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Abstract

Improving Effectiveness of Automated Software Testing

in the Absence of Speci cations
Tao Xie

Chair of Supervisory Committee:

Professor David Notkin
Computer Science and Engineering

This dissertation presents techniques for improving effectivenesstafated software testing in
the absence of speci cations, evaluates the ef cacy of these techsjigund proposes directions for
future research.

Software testing is currently the most widely used method for detecting seffaitures. When
testing a program, developers need to generate test inputs for the progratimese test inputs on
the program, and check the test execution for correctness. It hasvgdiegecognized that software
testing is quite expensive, and automated software testing is important taimgdhe laborious
human effort in testing. There are at least two major technical challengagomated testing: the
generation of suf cient test inputs and the checking of the test exectdiotorrectness. Program
speci cations can be valuable in addressing these two challenges.tumditely, speci cations are
often absent from programs in practice.

This dissertation presents a framework for improving effectivenesstohzated testing in the
absence of speci cations. The framework supports a set of relatbditpes. First, it includes
a redundant-test detector for detecting redundant tests among automaferadhated test inputs.
These redundant tests increase testing time without increasing the ability tbfdetes or increas-
ing our con dence in the program. Second, the framework includes aedundant-test generator

that employs state-exploration techniques to generate non-redundari e rst place and uses






symbolic execution techniques to further improve the effectiveness ofjéesration. Third, be-

cause it is infeasible for developers to inspect the execution of a lamaruof generated test
inputs, the framework includes a test selector that selects a small subssttioputs for inspection;

these selected test inputs exercise new program behavior that hasemogxXercised by manually
created tests. Fourth, the framework includes a test abstractor thatpsosliccinct state transition
diagrams for inspection; these diagrams abstract and summarize the bekxavaised by the gen-

erated test inputs. Finally, the framework includes a program-spectraatatopthat compares the
internal program behavior exercised by regression tests execute @nogram versions, exposing
behavioral differences beyond different program outputs.

The framework has been implemented and empirical results have showretdatvéioped tech-
niques within the framework improve the effectiveness of automated testidgtbygting high per-
centage of redundant tests among test inputs generated by existing es@sting non-redundant
test inputs to achieve high structural coverage, reducing inspectiansefibr detecting problems in

the program, and exposing more behavioral differences duringssigretesting.
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Chapter 1

INTRODUCTION

Software permeates many aspects of our life; thus, improving softwarbiligliégs becoming
critical to society. A recent report by National Institute of Standards Bewhnology found that
software errors cost the U.S. economy about $60 billion each yea®pjll8lthough much progress
has been made in software veri cation and validation, software testing is stithtist widely used
method for improving software reliability. However, software testing is labomsite, typically

accounting for about half of the software development effort [Bei90]

To reduce the laborious human effort in testing, developers can cbadtmmated software
testing by using tools to automate some activities in software testing. Software tastivies
typically include generating test inputs, creating expected outputs, runsirigpets, and verifying
actual outputs. Developers can use some existing frameworks or todisasube JUnit testing
framework [GBO3] to write unit-test inputs and their expected outputs. ThedUnit framework
can automate running test inputs and verifying actual outputs against pleete outputs. To
reduce the burden of manually creating test inputs, developers caronmeexisting test-input
generation tools [Par03,CS04,Agi04] to generate test inputs automatistidly developers modify
a program, they can conduegression testinfy rerunning the existing test inputs in order to assure
that no regression faults are introduced. Even when expected outputstareated for the existing
test inputs, the actual outputs produced by the new version can be autdipatienpared with the

ones produced by the old version in order to detect behavioral diffese

However, the existing test-generation tools often cannot effectivelgrgénsuf cient test inputs
to expose program faults or increase code coverage. In additiom thlese tools are used to
generate test inputs automatically, expected outputs for these test inpstil anéssing, and it is

infeasible for developers to create expected outputs for this large nwhbenerated test inputs.



