstractions and illustrate dynamic

extraction of them (Section 6.2.3).
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6.2.1 Test Augmentation

We use the WholeState technique to represent the concrete state of an object (Section 3.2.2 of Chap-

ter 3). The technique represents theconcrete object stateof an object as the heap rooted from the

object; the rooted heap is further linearized to a sequence of the values ofthe �elds transitively

reachable from the object. Two concrete object states are equivalent iff their rooted heaps are iso-

morphic. A set ofnonequivalent concrete object statescontain concrete object states any two of

which are not equivalent. Amethod-argument stateis characterized by a method and the values for

the method arguments (Section 4.2 of Chapter 4). Two method-argument statesare equivalent iff

their methods are the same and the heaps rooted from their method arguments are isomorphic. A set

of nonequivalent method-argument statescontain method-argument states any two of which are not

equivalent.

After we execute an initial test suite, the WholeState technique identi�es all nonequivalent ob-

ject states and nonequivalent method-argument states that were exercised by the test suite. We then

apply the test augmentation technique that generates new tests to exercise each possible combina-

tion of nonequivalent object states and nonequivalent non-constructor-method-argument states. A

combination of a receiver-object state and a method-argument state forms amethod invocation. We

augment the initial test suite because the test suite might not invoke each observer on all nonequiv-

alent object states; invoking observers on a concrete object state is necessary for us to know the

abstract state that encloses the concrete object state. The augmented testsuite guarantees the invo-

cation of each nonequivalent non-constructor method-argument state on each nonequivalent object

state at least once. In addition, the observer abstractions extracted from the augmented test suite can

better help developers to inspect object-state-transition behavior. The complexity of the test aug-

mentation algorithm isO(jCSj £ j MC j), whereCS is the set of the nonequivalent concrete states

exercised by the initial test suiteT for the class under test andMC is the set of the nonequivalent

method calls exercised byT.
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6.2.2 Object State Machine

We de�ne an object state machine for a class:2

De�nition 16. An object state machine(OSM) M of a classc is a sextupleM = (I , O, S, ±,

¸ , INIT ) whereI , O, andS are nonempty sets of method calls inc's interface, returns of these

method calls, and states ofc's objects, respectively.INIT 2 S is the initial state that the machine

is in before calling any constructor method ofc. ± : S £ I ! P(S) is the state transition function

and¸ : S £ I ! P(O) is the output function whereP(S) andP(O) are the power sets of S and O,

respectively. When the machine is in a current states and receives a method calli from I , it moves

to one of the next states speci�ed by±(s; i) and produces one of the method returns given by¸ (s; i).

In the de�nition, a method callis characterized by a method-argument state (a method and

the arguments used to invoke the method), not including the receiver-object state. A method call

together with a receiver-object state affects the behavior of a method invocation. When a method

call in a class interface is invoked on a receiver-object state, an uncaught exception might be thrown.

To represent the state where an object is in after an exception-throwing method call, we introduce

a special type of states in an OSM:exception states. After a method call on a receiver-object state

throws an uncaught exception, the receiver object is in an exception state represented by the type

name of the exception. The exception-throwing method call transits the objectfrom the object state

before the method call to the exception state.

6.2.3 Observer Abstractions

The object states in an OSM can be concrete or abstract. The observer abstraction approach automat-

ically constructs abstraction functions to map a concrete state to an abstract state. These abstraction

functions are de�ned based on observers. We �rst de�ne an observer following previous work on

specifying algebraic speci�cations for a class [HD03]:

De�nition 17. An observerof a classc is a methodobin c's interface such that the return type of

obis not void.

2The de�nition is adapted from the de�nition of �nite state machine [LY96]; however, an object state machine is not
necessarily �nite.
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For example,BST's observers includeboolean contains(MyInput info) andboolean

remove (MyInput info) but [init]() andvoid add(MyInput info) are not observers.

An observer call is a method call whose method is an observer. Given a class c and a set

of observer callsOB = f ob1; ob2; :::; obng of c, the observer abstraction approach constructs an

abstraction ofc with respect toOB. In particular, a concrete statecs is mapped to an abstract state

as de�ned byn valuesOBR = f obr1; obr2; :::; obrng, where each valueobri represents the return

value of observer callobi invoked oncs.

De�nition 18. Given a classcand a set of observer callsOB = f ob1; ob2; :::; obng of c, anobserver

abstractionwith respect toOB is an OSMM ofcsuch that the states inM are abstract states de�ned

byOB.

For example, consider one ofBST's observercontains(MyInput info) . Jtest generates tests

that exercise two observer calls forcontain : contains(a0.v:7;) andcontains(a0:null;) ,

whereai represents the(i + 1) th argument andai .v represents thev �eld of the (i + 1) th argu-

ment. Argument values are speci�ed following their argument names separated by “: ” and different

arguments are separated by “; .” Now consider aBSTobject's concrete statecs produced by invok-

ing BST's constructor. Because invokingcontains(a0.v:7;) or contains(a0:null;) on cs

returnsfalse , the abstract stateas for cs is represented byf false , false g.

Figure 6.2 shows the observer abstraction ofBST with respect to the twocontains observer

calls and augmented Jtest-generated tests. In the �gure, nodes represent abstract states and edges

represent state transitions (method calls). The top state in the �gure is markedwith INIT , indicating

the object state before invoking a constructor. The second-to-top state ismarked with two observer

calls and theirfalse return values. This abstract state encloses those concrete states such that

when we invoke these two observer calls on those concrete states, their return values arefalse . In

the central state, the observer calls throw uncaught exceptions and we put the exception-type name

NullPointerException in the positions of their return values. The bottom state is an exception

state, which is marked with the exception-type nameNullPointerException . An object is in

such a state after a method call on the object throws theNullPointerException . In the next

section, we shall describe transitions in observer abstractions while we present the technique for

extracting observer abstractions.
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Figure 6.2:contains observer abstraction of BST

An OSM can be deterministic or nondeterministic. In a nondeterministic OSM, nondeterministic

transitions can offer insights into some irregular object behavior (Section 6.3 shows some examples

of exploring nondeterministic transitions). To help characterize nondeterministic transitions, we

have de�ned two numbers in a dynamically extracted OSM: transition counts and emission counts.

Assume a transitiont transits stateSstart to Send, the transition countassociated witht is the

number of concrete states enclosed inSstart that are transited toSend by t. Assumem is the method

call associated witht, theemission countassociated withSstart andm is the number of concrete

states enclosed inSstart and being at entries ofm (but not necessarily being transited toSend).

If the transition count of a transition is equal to the associated emission count,the transition is

deterministic and nondeterministic otherwise.

Each transition from a starting abstract state to an ending abstract state is marked with method

calls, their return values, and some counts. For example, the Jtest-generated test suite forBST

includes two tests:

public class BSTTest extends TestCase f

public void test1() f

BST b1 = new BST();

MyInput m1 = new MyInput (0);

b1.add(m1);

b1.remove( null );
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g

public void test2() f

BST b2 = new BST();

b2.remove( null );

g

...

g

The execution ofb1.remove(null) in test1 does not throw any exception. Both before

and after invokingb1.remove(null) in test1 , if we invoke the two observer calls, their return

values arefalse ; therefore, there is a state-preserving transition on the second-to-top state. (To

present a succinct view, by default we do not show state-preservingtransitions.) The execution of

b1.remove(null) in test1 throws aNullPointerException . If we invoke the two observer

calls before invokingb1.remove(null) in test2 , their return values arefalse ; therefore, given

the method execution ofb1.remove(null) in test2 , we extract the transition from the second-

to-top state to the bottom state and the transition is marked withremove(a0:null;)?/ ¡ . In the

mark of a transition, when return values arevoid or method calls throw uncaught exceptions, we

put “¡ ” in the position of their return values. We put “?” after the method calls and “! ” after

return values if return values are not “¡ .” We also attach two numbers for each transition in the

form of [N/M] , whereN is the transition count andM is the emission count. If these two numbers

are equal, the transition is deterministic, and is nondeterministic otherwise. Because there are two

different transitions from the second-to-top state with the same method callremove(a0:null;)

(one transition is state-preserving being extracted fromtest1 ), the transitionremove(a0:null;)

from the second-to-top state to the bottom state is nondeterministic, being attached with [1/2] . We

display thicker edges and bold-font texts for nondeterministic transitions sothat developers can

easily identify them based on visual effect.

6.2.4 Dynamic Extraction of Observer Abstractions

We dynamically extract observer abstractions of a class from unit-test executions. The number of

the concrete states exercised by an augmented test suite is �nite and the execution of the test suite is

assumed to terminate; therefore, the dynamically extracted observer abstractions are also �nite.
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Given an initial test suiteT for a classc, we �rst identify the nonequivalent concrete statesCS

and method-argument statesMC exercised byT. We then augmentT with new tests to exercise

CS with MC exhaustively, producing an augmented test suiteT0. We have described these steps

in Section 6.2.1.T0exercises each nonequivalent concrete state inCS with each method-argument

state inMC ; therefore, each nonequivalent observer call inMC is guaranteed to be invoked on

each nonequivalent concrete state inCS at least once. We then collect the return values of observer

calls inMC for each nonequivalent concrete state inCS. We use this test-generation mechanism

to collect return values of observers, instead of inserting observer method calls before and after any

call site to thec class inT, because the latter does not work for state-modifying observers, which

change the functional behavior ofT.

Given an augmented test suiteT0 and a set of observer callsOB = f ob1; ob2; :::; obng, we go

through the following steps to produce an observer abstractionM in the form of OSM. Initially

M is empty. During the execution ofT0, we collect the following tuple for each method execution

in c's interface:(csentry ; m; mr; csexit ), wherecsentry , m, mr , andcsexit are the concrete object

state at the method entry, method call, return value, and concrete object stateat the method exit,

respectively. Ifm's return type is void, we assign “¡ ” to mr . If m's execution throws an uncaught

exception, we also assign “¡ ” to mr and assign the name of the exception type tocsexit , called an

exception state. The concrete object state at a constructor's entry isINIT , called aninitial state.