Although speci cations can be used to improve the effectiveness ofrgeng test inputs and check
program correctness when running test inputs without expected ouspets cations often do not
exist in practice. In regression testing, the existing approach of congpabiservable outputs is
limited in exposing behavioral differences inside program executiongtdégerences could be
symptoms of potential regression faults.

Our research focuses on developing a framework for improvingteféeress of automated test-
ing in the absence of speci cations. The framework includes techniquedamls for improving
the effectiveness of generating test inputs and inspecting their exextiororrectness, two major
challenges in automated testing.

This chapter discusses activities and challenges of automated softwidmg {&ection 1.1),
lists the contributions of the dissertation: a framework for improving effeotgs of automated
testing (Section 1.2), de nes the scope of the research in the dissertdgotidn 1.3), and gives an

organization of the remainder of the dissertation (Section 1.4).

1.1 Activities and Challenges of Automated Software Testing

Software testing activities consist of four main steps in testing a prograneratérg test inputs,
generating expected outputs for test inputs, run test inputs, and vetifglabutputs. To reduce
the laborious human effort in these testing activities, developers can detdinege activities to
some extent by using testing tools. Our research focuses on developimigiees and tools for
addressing challenges of automating three major testing activities: gendestingputs, generating
expected outputs, and verifying actual outputs, particularly in the abs#rspeci cations, because
speci cations often do not exist in practice. The activities and challeofi@sitomated software

testing are described below.

Generate 6uf cient) test inputs. Test-input generation (in short, test generation) often occurs when
an implementation of the program under test is available. However, befomgeam imple-
mentation is available, test inputs can also be generated automatically durintybasdé
test generation [DF93, GGSV02] or manually during test-driven dewedop [Bec03], a key
practice of Extreme Programming [Bec00]. Because generating test impmtsally is often

labor intensive, developers can use test-generation tools [Par08,8804] to generate test



inputs automatically or use measurement tools [Qui03, JCo03, Hor02] to &edhoghers de-
termine where to focus their efforts. Test inputs can be constructed bastéhe program's
speci cations, code structure, or both. For an object-oriented pnogrech as a Java class, a

test input typically consists of a sequence of method calls on the objectsdatse

Although the research on automated test generation is more than threesletfHua75,
Kin76,Cla76,RHC76], automatically generating suf cient test inputs stiiaes a challeng-
ing task. Early work as well as some recent work [Kor90, DO91, KAYGKIS98, GBR98,
BCMO04] primarily focuses on procedural programs such as C progravttse recent re-
search [KSGH94, BOP0O0, Ton04, MK01, BKM02, KPV03, VPK04]afecuses on gener-
ating test inputs for object-oriented programs, which are increasingbagiee. Generat-
ing test inputs for object-oriented programs adds additional challengeaube inputs for
method calls consist of not only method arguments but also receivertcitgges, which
are sometimestructurally complexnputs, such as linked data structures that must satisfy
complex properties. Directly constructing receiver-object states esxjgither dedicated al-
gorithms [BHR 00] or class invariants [LBR98, LG00] for specifying properties satikby
valid object states; however, these dedicated algorithms or class invaiiard&en not read-
ily available in part because they are dif cult to write. Alternatively, methedwgences can
be generated to construct desired object states indirectly [BOPO®Tdrvever, it is gen-
erally expensive to enumerate all possible method sequences everagiveail number of

argument values and a small bound on the maximum sequence length.

Generate expected outputs (for darge number of test inputs). Expected outputs are generated
to help determine whether the program behaves correctly on a particéent@n during
testing. Developers can generate an expected output for each spestiioput to form pre-
computed input/output pair [Pan78,Ham77]. For example, the JUnit testimgwork [GBO3]
allows developers to write assertions in test code for specifying expectpdts. Devel-
opers can also write checkable speci cations [Bei90, BGM91, DF9308MKCL02, BKMO02,
GGSV02] for the program and these speci cations offer expectedutaitffmore precisely,

expected properties) for any test input executed on the program.



Itis tedious for developers to generate expected outputs for a largesnwoifitest inputs. Even
if developers are willing to invest initial effort in generating expected atgtgdtiis expensive
to maintain these expected outputs when the program is changed and soeseatpected

outputs need to be updated [KBP02, MSO03].

Run test inputs (continuouslyand ef ciently). Some testing frameworks such as the JUnit testing
framework [GBO3] allow developers to structure sevéeat casegeach of which comprises
a test input and its expected output) intdest suite and provide tools to run a test suite
automatically. For graphical user interface (GUI) applications, runnisigin@uts especially

requires dedicated testing frameworks [OAFG98, MemO01, Rob03, Abb04

In software maintenance, it is important to run regression tests frequerntlglér to make
sure that new program changes do not break the program. Develogremanually start the
execution of regression tests after having changed the program gucerno continuously
run regression tests in the background while changing the progran3]S&06metimes run-
ning regression tests is expensive; then developers can use moctsgh|E€01, SE04] to
avoid rerunning the parts of the program that are slow and expensiua.t@evelopers can
also use regression test selection [RH97, GI9K, HIL* 01] to select a subset of regression
tests to rerun or regression test prioritization [WHLB97,RUCHO1, EMR®20rt regression
tests to rerun. Although some techniques proposed in our researcle aset to address
some challenges in running test inputs, our research primarily additbesdsallenges in the

other three steps.

Verify actual outputs (in the absenceof expected outputs). A test oraclds a mechanism for check-
ing whether the actual outputs of the program under test is equivaleng texfiected out-
puts [RAO92, Ric94, Hof98, MPS00, BY01]. When expected outplgsiaspeci ed or spec-
ied but in a way that does not allow automated checking, the oracle oftiesren de-
velopers' eyeball inspection. If expected outputs are directly writtenxasutable asser-
tions [And79,R0s92] or translated into runtime checking code [GMH8$38gMK01,CL02,
BKMO02, GGSV02], verifying actual outputs can be automated. When peard outputs

are available, developers often rely on program crashes [MFSS98{br uncaught excep-



tions [CS04] as symptoms for unexpected behavior. When no expedigat®are speci ed
explicitly, in regression testing, developers can compare the actual oaffpaitsew version

of the program with the actual outputs of a previous version [Cha82].

As has been discussed in the second step, it is challenging to generatéeeixputputs for a
large number of test inputs. In practice, expected outputs often do isvf@xautomatically
generated test inputs. Without expected outputs, it is often expengiverane to error for
developers to manually verify the actual outputs and it is limited in exploiting thesergted
testinputs by verifying only whether the program crashes [MFS9®EP& throws uncaught
exceptions [CS04]. In regression testing, the actual outputs of a newwre&Ean be compared
with the actual outputs of its previous version. However, behaviora¢mdiffices between
versions often cannot be propagated to the observable outputs thedrapared between

versions.

A test adequacy criteriois a condition that an adequate test suite must satisfy in exercising a
program'’s properties [GG75]. Common criteria [Bei90] include structcoskrage: code coverage
(such as statement, branch, or path coverage) and speci cationagevfLR99]. Coverage mea-
surement tools can be used to evaluate a test suite against a test adagadoy automatically.
A test adequacy criterion provides a stopping rule for testing (a rule tondiete whether suf cient
testing has been performed and it can be stopped) and a measuremstisafteequality (a degree
of adequacy associated with a test suite) [ZHM97]. A test adequacyianitean be used to guide
the above four testing activities. For example, it can be used to help deteshatdest inputs are
to be generated and which generated test inputs are to be selected sevéhapers can invest ef-
forts in equipping the selected inputs with expected outputs, run these iapdtserify their actual
outputs. After conducting these four activities, a test adequacy criteaiofe used to determine if
the program has been adequately tested and to further identify whictopéresprogram have not

been adequately tested.
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Figure 1.1: Framework for improving effectiveness of automated testing.