After the test execution terminates, we iterate on each distinct tuple(csentry ; m; mr; csexit )

to produce a new tuple(asentry , m, mr , asexit ), whereasentry andasexit are the abstract states

mapped fromcsentry andcsexit based onOB, respectively. Ifcsexit is an exception state, its mapped

abstract state is the same ascsexit , whose value is the name of the thrown-exception type. Ifcsentry

is an initial state, its mapped abstract state is stillINIT . If csexit is not exercised by the initial

tests before test augmentation but exercised by new tests, we mapcsexit to a special abstract state

denoted asN=A, because we have not invokedOB on csexit yet and do not have a known abstract

state forcsexit .

After we produce(asentry , m, mr , asexit ) from (csentry ; m; mr; csexit ), we then addasentry

andasexit to M as states, and put a transition fromasentry to asexit in M . The transition is denoted

by a triple (asentry ; m?=mr!; asexit ). If asentry , asexit , or (asentry ; m?=mr!; asexit ) is already

present inM , we do not add it. We also increase the transition count for(asentry ; m?=mr!; asexit ),
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denoted asC(asentry ;m?=mr !;asexit ) , which is initialized to one when(asentry ; m?=mr!; asexit ) is

added toM at the �rst time. We also increase the emission count forasentry andm, denoted as

C(asentry ;m) . After we �nish processing all distinct tuples(csentry ; m; mr; csexit ), we post�x the

label of each transition(asentry ; m?=mr!; asexit ) with [C(asentry ;m?=mr !;asexit ) /C(asentry ;m) ]. The

complexity of the extraction algorithm for an observer abstraction isO(jCSj £ j OB j), whereCS is

the set of the nonequivalent concrete states exercised by an initial test suite T andOB is the given

set of observers.

To present a succinct view, we do not displayN=A states and the transitions leading toN=A

states. In addition, we combine multiple transitions that have the same starting and ending abstract

states, and whose method calls have the same method names and signatures. When we combine

multiple transitions, we calculate the transition count and emission count of the combined transi-

tions and show them in the bottom line of the transition label. When a combined transition contains

all nonequivalent method calls of the same method name and signature, we addALL ARGS in

the bottom line of the transition label. For example, in Figure 6.2, thecontains edge from the

central state to the bottom state is labeled withALL ARGS, because thecontains edge com-

prisescontains(a0.v:7;) andcontains(a0:null;) , which are the only ones forcontains

exercised by the initial test suite.

When a transition contains only method calls that are exercised by new generated tests but not

exercised by the initial tests, we display a dotted edge for the transition. For example, in Figure 6.2,

there is a dotted edge from the right-most state to the bottom state because the method call for the

edge is invoked in the augmented test suite but not in the initial test suite.

To focus on understanding uncaught exceptions, we create a specialexception observerand

construct an observer abstraction based on it. Figure 6.3 shows the exception-observer abstraction of

BSTextracted from the augmented Jtest-generated tests. The exception observer maps the concrete

states that are notINIT or exception states to an abstract state calledNORMAL. The mapped abstract

state of an initial state is stillINIT and the mapped abstract state of an exception state is still the

same as the exception-type name.
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Figure 6.3:exception observer abstraction of BST

6.3 Evaluation

We have used Obstra to extract observer abstractions from a variety ofprograms, most of which

were used to evaluate our work in the preceding chapters. Many of theseprograms manipulate

nontrivial data structures. In this section, we illustrate how we applied Obstra on two complex data

structures and their automatically generated tests. We applied Obstra on theseexamples on a MS

Windows machine with a Pentium IV 2.8 GHz processor using Sun's Java 2 SDK 1.4.2 JVM with

512 Mb allocated memory.

6.3.1 Binary Search Tree Example

We have describedBST in Section 6.1 and two of its extracted observer abstractions in Figure 6.2

and 6.3. Jtest generates 277 tests for BST. These tests exercise �ve nonequivalent concrete ob-

ject states in addition to the initial state and one exception state, 12 nonequivalent non-constructor

method calls in addition to one constructor call, and 33 nonequivalent method executions. Obstra

augments the test suite to exercise 61 nonequivalent method executions. The elapsed real time for

test augmentation and abstraction extraction is 0.4 and 4.9 seconds, respectively.

Figure 6.3 shows thatNullPointerException is thrown by three nondeterministic transi-

tions. During test inspection, we want to know under what conditions the exception is thrown.

If the exception is thrown because of illegal inputs, we can add necessary preconditions to guard
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against the illegal inputs. Alternatively, we can perform defensive programming: we can add input

checking at method entries and throw more informative exceptions if the checking fails. How-

ever, we do not want to over-constrain preconditions, which would prevent legal inputs from being

processed. For example, after inspecting the exception OSM in Figure 6.3,we should not con-

sider that illegal arguments include all arguments foradd , thenull argument forremove , or all

arguments forcontains , although doing so indeed prevents the exceptions from being thrown.

After we inspected thecontains OSM in Figure 6.2, we gained more information about the ex-

ceptions and found that callingadd(a0:null;) after calling the constructor leads to an unde-

sirable state: callingcontains on this state deterministically throws the exception. In addition,

calling remove(a0:null;) also deterministically throws the exception and callingadd throws

the exception with a high probability of 5/6. Therefore, we had more con�dence in considering

null as an illegal argument foradd and preventing it from being processed. After we prevented

add(a0:null;) , two remove(a0:null;) transitions still throw the exception: one is determin-

istic and the other is with 1/2 probability. We then considerednull as an illegal argument for

remove and prevented it from being processed. We did not need to impose any restriction on the

argument ofcontains . Note that this process of understanding the program behavior does not

need the access to the source code.

We found that there are three different arguments foradd but only two different arguments

for contains , although these two methods have the same signatures. We could add a method

call of contain(a0.v:0;) to the Jtest-generated test suite; therefore, we could have three ob-

server calls for thecontains OSM in Figure 6.2. In the new OSM, the second-to-top state in-

cludes one more observer callcontains(a0.v:0)=false and the nondeterministic transition of

remove(a0:null;) ?/-[1/2] from the second-to-top state to the bottom state is turned into a

deterministic transitionremove(a0:null;)?/-[1/1] . In general, when we add new tests to a

test suite and these new tests exercise new observer calls in an OSM, the states in the OSM can

be re�ned, thus possibly turning some nondeterministic transitions into deterministic ones. On the

other hand, adding new tests can possibly turn some deterministic transitions intonondeterministic

ones.
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Figure 6.4:exception observer abstraction andrepOk observer abstraction ofHashMap

Figure 6.5:get observer abstraction ofHashMap

6.3.2 Hash Map Example

A HashMap class was given injava.util.HashMap from the standard Java libraries [SM03]. A

repOK and some helper methods were added to this class for evaluating Korat [BKM02]. The class

has 597 non-comment, non-blank lines of code and its interface includes 19public methods (13 ob-

servers), some of which are[init]() , void setLoadFactor(float f) , void putAll(Map

t) , Object remove(MyInput key) , Object put(MyInput key, MyInput value) , and

void clear() . Jtest generates 5186 tests forHashMap. These tests exercise 58 nonequivalent

concrete object states in addition to the initial state and one exception state, 29 nonequivalent non-

constructor method calls in addition to one constructor call, and 416 nonequivalent method execu-

tions. Obstra augments the test suite to exercise 1683 nonequivalent methodexecutions. The elapsed
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Figure 6.6:isEmpty observer abstraction ofHashMap (screen snapshot)

real time for test augmentation and abstraction extraction is 10 and 15 seconds, respectively.

We found that the exception OSM ofHashMap contains one deterministic transition, which is

putAll(a0:null;) from NORMALto NullPointerException , as is shown in the left part of

Figure 6.4. Therefore, we considerednull as an illegal argument forputAll . We checked the

Java API documentation forHashMap [SM03] and the documentation states thatputAll throws

NullPointerException if the speci�ed map isnull . This description con�rmed our judgment.

In other observer abstractions, to provide a more succinct view, by default Obstra does not dis-

play any deterministic transitions leading to an exception state in the exception OSM, because the

information conveyed by these transitions has been re�ected in the exception OSM.

We found an error insetLoadFactor(float f) , a method that was later added to facil-

itate Korat's test generation [BKM02]. The right part of Figure 6.4 shows the repOk OSM of

HashMap. repOk is a predicate used to check class invariants [LG00]. If callingrepOk on

an object state returnsfalse , the object state is invalid. By inspecting therepOK OSM, we

found that callingsetLoadFactor with any argument value deterministically leads to an invalid

state. We checked the source code ofsetLoadFactor and found that its method body is simply

loadFactor = f; , whereloadFactor is an object �eld andf is the method argument. The com-

ments for a private �eldthreshold states that the value ofthreshold shall be(int)(capacity
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* loadFactor) . Apparently this property is violated when settingloadFactor without updat-

ing threshold accordingly. We �xed this error by appending a call to an existing privatemethod

void rehash() in the end ofsetLoadFactor 's method body; therehash method updates the

threshold �eld using the new value of theloadFactor �eld.

Figure 6.5 shows theget OSM of HashMap. In the representation of method returns on a tran-

sition or in a state,ret represents the non-primitive return value andret.v represents thev �eld of

the non-primitive return value. Recall that a transition with a dotted edge is exercised only by new

generated tests but not by the initial tests. We next walk through the scenario in which developers

could inspect Figure 6.5. During inspection, developers might focus theirexploration of an OSM

on transitions. Three such transitions areclear , remove , andput . Developers are not surprised

to see thatclear or remove transitions cause a nonemptyHashMap to be empty, as is shown by

the transitions from the top or bottom state to the central state. But developersare surprised to see

the transition ofput(a0:null;a1:null) from the top state to the central state, indicating that

put can cause a nonemptyHashMap to be empty. By browsing the Java API documentation for

HashMap [SM03], developers can �nd thatHashMap allows either a key or a value to benull ;

therefore, thenull return ofget does not necessarily indicate that the map contains no mapping

for the key. However, in the documentation, the description for the returnsof get states: “the value

to which this map maps the speci�ed key, or null if the map contains no mapping forthis key.” After

reading the documentation more carefully, they can �nd that the description for get (but not the

description for the returns ofget ) does specify the accurate behavior. This �nding shows that the

informal description for the returns ofget is not accurate or consistent with the description ofget

even in such widely published Java API documentation [SM03].

Figure 6.6 shows a screen snapshot of theisEmpty OSM of HashMap. We con�gured Ob-

stra to additionally show each state-preserving transition that has the same method name as another

state-modifying transition. We also con�gured Obstra to display on each edge only the method

name associated with the transition. When developers want to see the details ofa transition, they

can move the mouse cursor over the method name associated with the transition and then the de-

tails are displayed. We have searched the Internet for manually created state machines for common

data structures but few could be found. One manually created state machinefor a container struc-

ture [Ngu98] is almost the same as theisEmpty OSM of HashMap shown in Figure 6.6. There are
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two major differences. TheINIT state and the[init]() transition are shown in Figure 6.6 but not

in the manually created state machine. The manually created state machine annotates “not last ele-

ment” for the state-preserving transitionremove(a0) (pointed by the mouse cursor in Figure 6.6)

on theisEmpty()=false state and “last element” for the state-modifying transitionremove(a0)

(shown in the middle of Figure 6.6) starting from theisEmpty()=false state; Figure 6.6 shows

these two transition names in bold font, indicating them to be nondeterministic. We expect that some

of these manually speci�ed conditions for a transition can be inferred by using Daikon [ECGN01]

on the variable values collected in the starting state and method arguments for thetransition.

6.3.3 Discussion

Our experiences have shown that extracted observer abstractions can help investigate causes of

uncaught exceptions, identify weakness of an initial test suite, �nd bugsin a class implementation or

its documentation, and understand class behavior. Although many observer abstractions extracted

for the class under test are succinct, some observer abstractions are still complex, containing too

much information for inspection. For example, three observers ofHashMap, such asCollection

values() , have 43 abstract states. The complexity of an extracted observer abstraction depends

on both the characteristics of its observers and the initial tests. To control the complexity, we

can display a portion of a complex observer abstraction based on user-speci�ed �ltering criteria or

extract observer abstractions from the executions of a user-speci�ed subset of the initial tests.

Although theisEmpty OSM of HashMap is almost the same as a manually created state ma-

chine [Ngu98], our approach does not guarantee the completeness ofthe resulting observer ab-

stractions — our approach does not guarantee that the observer abstractions contain all possible

legal states or legal transitions. Our approach also does not guaranteethat the observer abstrac-

tions contain no illegal transitions. Instead, the observer abstractions faithfully re�ect behavior

exercised by the executed tests; inspecting observer abstractions couldhelp identify weakness of

the executed tests. This characteristic of our approach is shared by other dynamic inference tech-

niques [ECGN01,HD03,WML02,ABL02].
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6.4 Conclusion

It is important to provide tool support for developers as they inspect theexecutions of automatically

generated unit tests. We have proposed the observer abstraction approach to aid inspection of test

executions. We have developed a tool, called Obstra, to extract observer abstractions from unit-

test executions automatically. We have applied the approach on a variety of programs, including

complex data structures; our experiences show that extracted observer abstractions provide useful

object-state-transition information for developers to inspect.

The preceding chapter discusses a feedback loop between behavior inference and test generation.

This chapter shows a type of behavior inference: we infer observer abstractions from the execution

of unit tests. The test augmentation in our observer abstraction approachhas exploited exercised-

concrete-state information inferred from the execution of the initial test suite. Our test generation

tools presented in Chapter 4 can be further extended to exploit the inferred observer abstractions to

guide their test generation process: given an inferred observer abstraction, the test generation tools

can try to generate tests to create new transitions or states in the abstraction. Then the new observer

abstraction (inferred from both the initial tests and new tests) can be used toguide the test generation

tools to generate tests in the subsequent iteration. Iterations terminate until a user-de�ned maximum

iteration number has been reached or no new transition or state has been inferred from new tests.
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Chapter 7

PROGRAM-BEHAVIOR COMPARISON IN REGRESSION TESTING

Regression testing retests a program after it is modi�ed. In particular, regression testing com-

pares the behavior of a new program version in order to the behavior ofan old program version to

assure that no regression faults are introduced. Traditional regression testing techniques use pro-

gram outputs to characterize the behavior of programs: when running thesame test on two program

versions produces different outputs (the old version's output is sometimes stored as the expected

output for the test), behavior deviations are exposed. When these behavior deviations are unex-

pected, developers identify them as regression faults, and may proceedto debug and �x the exposed

regression faults. When these behavior deviations are intended, for example, being caused by bug-

�xing program changes, developers can be assured so and may update the expected outputs of the

tests.

However, an introduced regression fault might not be easily exposed:even if a program-state

difference is caused immediately after the execution of a new faulty statement, the fault might not

be propagated to the observable outputs because of the information loss orhiding effects. This

phenomenon has been investigated by various fault models [Mor90, DO91, Voa92, TRC93]. Re-

cently aprogram spectrumhas been proposed to characterize a program's behavior inside the black

box of program execution [BL96, RBDL97]. Some other program spectra, such as branch, data

dependence, and execution trace spectra, have also been proposedin the literature [BL96,HRS+ 00,

RBDL97].

In this chapter, we propose a new class of program spectra calledvalue spectra. The value

spectra enrich the existing program spectra family [BL96,HRS+ 00,RBDL97] by capturing internal

program states during a test execution. An internal program state is characterized by the values

of the variables in scope. Characterizing behavior using values of variables is not a new idea.

For example, Calder et al. [CFE97] proposevalue pro�ling to track the values of variables during

program execution. Our new approach differs from value pro�ling in two major aspects. Instead of
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tracking variable values at the instruction level, our approach tracks internal program states at each

user-function entry and exit as the value spectra of a test execution. Instead of using the information

for compiler optimization, our approach focuses on regression testing by comparing value spectra

from two program versions.

When we compare the dynamic behavior of two program versions, adeviationis the difference

between the value of a variable in a new program version and the corresponding one in an old

version. We compare the value spectra from a program's old version andnew version, and use

the spectra differences to detect behavioral deviations in the new version1. We use a deviation-

propagation call tree to show the details of the deviations.

Some deviations caused by program changes might be intended such as bybug-�xing changes

and some deviations might be unintended such as by introduced regressionfaults. To help develop-

ers determine if the deviations are intended, it is important to present to developers the correlations

between deviations and program changes. Adeviation rootis a program location in the new pro-

gram version that triggers speci�c behavioral deviations. A deviation root is among a set of program

locations that are changed between program versions. We propose twoheuristics to locate deviation

roots based on the deviation-propagation call tree. Identifying the deviation roots for deviations

can help to understand the reasons for the deviations and determine whether the deviations are

regression-fault symptoms or just expected. Identi�ed deviation roots can be additionally used to

locate regression faults if there are any.

The next section presents the example that we use to illustrate the de�nition of value spectra.

Section 7.2 presents the value-spectra comparison approach. Section 7.3describes our experiences

of applying the approach on several data structures and then Section 7.4concludes.

7.1 Example

To illustrate value spectra, we use a sample C program shown in Figure 7.1. This program receives

two integers as command-line arguments. The program outputs-1 if the maximum of two integers

is less than0, outputs0 if the maximum of them is equal to0, and outputs1 if the maximum of

1Deviation detection in this dissertation is different from the software deviationanalysis technique developed by
Reese and Leveson [RL97]. Their technique determines whether a software speci�cation can behave well when there
are deviations in data inputs from an imperfect environment.
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#include <stdio.h>

1 int max(int a, int b) {

2 if (a >= b) {

3 return a;

4 } else {

5 return b;

6 }

7 }

8 int main(int argc, char *argv[]) {

9 int i, j;

10 if (argc != 3) {

11 printf("Wrong arguments!");

12 return 1;

13 }

14 i = atoi(argv[1]);

15 j = atoi(argv[2]);

16 if (max(i,j) >= 0){

17 if (max(i, j) == 0){

18 printf("0");

19 } else {

20 printf("1");

21 }

22 } else {

23 printf("-1");

24 }

25 return 0;

26 }

Figure 7.1: A sample C program

them is greater than0. When the program does not receive exactly two command-line arguments,it

outputs an error message.

The execution of a program can be considered as a sequence of internal program states. Each

internal program state comprises the program's in-scope variables and their values at a particular

execution point. Each program execution unit (in the granularity of statement, block, code fragment,
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function, or component) receives an internal program state and then produces a new one. The

program execution points can be the entry and exit of a user-function execution when the program

execution units are those code fragments separated by user-function call sites. Program output

statements (usually output of I/O operations) can appear within any of thoseprogram execution

units. Since it is relatively expensive in practice to capture all internal program states between the

executions of program statements, we focus on internal program states inthe granularity of user

functions, instead of statements.

A function-entry stateSentry is an internal program state at the entry of a function execution.

Sentry comprises the function's argument values and global variable values. Afunction-exit state

Sexit is an internal program state at the exit of a function execution.Sexit comprises the function

return value, updated argument values, and global variable values. Note thatSexit does not consider

local variable values. If any of the preceding variables at the function entry or exit is of a pointer

type, theSentry or Sexit additionally comprises the variable values that are directly or indirectly

reachable from the pointer-type variable. Afunction executionhSentry ; Sexit i is a pair of a function

call's function-entry stateSentry and function-exit stateSexit .