1.2 Contributions

This dissertation presents a framework for improving effectivenessitoh@ated testing, address-

ing the challenges discussed in the preceding section. As is shown in Bigyriéhe framework

consists of two groups of components. The rst group of componente—rettiundant-test detector

and non-redundant-test generator— address the issues in genggatimputs. The second group

of components (the test selector, test abstractor, and program-spectparator) infer program

behavior dynamically in order to address the issues in checking the tw@ssmf test executions.

The second group of components further send feedback informatior tostlgroup to guide test

generation.

Redundant-test detector. Existing test generation tools generate a large number of test injiuts

short, tests) to exercise different sequences of method calls in the cateffthe class under

test. Different combinations of method calls on the class under test resutbmbinatorial

explosion of tests. Because of resource constraints, existing tesafjendools often gener-

ate different sequences of method calls whose lengths range fror@804]to three [Par03].

1In the rest of the dissertation, we usststo denotetest inputsfor the sake of simplicity.



However, sequences of up-to-three method calls are often insuf femtetecting faults or
satisfying test adequacy criteria. In fact, a large portion of these diffsequences of method
calls exercise no new method behavior; in other words, the tests formedshsrtie portion
of sequences anedundant tests We have de ned redundant tests by using method-input
values (including both argument values and receiver-object states¢n\We method-input
values of each method call in a test have been exercised by the existinghegest is con-
sidered as a redundant test even if the sequence of method calls in fkeliffstent from the
one of any existing test. We have developed a redundant-test detetiin,a@n post-process
a test suite generated by existing test generation tools and output a réesicgaite contain-
ing no redundant tests. Our approach not only presents a foundati@xiting tools that
generate non-redundant tests [MK01,BKM02,KPV03,VPKO04] t&d @nables any other test
generation tools [Par03,CS04,Agi04] to avoid generating redundstetiig incorporating the
redundant-test detection in their test generation process. We prapeningental results that
show the effectiveness of the redundant-test detection tool: aboub®@%% tests generated

by a commercial testing tool [Par03] are detected and reduced by owrstoetundant tests.

Non-redundant-test generator. Based on the notion of avoiding generating redundant-tests, we
have developed a non-redundant-test generator, which exploretizeete or symbolic
receiver-object state space by using method calls (through normabpnaxecution or sym-
bolic execution). Like some other software model checking tools basetatefd explo-
ration [DIS99, VHBP00, CDH 00, MPC 02, RDHO03], the test generator based on concrete-
state exploration faces the state explosion problem. Symbolic represeniatigyrabolic
model checking [McM93] alleviate the problem by describing not only sistaées but sets
of states; however, existing software model checking tools [BRO1, HiB}IBased on sym-
bolic representations are limited for handling complex data structures. Reambolic
execution [Kin76, Cla76] has been used to directly construct symbolicsdtateeceiver ob-
jects [KPV03, VPKO04]; however, the application of symbolic executiorues the user to
provide specially constructed class invariants [LGO0OQ], which effelstidescribe an over-
approximation of the set of reachable object graphs. Without requinypglass invariant, our

test generator can also use symbolic execution of method sequencetote &xp symbolic



receiver-object states and prune this exploration based on novetstafgrisons (compar-
ing both heap representations and symbolic representations). Ouriertand application
of symbolic execution in state exploration not only alleviate the state explosododepn but
also generate relevant method arguments for method sequences autontatioallyg a con-
straint solver [SR02]. We present experimental results that show finetieéness of the test
generation based on symbolic-state exploration: it can achieve higheahbcaverage faster

than the test generation based on concrete-state exploration.