Figure 7.2 shows the internal program state transitions of the sample program with the command

line arguments of"0 1" . In the program execution, themain function calls themax function twice

with the same arguments, and then outputs"1" as is shown inside the cloud in Figure 7.2.

7.2 Value-Spectra Comparison Approach

We �rst introduce a new type of semantic spectra, value spectra, which are used to characterize

program behavior (Section 7.2.1). We next describe how we compare thevalue spectra of the same

test on two program versions (Section 7.2.2). We then describe the deviation propagations exhibited

by spectra differences (Section 7.2.3). We �nally present two heuristicsto locate deviation roots

based on deviation propagation (Section 7.2.4).

7.2.1 Value Spectra

We propose a new class of semantic spectra,value spectra, based on exercised internal program

states. Value spectra track the variable values in internal program states,which are exercised as a
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Figure 7.2: Internal program state transitions of the sample C program execution with input"0 1"

Table 7.1: Value spectra for the sample program with input"0 1"

spectra pro�led entities

value hit main( entry (3,"0","1"), exit (3,"0","1",0)) ,

max( entry (0,1), exit (0,1,1))

value count main( entry (3,"0","1"), exit (3,"0","1",0))*1 ,

max( entry (0,1), exit (0,1,1))*2

value trace main( entry (3,"0","1"), exit (3,"0","1",0)) ,

max( entry (0,1), exit (0,1,1)), _ ,

max( entry (0,1), exit (0,1,1)), _ , _

output "1"

program executes.

We propose three new variants of value spectra:

² User-function value hit spectra(in short asvalue hit spectra). Value hit spectra indicate

whether a user-function execution is exercised.
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² User-function value count spectra(in short asvalue count spectra). Value count spectra

indicate the number of times that a user-function execution is exercised.

² User-function value trace spectra(in short asvalue trace spectra). Value trace spectra record

the sequence of the user-function executions traversed as a programexecutes.

Table 7.1 shows different value spectra and output spectra for the sample C program execution

with input "0 1" . We represent a user-function execution using the following form:

funcname( entry (argvals), exit (argvals,ret)) wherefuncname represents the function

name,argvals afterentry represents the argument values and global variable values at the func-

tion entry,argvals afterexit represents the updated argument values and global variable values

at the function exit, andret represents the return value of the function. Function executions in

value hit spectra or value count spectra do not preserve order, whilevalue trace spectra do preserve

order. In value count spectra, a count marker of"* num" is appended to the end of each function

execution to show that the function execution is exercisednum times. Note that if we change the

secondmax function call frommax(i,j) to max(j,i) , we will have two distinct entities formax

in the value hit and value count spectra. It is because these two function executions will become

distinct with different function-entry or function-exit states. In value trace spectra," _" markers

are inserted in the function-execution sequence to indicate function execution returns [RR01]. The

value trace spectra for the sample program shows thatmain callsmax twice. Without these markers,

the same function-execution sequence would result frommain calling max andmax calling max.

The value trace spectra strictly subsume the value count spectra, and the value count spectra

strictly subsume the value hit spectra. The output spectra are incomparablewith any of the three

value spectra, since the program's output statements inside a particular user function body might

output some constants or variable values that are not captured in that user function's entry or exit

state. For example, when we shuf�e thoseprintf statements in themain function body, the pro-

gram still has the same value spectra but different output spectra. On theother hand, the executions

with different value spectra might have the same output spectra. However, when those function

bodies containing output statements are not modi�ed in versionP' , the value trace spectra strictly

subsumes the output spectra. In addition, if we also collect the entry and exit states of system output

functions in the value trace spectra, the value trace spectra strictly subsumethe output spectra.
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Value trace spectra strictly subsume dynamically detected invariants becauseErnst's Daikon

tool [Ern00, ECGN01] generalizes invariants from variable values thatde�ne value trace spectra.

Because Daikon infers invariants for each function separately and the order among function exe-

cutions does not affect the inference results, value count spectra also strictly subsume dynamically

detected invariants. However, value hit spectra are not comparable to dynamically detected invari-

ants because the number of data samples can affect Daikon's inferenceresults [Ern00, ECGN01].

For example, after we eliminate the secondmax method call by caching the return value of the �rst

max method call, we will have the same value count spectra but Daikon might infer fewer invariants

for max when running the two program versions with input"0 1" , because too few data samples

exhibit some originally inferred invariants.

Execution-trace spectra strictly subsume any other program spectra, including the three value

spectra. Other syntactic spectra, such as branch, path, and data-dependence spectra are incompa-

rable with any of the three value spectra. For example, when we change thestatement ofi =

atoi(argv[1]) to i = atoi(argv[1]) + 1 , we will have the same traditional syntactic spec-

tra but different value spectra with input"0 1" running on the two program versions. On the other

hand, when we move the statement ofprintf("1") from within the innerelse branch to after the

innerelse branch, and add a redundant statementi = i + 1 after theprintf("1") statement,

we will have different traditional syntactic spectra, but the same value spectra with input"0 1"

running on the two program versions.

7.2.2 Value Spectra Differences

To compare program behavior between two program versions, we can compare value spectra from

two program versions when we run the same test on them. To compare the value spectra from two

program versions, we need to compare function executions from these versions. We can reduce the

comparison of two function executions to the comparison of the function-entry and function-exit

states from these two function executions, including these states' function names, signatures, and

the variable values. When some variables in a function entry or exit state arepointers, their variable

values are memory addresses. In the presence of these pointer variables, running a test on the

same program twice might produce different value spectra. If we just ignore these pointer-variable
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values, we lose the referencing relationships among variables. To address this problem, we perform

a linearization algorithm shown in Figure 3.2 of Chapter 3 on each function-entry or function-

exit state. In particular, when we encounter a reference-type variablev , instead of collecting its

value (memory address) in the state representation, we collect the following representation for the

variable:

² collect “null” if ( v == null ).

² collect “not null” if ( v != null ) and there exists no previously encountered variablev' such

that (v == v' ).

² collectvname' otherwise, wherevname' is the name of the earliest encountered variablev'

such that (v == v' ) and (v != null ).

Two statesS1 andS2 areequivalentrepresented asS1 ´ S2 if and only if their state representa-

tions are the same; otherwise arenonequivalent, represented asS1 6´ S2. Two function executions

f 1:hSentry
1 ; Sexit

1 i andf 2 :hSentry
2 ; Sexit

2 i areequivalentif and only if they have the same function

name and signature,Sentry
1 ´ Sentry

2 , andSexit
1 ´ Sexit

2 . The comparison of value count spectra

additionally considers the number of times that equivalent function executions are exercised. Given

a function execution in the new version, the compared function execution in the old version is the

one that has the same function name, signature, and function-entry state. If we cannot �nd such a

function execution in the old version, the compared function execution is anempty function execu-

tion. An empty function execution has a different function name, function signature, function-entry

state, or function-exit state from any other regular function executions.

The comparison of value trace spectra further considers the calling context and sequence order in

which function executions are exercised. If we want to determine whethertwo value trace spectra are

the same, we can compare the concatenated function-execution sequences of two value traces. If we

want to determine the detailed function-execution differences between two value trace spectra, we

can use the constructed dynamic call tree and the GNU Diffutils [GNU02] to compare the function-

execution traces of two value trace spectra. After the comparison, when afunction executionf is

present in Versiona but absent in Versionb, we can consider that an empty function execution in

Versionb is compared withf in Versiona.
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7.2.3 Deviation Propagation

Assumef new :hSentry
new ; Sexit

new i is a function execution in a program's new version andf old :hSentry
old ; Sexit

old i

is its compared function execution in the program's old version. Iff new andf old are equivalent, then

f new is anon-deviated function execution. If f new andf old are not equivalent, thenf new is adevi-

ated function execution. We have categorized a deviated function execution into one of the following

two types:

² Deviation container. f new is a deviation container, ifSentry
new ´ Sentry

old but Sexit
new 6´ Sexit

old .

If a function execution is identi�ed to be a deviation container, developers can know that a

certain behavioral deviation occursinsidethe function execution. Note that when there is a

certain behavioral deviation inside a function execution, the function execution might not be

observed to be a deviation container, since the behavioral deviation might not be propagated

to the function exit.

² Deviation follower. f new is a a deviation follower, ifSentry
new 6´ Sentry

old . If a function execution

is identi�ed to be a deviation follower, developers can know that a certain behavioral devi-

ation occursbeforethe function execution. For value count spectra particularly, a function

execution in a program's new version can be categorized as a deviation follower if its count

is different from the count of the compared function execution from the old program version.

we need to use a matching technique (similar as the one used in the value trace spectra com-

parison) to identify which particular function executions in one version areabsent in the other

version.

The details of value spectra differences can provide insights into deviationpropagation in the

execution of the new program version. To provide such details, we attachdeviation information to a

dynamic call tree, where a vertex represents a single function execution and an edge represents calls

between function executions. From the trace collected during a test execution, we �rst construct

a dynamic call tree and then annotate the call tree with deviation information to form a deviation-

propagation call tree. Figure 7.3 shows the deviation-propagation call trees of two test executions

on a new (faulty) version of thetcas program. Thetcas program, its faulty versions, and test suite

are contained in a set ofsiemens programs [HFGO94], which are used in the experiment described
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(The execution of the 58th test)

O main

b__O initialize

b__O alt_sep_test

b__O Non_Crossing_Biased_Climb

j b__O Inhibit_Biased_Climb

j b__O Own_Above_Threat

b__O Non_Crossing_Biased_Descend

j b__O Inhibit_Biased_Climb

j b__O Own_Below_Threat-------- [dev follower]

j b__O ALIM-------------------- [dev follower]

b__O Own_Above_Threat

(The execution of the 91st test)

O main

b__O initialize

b__O alt_sep_test------------------- [dev container]

b__O Non_Crossing_Biased_Climb

j b__O Inhibit_Biased_Climb

j b__O Own_Above_Threat

j b__O ALIM

b__O Own_Below_Threat

b__O Non_Crossing_Biased_Descend- [dev container]

b__O Inhibit_Biased_Climb

b__O Own_Below_Threat

Figure 7.3: Value-spectra-based deviation-propagation call trees of anew program version (the 9th
faulty version) of thetcas program

in Section 7.3. In the call trees, each node (shown asO) is associated with a function execution, and

parent node calls its children nodes. For brevity, each node is marked withonly the corresponding

function name. The execution order among function executions is from the top to the bottom, with

the earliest one at the top. If there is any deviated function execution, its deviation type is marked in

the end of the function name.
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Usually behavioral deviations are originated from certain program locations that are changed

in the new program version. These program locations are calleddeviation roots. The function that

contains a deviation root is calleddeviation-root container. In the new version of thetcas program,

a relational operator> in the old version is changed to>=. The function that contains this changed

line is Non Crossing Biased Descend .

Some variable values at later points after a deviation-root execution might differ from the ones

in the old program version because of the propagation of the deviations at the deviation root. The

deviations at the function exit of the deviation-root container might cause the deviation-root con-

tainer to be observed as a deviation container. Note that some callers of the deviation-root container

might also be observed as deviation containers. For example, in the lower call tree of Figure 7.3,

the deviation-root containerNon Crossing Biased Descend is observed as a deviation container

and its calleralt sep test is also observed as a deviation container.

Sometimes deviations after a deviation-root execution might not be propagated to the exit of the

deviation-root container, but the deviations might be propagated to the entries of some callees of the

deviation-root container, causing these callees to be observed as deviation followers. For example,

in the upper call tree of Figure 7.3, the deviation-root container's calleesOwnBelow Threat and

ALIM are observed as deviation followers.

7.2.4 Deviation-Root Localization

In the previous section, we have discussed how deviations are propagated given a known deviation

root. This section explores the reverse direction: locating deviation roots byobserving value spectra

differences. This task is calleddeviation-root localization. Deviation-root localization can help

developers to better understand which program change(s) caused theobserved deviations and then

determine whether the deviations are expected.

Recall that given a function executionf new :hSentry
new ; Sexit

new i , if f new is a deviation container,

Sentry
new is not deviated butSexit

new is deviated; iff new is a deviation follower,Sentry
new has already

been deviated; iff new is a non-deviated function execution, neitherSentry
new nor Sexit

new is deviated.

Deviation roots are likely to be within those statements executed within a deviation container or

before a deviation follower. The following two heuristics are to narrow down the scope for deviation
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roots based on deviation propagation effects:

Heuristic 1 Assumef is a deviation follower andg is the caller off . If (1) g is a devia-

tion container or a non-deviated one, and (2) any function execution betweeng's entry and the

call site of f is a non-deviated one, deviation roots are likely to be among those statements ex-

ecuted between theg's entry and the call site off , excluding user-function-call statements. For

example, in the upper call tree of Figure 7.3,OwnBelow Threat is a deviation follower and its

caller Non Crossing Biased Descend is a non-deviated one. TheInhibit Biased Climb

invoked immediately before theOwnBelow Threat is a non-deviated one. Then we can ac-

curately locate the deviation root to be among those statements executed between the entry of

Non Crossing Biased Descend and the call site ofOwnBelow Threat .

Heuristic 2 Assumef is a deviation container. If any off 's callees is a non-deviated one,

deviation roots are likely to be among those statements executed withinf 's function body, exclud-

ing user-function-call statements. For example, in the lower call tree of Figure 7.3, the function

executionNon Crossing Biased Descend is a deviation container and any of its callees is a

non-deviated one. Then we can accurately locate the deviation root to be among those statements

executed within theNon Crossing Biased Descend 's function body.

When multiple changes are made at different program locations in the new program version,

there might be more than one deviation root that cause behavioral deviations. If a deviation root's

deviation effect is not propagated to the execution of another deviation root, and each deviation root

causes their own value spectra differences, our heuristics can locate both deviation roots at the same

time.

7.3 Evaluation

This section presents the experiment that we conducted to evaluate our approach. We �rst describe

the experiment's objective and measures as well as the experiment instrumentation. We then present

and discuss the experimental results. We �nally discuss analysis cost andthreats to validity.

7.3.1 Objective and Measures

The objective of the experiment is to investigate the following questions:
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1. How different are the three value spectra types and output spectra type in terms of their

deviation-exposing capability?

2. How accurately do the two deviation-root localization heuristics locate the deviation root from

value spectra?

Given spectra typeS, programP, new versionP0, and the setCT of tests that cover the changed

lines, letDT (S; P; P0; CT) be the set of tests each of which exhibitsS spectra differences and

LT (S; P; P0; CT) be the subset ofDT (S; P; P0; CT) whose exhibited spectra differences can be

applied with the two heuristics to accurately locate deviation roots. To answer Questions 1 and 2,

we use the following two measures, respectively:

² Deviation exposure ratio. The deviation exposure ratio for spectra typeS is the number of the

tests inDT (S; P; P0; CT) divided by the number of the tests inCT, given by the equation:
jDT (S;P;P 0;CT )j

jCT j

² Deviation-root localization ratio. The deviation-root localization ratio for spectra typeS is the

number of the tests inLT (S; P; P0; CT) divided by the number of the tests inDT (S; P; P0; CT),

given by the equation:jLT (S;P;P 0;CT )j
jDT (S;P;P 0;CT )j

Higher values of either measure indicate better results than lower values. Inthe experiment,

we measure the deviation-root localization ratio in the function granularity forthe convenience of

measurement. That is, when the deviation-root localization locates the deviation-root containers

(the functions that contain changed lines), we consider that the localizationaccurately locates the

deviation root. For those changed lines that are in global data de�nition portion, we consider the

deviation-root containers to be those functions that contain the executablecode referencing the

variables containing the changed data.

7.3.2 Instrumentation

We built a prototype of the spectra-comparison approach to determine the practical utility. Our

prototype is based on the Daikon [ECGN01] front end for C programs. Daikon is a system for

dynamically detecting likely program invariants. It runs an instrumented program, collects and
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examines the values that the program computes, and detects patterns and relationships among those

values. The Daikon front end instruments C program code for collecting data traces during program

executions. By default, the Daikon front end instruments nested or recursive types (structs that have

struct members) with the instrumentation depth of three. For example, given a pointer to the root of

a tree structure, we collect the values of only those tree nodes that are within the tree depth of three.

We have developed several Perl scripts to compute and compare all threevariants of value spectra

and output spectra from the collected traces. In the experiment, we have implemented the deviation-

root localization for only value hit spectra.2 Given two spectra, our tools report in textual form

whether these two spectra are different. For value hit spectra, our toolscan display spectra dif-

ferences in deviation-propagation call trees in plain text (as is shown in Figures 7.3) and report

deviation-root locations also in textual form.

We use seven C programs as subjects in the experiment. Researchers at Siemens Research

created these seven programs with faulty versions and a set of test cases [HFGO94]; these programs

are popularly referred as thesiemens programs (we used the programs, faulty versions, and test

cases that were later modi�ed by Rothermel and Harrold [RHOH98]). Theresearchers constructed

the faulty versions by manually seeding faults that were as realistic as possible. Each faulty version

differs from the original program by one to �ve lines of code. The researchers kept only the faults

that were detected by at least three and at most 350 test cases in the test suite. Columns 1–4 of

Table 7.2 show the program names, number of functions, lines of executable code, and number

of tests of these seven subject programs, respectively. Column 5 contains two numbers separated

by "/" . The �rst number is the number of the faulty versions selected in this experiment and the

second number is the total number of faulty versions. Columns 6 shows the average space cost (in

kilobytes) of storing traces collected for a test's value spectra , respectively. The last column shows

the description of the subject programs.

We perform the experiment on a Linux machine with a Pentium IV 2.8 GHz processor. In the ex-

periment, we use the original program as the old version and the faulty program as the new version.

We use all the test cases in the test suite for each program. To control the scale of the experiment,

2We have not implemented deviation-root localization for value count or value trace spectra, because their implemen-
tation requires the matching of traces from two versions, which is challenging by itself and beyond the scope of this
research.
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Table 7.2: Subject programs used in the experiment

program funcs loc tests vers jvs trcj(kb/test) program description

printtok 18 402 4130 7/7 36 lexical analyzer

printtok2 19 483 4115 10/10 50 lexical analyzer

replace 21 516 5542 12/32 71 pattern replacement

schedule 18 299 2650 9/9 982 priority scheduler

schedule2 16 297 2710 10/10 272 priority scheduler

tcas 9 138 1608 9/41 8 altitude separation

totinfo 7 346 1052 6/23 27 information measure

for those programs with more than 10 faulty versions, we select only those faulty versions in an

order from the �rst version to make each selected version have at leastone faulty function that has

not yet occurred in previously selected versions.

7.3.3 Results

Figures 7.4 and 7.5 use boxplots to present the experimental results. The box in a boxplot shows

the median value as the central line, and the �rst and third quartiles as the lower and upper edges

of the box. The whiskers shown above and below the boxes technically represent the largest and

smallest observations that are less than 1.5 box lengths from the end of the box. In practice, these

observations are the lowest and highest values that are likely to be observed. Small circles beyond

the whiskers are outliers, which are anomalous values in the data.

Figure 7.4 shows the experimental results of deviation exposure ratios thatare computed over

all subjects. The vertical axis lists deviation exposure ratios and the horizontal axis lists four spectra

types: output, value hit, value count, and value trace spectra. Figures 7.5shows the experimental

results of deviation-root localization ratios for value hit spectra. The vertical axis lists deviation-root

localization ratios and the horizontal axis lists subject names.

From Figure 7.4, we observed that checking value spectra differences increases the deviation

exposure ratio about a factor of three compared to checking program output differences. This indi-

cates that a relatively large portion of deviations could not be propagatedto program outputs. There
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Figure 7.4: Experimental results of deviation exposure ratios

are no signi�cant differences of the deviation exposure ratios among thethree value spectra, except

that the third quartile of the value trace spectra is slightly higher than the one ofthe value hit or

value count spectra. We found that there were three versions where value trace spectra have higher

deviation exposure ratios than value hit and value count spectra. The faults in these three versions

sometimes cause some deviation followers to be produced in value trace spectra, but these deviation

followers are equivalent to some function executions produced by the oldprogram version; there-

fore, although the value trace spectra are different, their value hit spectra or value count spectra are

the same.

In Figure 7.5, the deviation-root localization ratios for value hit spectra are near 1.0 for all sub-

jects except for theschedule2 program; therefore, their boxes are collapsed to almost a straight

line near the top of the �gure. The results show that our heuristics for value hit spectra can ac-

curately locate deviation roots for all subjects except for theschedule2 program. We inspected

schedule2 's traces carefully to �nd out the reasons. We found that the Daikon front end did
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Figure 7.5: Experimental results of deviation-root localization ratios for value hit spectra

not collect complete program state information in a key linked-list struct inschedule2 using the

instrumentation depth of three (the default con�guration of the Daikon front end). In some of

schedule2 's faulty versions, deviations occur on the key linked-list struct beyondthe depth of

three. Therefore we could not detect the deviations at the exits of deviation roots. We expect that

we could increase the deviation-root localization ratios after increasing theinstrumentation depth.

The experiment simulates the scenario of introducing regression faults into programs during

program modi�cations. When programmers perform a modi�cation that is notexpected to change

a program's semantic behavior, such as program refactoring [Fow99], our spectra comparison ap-

proach can show the occurrences of unintended deviations and our deviation-root localization ac-

curately locates the regression faults. Moreover, we can reverse the version order by treating the

faulty version as the old version and the correct version as the new version. Then we can conduct a

similar experiment on them. This simulates the scenario of �xing program bugs.Since our spectra

comparison is symmetric, we expect to get the same experimental results. This shows that when
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programmers perform a bug-�xing modi�cation, our approach can showthem the occurrences of

the intended deviations.

7.3.4 Analysis Cost

The space cost of our spectra-comparison approach is primarily the space for storing collected

traces. Columns 6 of Table 7.2 shows the average space in kilobytes (KB) required for storing

trace of a test's value spectra. The average required space for a testranges from 8 to 71 KB except

for the value spectra of theschedule andschedule2 programs (with the space of 982 and 272

KB, respectively), because these two programs contain global linked-list structs, whose collected

values require considerably larger space.

The time cost of our approach is primarily the time of running instrumented code (collecting

and storing traces) as well as computing and comparing spectra (deviation-root localization is a

part of spectra comparison). The slowdown ratio of instrumentation is the time of running a test

on instrumented code divided by the time of running the same test on uninstrumented code. We

observed that the average slowdown ratio of instrumentation ranges from2 to 7, except for the value

spectra ofschedule andschedule2 programs (with the ratios of 48 and 31, respectively). The

average elapsed real time for running a test on instrumented code rangesfrom 7 to 30 milliseconds

(ms), except for the value spectra ofschedule andschedule2 programs (with the time of 218

and 137 ms, respectively). The elapsed real time for computing and comparing two spectra of a test

ranges from 24 to 170 ms, except for the value spectra ofschedule andschedule2 programs

(with the time of 3783 and 1366 ms, respectively).

We speculate that applying our approach on larger programs could achieve better improvement

of deviation exposure over program output checking, because deviations are probably less likely to

be propagated to the outputs of larger programs. We speculate that deviation-root localization ratios

based on value spectra might be less affected by the scale of programs than the type of variables

used by programs (e.g., simple versus complex data structures).

Larger programs require higher space and time costs. The time or space cost of our value-

spectra-comparison approach can be approximately characterized as

V Cost = O(jvarsj £ j userfuncs j £ j testsuite j)
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wherejvarsj is the number of variables (including the pointer references reachable from the vari-

ables in scope) at the entry and exit of a user function,juserfuncs j is the number of executed and

instrumented user functions, andjtestsuite j is the size of the test suite.

To address scalability, we can reducejtestsuite j by applying our approach on only those tests

selected by regression test selection techniques [RH97]. In addition, wecan also reducejuserfuncs j

by instrumenting only those modi�ed functions and their (statically determined) up-to-n-level callers

or those functions enclosed by identi�ed �rewalls [LW90,WL92]. The reduced scope of instrumen-

tation trades a global view of deviation propagation for ef�ciency.

7.3.5 Threats to Validity

The threats to external validity primarily include the degree to which the subjectprograms, faults

or program changes, and test cases are representative of true practice. Thesiemens programs

are small and most of the faulty versions involve simple, one- or two-line manually seeded faults.

Moreover, the new versions in our experiment do not incorporate otherfault-free changes since all

the changes made on faulty versions deliberately introduce regression faults. These threats could

be reduced by more experiments on wider types of subjects in future work.The threats to internal

validity are instrumentation effects that can bias our results. Faults in our prototype and the Daikon

front end might cause such effects. To reduce these threats, we manually inspected the spectra

differences on a dozen of traces for each program subject. One threat to construct validity is that our

experiment makes use of the data traces collected during executions, assuming that these precisely

capture the internal program states for each execution point. However,in practice the Daikon front

end explores nested structures up to the depth of only three by default.

7.4 Conclusion

After developers made changes on their program, they can rerun the program's regression tests to

assure the changes take effect as intended: refactoring code to improvecode quality, enhancing

some functionality, �xing a bug in the code, etc. To help developers to gain a higher con�dence on

their changes, we have proposed a new approach that check program behavior inside the black box

over program versions besides checking the black-box program outputs.



134

We have developed a new class of semantic spectra, called value spectra,to characterize program

behavior. We exploit value spectra differences between a program's old version and new version in

regression testing. We use these value spectra differences to expose internal behavioral deviations

inside the black box. We also investigate deviation propagation and develop two heuristics to locate

deviation roots. If there are regression faults, our deviation-root localization additionally addresses

the regression fault localization problem. We have conducted an experiment on seven C program

subjects. The experimental results show that value-spectra comparison approach can effectively de-

tect behavioral deviations even before deviations are (or even if they are not) propagated to outputs.

The results also show that our deviation-root localization based on value spectra can accurately

locate the deviation roots for most subjects.

Our approach has not constructed a feedback loop between behaviorinference and test genera-

tion by using inferred value spectra to guide test generation. However, because generating tests to

exhibit program-output deviations in a new version is an undecidable problem, the existing test gen-

eration techniques [DO91,KAY98,WE03] for this problem can try to generate tests to propagate the

deviation from an outermost deviated function execution to its caller. Through iterations, gradually

the value spectra differences can guide the test generation tools to propagate the deviations as close

as possible to the program locations for I/O outputs.



135

Chapter 8

FUTURE WORK

This research has demonstrated that the effectiveness of automated testing can be improved

through a framework that reduces the cost of both computer and human effort. There are still many

opportunities for extending this work, and this chapter discusses some of the future directions that

can be conducted by extending the research in this dissertation.

8.1 Scaling

The experiments that we have conducted in this research primarily focus onunit testing of individ-

ual structurally complex data structures. The redundant-test detection approach is evaluated against

existing test generation tools, which generate a large number of tests but a relatively small number of

non-redundant tests. The non-redundant-test generation and test abstraction approaches are evalu-

ated against a relatively low bound of exhaustive testing. The test selection approach and regression

testing approach are evaluated on a set of relatively small programs, being limited in fact by the

scalability of the underlying test generation tool or dynamic invariant detection tool (the existing

implementation of the regression testing approach uses Daikon's front endto collect value spectra

information).

Scaling redundant-test detection deals primarily with reducing the overheadof collecting and

storing nonequivalent method executions in memory. For a large program or a test with long method

sequences, the size of a single state's representation can be large. Fora large test suite, the number

of nonequivalent states or method executions can be large. Our implementation employs some

state compression techniques such as using a Trie [Fre60] data structure.We can further reduce

state-storage requirement by employing some state compression techniques [Hol97, LV01] used in

explicit state model checking [CGP99].

Scaling non-redundant-test generation needs to address the same issuein scaling redundant-test
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detection: reducing the overhead of keeping track of nonequivalent method executions. We can use

those preceding techniques to scale test generation. In addition, we can reduce the state space for ex-

ploration in different ways. Instead of exhaustively exploring method sequences (state space) within

a small bound, we can explore the state space with longer method sequenceswith heuristics-guided

search [GV02, TAC+ 04] or evolutionary search [RN95, GK02, Ton04] for achieving certain cover-

age criteria discussed in Section 2.1. Developers can also specify abstraction functions to reduce the

state space (the Rostra techniques based on theequals method provide mechanisms for developers

to de�ne abstraction functions). Because it may not be feasible to explorea large state space of a

single class or multiple classes in a single machine, we can distribute the test generation tasks among

multiple machines [MPY+ 04] and collectively generate tests for a large class or multiple classes in

a system. If we use test generation techniques based on concrete or symbolic state exploration, we

need to address the communication and coordination issues among multiple machines in avoiding

exploring states that have been explored by other machines. If we use test generation techniques

based on exploring method sequences without tracking actual concrete or symbolic states, we can

get around the communication and coordination issues but with the price of exploring a larger space.

In addition, when we test multiple classes in a system (either in a single machine ormultiple ma-

chines), we need to carefully select the test generation order of multiple classes because we prefer

to explore a classA's state space earlier ifA is an argument type of another classB's method and we

want to use the explored states ofA as the arguments ofB's method when exploringB's state space.

Scaling the test selection approach needs to scale both the underlying speci�cation-based test

generation tool and dynamic invariant tool. Some techniques for scaling speci�cation-based test

generation are similar to those preceding ones for scaling non-redundant-test generation. In ad-

dition, we can use some test generation techniques [BKM02] tailored and optimized for exploit-

ing speci�cations. Some techniques for scaling a dynamic invariant tool hasbeen discussed by

Ernst [Ern00] and developed by Perkins and Ernst [PE04]. Scalingour regression testing approach

primarily deals with the collection of program state information from test executions and compu-

tation of value spectra from program state information. Some techniques forscaling a dynamic

invariant tool discussed by Ernst [Ern00] are applicable in addressing the scalability of collecting

program state information, such as selectively instrumenting program points.
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8.2 New types of behaviors to exploit

Research in this dissertation exploits the inferred behaviors in the form of axiomatic speci�ca-

tions [Hoa69, Gri87] or �nite state machines [LY96]. Program behaviorscan be described in other

forms such as algebraic speci�cations [GH78] and protocol speci�cations [BRBY00, BR01, DF01,

DLS02], and symmetry properties [Got03]. We can infer these types of behaviors from test execu-

tions and use these behaviors to guide test generation by borrowing techniques from speci�cation-

based test generation. In addition, we can apply the operational violation approach by selecting

any generated tests that violate the behaviors inferred from the existing tests. However, inferring

behaviors in the form of algebraic speci�cations or symmetry properties requires speci�cally con-

structed method sequences, which may not already exist in the existing (manually constructed) tests.

Therefore, we may need to generate extra new tests to help infer behaviors from the existing tests;

the situation is the same in the test abstraction approach: we need to generate extra tests in order to

infer observer abstractions from the existing tests.

The operational violation approach selects tests based on a common rationale: selecting a test

if the test exercises a certain program behavior that is not exhibited by previously executed tests.

We can select tests based on a different new rationale: selecting a test asa special test if the test

exercises a certain program behavior that is not exhibited by most other tests; selecting a test as a

common test if the test exercises a certain program behavior that is exhibitedby all or most other

tests. Inferred behaviors in the form of algebraic speci�cations have been found to be promising for

test selection based on this new rationale [Xie04,XN04b].

8.3 New types of quality attributes to test

Our research focuses on testing a program's functional correctnessor robustness. We can extend

our research to test other quality attributes of a program. For example, software performance test-

ing [AW96, VW98, WV00] creates representative workloads (includingaverage, heavy, or stress

workloads) to exercise the program and observe its throughput or response time. In performance

testing, generally generating non-redundant tests is still useful to advance program states to reach

heavy-loaded states; however, invoking redundant tests sometimes may beuseful in performance

testing, for example, when a program's performance can be degraded (because of garbage collec-
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tion behavior) by running redundant tests that create extensive temporary objects. In performance

testing, we can also apply the operational violation approach by inferring aprogram's performance

behavior. Then we can select those generated tests that cause a program to perform worse than the

observed performance exercised by the existing tests. We can also inferthe characteristics of the

bad-performance-inducing tests to help diagnosis the performance-problem roots.

Software security testing [WT03, HM04, PM04] tests a program to make sure the program be-

have correctly in the presence of a malicious attack. Security risks can be used to guide security

testing. For example, for a database application, one potential security riskis SQL injection at-

tacks [HHLT03,HO05]. We can extend our test generation approach tohandle complex string oper-

ations during symbolic execution. Then we can use symbolic execution to generate test inputs that

get through input validators but produce SQL injection attacks. In addition, the operational violation

approach has a good potential for security testing, because security testing intends to test the pro-

gram under malicious inputs, which exercise program behaviors different from the ones exercised

by normal inputs in manually created tests.

8.4 Broader types of programs to test

We can detect redundant tests among tests generated for GUI applications[MPS99, Mem01] or

directly generate non-redundant tests for GUI applications. In testing GUI applications, event se-

quences correspond to method sequences in testing object-oriented programs. The program state

before or after an event can be abstracted by considering only the stateof the associated GUI, which

is modeled in terms of the widgets that the GUI contains, their properties, and thevalues of the

properties. Then the techniques of detecting redundant tests or generating non-redundant tests can

be similarly applied to GUI tests.

We can detect redundant tests among tests generated for database applications [KS03,CDF+ 04]

and directly generate non-redundant tests for database applications. In testing database applications,

the program state before or after a method call additionally includes the database state. After includ-

ing database states in the program state representation, we can then detectredundant tests for testing

database applications. Because a database state can be large, we can use static analysis techniques

to determine which parts of the database state are relevant to affect the execution of a method and
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consider only these relevant parts when collecting the program state before or after the method call.

We can extend our testing techniques to test programs written in aspect-oriented programming

languages such as AspectJ [KLM+ 97, Tea03]. We can treat an aspect as the unit under test (like

a class in an object-oriented program) and advice as the method under test (like a public method

in a class). Then we can detect redundant tests for testing an aspect [XZMN04]. In addition,

we can adapt our test generation techniques to generate tests for suf�ciently exercising an as-

pect [XZMN05].

Our research focuses on testing a sequential program. When detecting redundant tests for test-

ing a concurrent program, we can no longer operate on the granularity of individual method calls

because thread interactions can occur within a method execution causing different method behaviors

given the same method inputs. One possible extension to our redundant-testdetection techniques is

to monitor and collect the inputs to each code segment separated by those thread interaction points

within a method. However, this �ner granularity can suffer from the state explosion problem more

seriously.

8.5 New types of software artifacts to use

This research uses the program under test and sometimes its manually created tests. We can also use

other types of software artifacts if they exist in the software development process. For example, if

grammars have been written for de�ning test inputs, we can use these grammars to effectively gen-

erate test inputs [SB99, Zay04]. If a method for checking class invariant or a method for validating

inputs has been written, we can also use the method to generate test inputs effectively [BKM02].

If requirements are written for the program under test, we can use the requirements to generate

tests [WGS94,EFM97,ABM98,GH99]. We can also improve our testing techniques with the infor-

mation collected from the program's actual usage, such as operational pro�ling [Woi93,Woi94], or

other in-�eld data [OLHL02,OAH03,MPY+ 04].

When a model (speci�cation) for a program is speci�ed, model-based testing [DJK+ 99,GGSV02,

Fou, Par04] can be performed. In model-based testing, the underlying model used for test genera-

tion is often an abstract one, being derived after abstracting the program's behavior. Two method

sequences may produce the same abstract state in the model but we may not want to keep only
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one method sequence and discard the other one, because the concrete states (in the code) produced

by two method sequences may be different and two method sequences may have different fault-

detection capabilities. Although we may not apply redundant-test detection onthe generated tests

based on abstract states of the model, we can apply redundant-test detection based on the concrete

states exercised by tests generated based on the model.

8.6 Testing in the face of program changes

Program changes are inevitable. When a program is changed, rerunning only the tests generated

for the old version may not be suf�cient to cover the changed or added code, or to expose bugs

introduced by the program changes. Although our regression testing techniques intend to exploit the

existing tests to expose behavior deviations, generating new tests to exercise the changed or added

code is sometimes necessary. Because exploring the whole receiver-object states from the ground

for the new version is not economical, we can incorporate incremental computation to re-explore

only the parts of the state space that are affected by the program changes.

In general, as has been suggested by longitudinal program analysis [Not02], we can plan and

apply test generation across the multitude of program versions. We can use information retained

from an earlier test generation to reduce the scope of the test generationon a newer version or to

better test a newer version. The way of strategically allocating testing resource might enable us

to apply otherwise infeasible test generation over multiple versions of a program as opposed to a

speci�c version.
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Chapter 9

ASSESSMENT AND CONCLUSION

This dissertation proposes a framework for improving effectiveness ofautomated testing in the

absence of speci�cations. A set of techniques and tools have been developed within the framework.

First, we have de�ned redundant tests based on method input values anddeveloped a tool for detect-

ing redundant tests among automatically generated tests; these identi�ed redundant tests increase

testing time without increasing the ability to detect faults or increasing developers' con�dence on

the program under test. Experimental results show that about 90% of the tests generated by the

commercial Parasoft Jtest 4.5 [Par03] are redundant tests. Second,we have developed a tool that

generates only non-redundant tests by executing method calls symbolically toexplore the symbolic-

state space. Symbolic execution not only allows us to reduce the state space for exploration but also

generates relevant method arguments automatically. Experimental results show that the tool can

achieve higher branch coverage faster than the test generation basedon concrete-state exploration.

Third, we have used Daikon [Ern00] to infer behavior exercised by theexisting tests and feed the

inferred behavior in the form of speci�cations to a speci�cation-based test generation tool [Par03].

Developers can inspect those generated tests that violate these inferredbehavior, instead of inspect-

ing a large number of all generated tests. Experimental results show that theselected tests have a

high probability of exposing anomalous program behavior (either faults orfailures) in the program.

Fourth, we have used the returns of observer methods to group concrete states into abstract states,

from which we construct succint observer abstractions for inspection. An evaluation shows that the

abstract-state transition diagrams can help discover anomalous behavior, debug exception-throwing

behavior, and understand normal behavior in the class interface. Fifth,we have de�ned value spec-

tra to characterize program behavior, compared the value spectra froman old version and a new

version, and used the spectra differences to detect behavior deviations in the new version. We have

further used value spectra differences to locate deviation roots. Experimental results show that com-

paring value spectra can effectively expose behavior differences between versions even when their
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actual outputs are the same, and value spectra differences can be usedto locate deviation roots with

high accuracy. Finally, putting behavior inference and test generation together, we can construct

a feedback loop between these two types of dynamic analysis, starting with anexisting test suite

(constructed manually or automatically) or some existing program runs. We have shown several

instances of the feedback loop in different types of behavior inference. The feedback loop produces

better tests and better approximated speci�cations automatically and incrementally.

9.1 Lessons learned

Software testing research has been conducted for more than three decades. However, when we look

at industry, we can �nd that only a few commercial automated testing tools are available in the

market and better tool support is needed in order to meet the demand for high software reliability.

The research in this dissertation has developed new techniques and tools toimprove the effectiveness

of automated software testing. Our work does not assume that the programunder test is equipped

with speci�cations, because speci�cations often do not exist in practice.Our research is motivated

to investigate whether bene�ts of speci�cation-based testing can be achieved to a great extent in the

absence speci�cations and then bring these bene�ts to a massive group of developers in industry.

Our research has shed light on this promising direction and pointed out future work along this

direction. In this section, we summarize some lessons that we learned from thisresearch and we

hope these lessons may be helpful to other researchers (including us) inpursuing future research.

Dynamic analysis tools can be integrated too.Recently researchers [NE01,Ern03,You03,CS05]

have proposed approaches that integrate dynamic and static analysis. Because the results

of dynamic analysis based on observed executions may not generalize to future executions,

static analysis can be used to verify the results of dynamic analysis [NE01].Because the

results of static analysis may be less precise (more conservative) than what can really occur at

runtime, dynamic analysis can be used to select the results of static analysis that can actually

occur at runtime [CS05]. Our research shows that dynamic analysis canalso be integrated:

a dynamic behavior inference tool produces likely properties, which guides a test generation

tool to generate tests to violate these properties, and new generated tests are further used to

infer new likely properties. A feedback loop on dynamic analysis then can be constructed.
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“Both measuring and managing redundancy are important.” Our redundant-test detection ap-

proach allows us not only to measure test redundancy but also to manage (more precisely,

avoid) test redundancy. Although previous research [MK01,Khu03,BKM02,Mar05,VPK04]

proposed new techniques for directly generating nonequivalent methodinputs (therefore,

there is no redundancy among the generated tests), other existing test generation tools may not

easily adopt these previously proposed new techniques, partly because these techniques may

require speci�cations or these techniques may not be integrated well with these tools' existing

test generation mechanisms. We found it important to measure how well a test-generation tool

performs in terms of redundancy among its generated tests, and equally important to guide the

tool to improve its performance. Our proposed approach can measure theredundancy of tests

generated byanytest generation tool and compare the performance of different tools based on

the measurement results. Indeed, existing test adequacy criteria such asstatement coverage

can also be used to compare the performance of different tools in terms of satisfying these

criteria; however, our proposed measurement offers an operationalway of managing (more

precisely, avoiding) the test redundancy during or after the tools' existing test generation pro-

cess.

Breaking into pieces helps.Traditional test-generation techniques consider two tests are different

(therefore, both are needed) if these two tests consist of different method sequences; however,

it is often expensive to exercise all possible method sequences within evena small sequence-

length bound. In fact, we care about the program behavior exercisedby each method call

individually. After we break a method sequence into pieces of method calls in it,we can

check whether at least one of these individual method calls exercise newbehavior that has not

been exercised before. Breaking the whole into pieces and focusing onpieces instead of the

whole can offer opportunities for reducing the space for exploration.

Grouping pieces helps.After the generated tests exercise the concrete state space, the state transi-

tion diagram constructed from the whole concrete state is often too complicatedto be useful

for inspection. After we use an observer method to group together those concrete states

whose immediately observable behaviors are the same, we can produce a succinct diagram
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for inspection, reducing the human effort in test inspection. In test generation based on state

exploration, it is often too expensive to explore the whole concrete state space, our test gener-

ation approach then uses symbolic execution to group together those concrete states that can

be instantiated from the same symbolic state, reducing the space for exploration.

Looking inside helps. Traditional regression testing techniques look at the observable outputs of

two program versions and check whether they are different; however, it is often dif�cult for

existing tests to propagate behavior deviations inside the program executions to the observable

outputs. Checking inside the program executions can help expose these behavior deviations

even if these deviations are not propagated to the observable outputs. When an object-oriented

program is tested, the state of a receiver object can affect the behavior of the method call

invoked on the receiver object. As was pointed out by Binder [Bin94], “while limiting scope

of effect, encapsulation is an obstacle to controllability and observability of implementation

state.” Consequently, existing test generation tools consider a receiverobject as a black box

and invoke different sequences of method calls on the receiver object.However, our research

on redundant-test detection and test generation shows that testing tools can still look inside

receiver object states at testing time in order to generate tests more effectively.

Exploit the most out of artifacts that already exist in practice. We found that it is a good start-

ing point for tools to �rst take full advantage of those artifacts that already exist in practice

before requiring developers to invest effort in writing extra artifacts solely for the tools. The

relatively popular adoption of Parasoft Jtest [Par03] and Agitar Agitator [Agi04] in industry

is partly due to their “push button” feature in test automation. At the same time, in order to

improve tools' effectiveness, we should exploit the most out of the artifacts that already exist.

For example, if anequals method exists for a class, our research on redundant-test detection

and test generation uses it as an abstraction function to reduce the state space for exploration.

Our research on test generation can use the arguments exercised by themanually constructed

tests to explore the state space. Our research on test abstraction also uses observer meth-

ods of a class as abstraction functions to reduce the state space for inspection. Our research

on test selection uses the behavior exercised by the manually constructed tests to guide test
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generation and selection.

It is sometimes unavoidable for a tool to ask help from developers (wisely). Our research tries to

push up the limit of bene�ts that automated testing tools can provide; however,we found that

we cannot totally leave developers out of the picture, because it is often dif�cult for the tools

to infer the exact intent or expected behavior of the program under test.Our research on test

selection, test abstraction, and regression testing produces results fordevelopers to inspect.

We found that it is important to allow developers to invest their inspection efforts in an eco-

nomical way; otherwise, developers would simply give up investing their inspection efforts

(thus giving up using the tools). For example, instead of inspecting the output of each single

test, developers can inspect a small subset of tests selected by our test selection approach

(together with their violated abstractions). Instead of inspecting the complex concrete-state

transition diagram, developers can inspect the succinct observer abstractions generated by

our test abstraction approach. When presenting information for developers to inspect, tools

should be carefully designed to include interesting information as much as possible and at the

same time exclude uninteresting information as much as possible.

Working around industrial tools helps. We started the project on test selection for inspection by

integrating Daikon [Ern00] and Parasoft Jtest 4.5 [Par03], which is one of a few automated

test-generation tool in industry and has a relatively large group of users. Later we started a

project on redundant-test detection by detecting a high percentage of redundant tests among

tests generated by Parasoft Jtest 4.5. We found that this strategy of working around industrial

tools allows a research project to make an impact on industry more easily. Technology transfer

or tool adoption in industry is a complex procedure, involving both technicaland nontechnical

issues. By working around industrial tools, our research can catch industry's attention and

facilitate technology transfer by demonstrating that our new techniques canimprove existing

industrial tools and can be potentially incorporated by them.

Automatically generating complex arguments is more dif�cult than expected. Test generation

techniques based on concrete-state exploration assumes that a set of method arguments are

provided and then invokes methods with these arguments to explore the concrete-state space.
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Our tool implementation dynamically collects the arguments exercised by a JUnit test class,

which is either manually constructed or automatically generated by existing test generation

tools. We found that complex arguments generated by existing test generation tools [Par03,

CS04] are often not satisfactory when testing some classes that are not data structures. This

limitation prevents our test-generation tools from being applied on a signi�cantportion of

classes in practice. Although our test generation techniques based on symbolic execution

can automatically derive relevant arguments during state exploration, the types of generated

arguments are still limited to primitive types. One future solution is to explore the statespace

of the argument-type objects using method calls. Another solution is to capture and replay the

arguments invoked on the class under test when running system tests [SE04,OK05]. Indeed, if

class invariants for complex-argument classes exist, some speci�cation-based test-generation

tools [MK01,BKM02] can be used to generate valid complex arguments.

Practical lightweight speci�cations may help. Although our research has developed testing tech-

niques and tools that do not require speci�cations, we found that the effectiveness of auto-

mated testing could be further improved if the tools are given extra guidance inthe form

of lightweight speci�cations. In order to make writing speci�cation practical,speci�cations

shall be easy to write and understand. For example, Korat [BKM02, Mar05] generates non-

redundant tests by using arepOk method, which is an implementation for checking a class

invariant [LBR98, LG00]. Tillmann et al. [TS05] proposed an approach that allows devel-

opers to write parameterized unit tests, which embed assertions for checking algebraic spec-

i�cations [GH78]. Then their approach uses symbolic execution to automatically generate

relevant arguments for the parameterized unit-test methods.

Model-based testing may be a good way to go when doing integration or system testing. Our re-

search primarily focuses on unit testing. Although some techniques in our research may be

adapted to be applied in integration or system testing, integration or system testing in the

absence of models (speci�cations) seems to be more challenging, partly because of the scal-

ability issue. We suspect that developers would be more willing to write models for a whole

(sub)system, because the return on investment is much higher than writing speci�cations for
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a class unit. Industrial experiences from Microsoft [GGSV02, Fou] and IBM [Par04] have

shown promising results of model-based testing.

Despite the progress we have made in this research, there is much space left for our future

work in improving the effectiveness of automated software testing. Our research strategy has been

to tackle real but low-end problems where no speci�cations are assumed, and focus on the units'

sequential, functional behaviors (even if structurally complex). When developing techniques and

tools for tackling these problems, we learned that the success of automated testing depends on

good coordination of effort between computers and developers. Especially when we go beyond

low-end problems and try to focus on integration or system testing, non-functional testing, and so

on, developers might need to provide signi�cantly more guidance to the tools toimprove testing

effectiveness.
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