Test selector. Because it is infeasible for developers to inspect the actual outputs ajexriam-
ber of generated tests, we have developed a test selector to select aaduadlle subset of
generated tests for inspection. These selected tests exercise newob#iatvhas not been
exercised by the existing test suite. In particular, we use Daikon [EtoQ6fer program be-
havior dynamically from the execution of the existing (manually) construct&dstate. We
next feed inferred behavior in the form of speci cations to an existiregspation-based test
generation tool [Par03]. The tool generates tests to violate the infeeteal/tor. These vio-
lating tests are selected for inspection, because these violating tests eghitdy different
from the behavior exhibited by the existing tests. Developers can inspgsg tolating tests
together with the violated properties, equip these tests with expected outpditadd them
to the existing test suite. We present experimental results to show that tbheeddbsts have
a high probability of exposing anomalous program behavior (either faufalares) in the

program.

Test abstractor. Instead of selecting a subset of generated tests for inspection, a $éstcidr
summarizes and abstracts the receiver-object-state transition behasioised by all the
generated tests. Because the concrete-state transition diagram fegrebgects is too com-
plicated for developers to inspect, the test abstractor uses a state tirstexchnique based
on the observers in a class interface; these observers are the publmdm@those return
types are not void. An abstract state for a concrete state is represgritaglconcrete state's
observable behavior, consisting of the return values of observemohetils on the concrete

state. The abstract states and transitions among them are used to causitiradt state tran-



sition diagrams for developers to inspect. We present an evaluation totishbthe abstract-
state transition diagrams can help discover anomalous behavior, delejgtierethrowing

behavior, and understand normal behavior in the class interface.

Program-spectra comparator. In regression testing, comparing the actual outputs of two program
versions is limited in exposing the internal behavioral differences duriagotbgram ex-
ecution, because internal behavioral differences often cannotdpagated to observable
outputs. A program spectrum is used to characterize a program'sibef@BDL97]. We
propose a new class of program spectra, callaldie spectrato enrich the existing pro-
gram spectra family, which primarily include structural spectra (such tsgpeectra [BL96,
RBDL97,HRS 00]). Value spectra capture internal program states during a testtexecA
deviationis the difference between the value of a variable in a new program veasbithe
corresponding one in an old version. We have developed a progrectrggomparator that
compares the value spectra from an old version and a new versionsesithe spectra differ-
ences to detect behavior deviations in the new version. Furthermore,sfadgtra differences
can be used to locate deviation roots, which are program locations tharttigg behavior
deviations. Inspecting value spectra differences can allow develapéetermine whether
program changes introduce intended behavioral differences mrssgn faults. We present
experimental results to show that comparing value spectra can effeaivebse behavioral
differences between versions even when their actual outputs arentiee aad value spectra

differences can be used to locate deviation roots with high accuracy.

Dynamic behavior inference requires a good-quality test suite to infeaviimhthat is close
to what shall be described by a speci cation (if it is manually constructé&l). the other hand,
speci cation-based test generation can help produce a good-qualityuiés but requires speci -
cations, which often do not exist in practice. There seems to be a cirogpendency between
dynamic behavior inference and (speci cation-based) test generafiorexploit the circular de-
pendency and alleviate the problem, we propose a feedback loop bdbekavior inference and
test generation. The feedback loop starts with an existing test suite {octestmanually or au-
tomatically) or some existing program runs. By using one of the behavierdn€e components

(the test selector, test abstractor, or program-spectra comparagonstvinfer behavior based on
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the existing test suite or program runs. We then feed inferred behawiosyeci cation-based test
generation tool or a test generation tool that can exploit the inferredvimhto improve its test
generation. The new generated tests can be used to infer new befidn@onew behavior can be
further used to guide test generation in the subsequent iteration. Itarégioninate until a user-
de ned maximum iteration number has been reached or no new behavidrelkasinferred from
new tests. We show several instances of the feedback loop in diftgpes of behavior inference.
This feedback loop provides a means to producing better tests and betitexiapated speci ca-
tions automatically and incrementally. In addition, the by-products of the fe&dbap are a set of
selected tests for inspection; these selected tests exhibit new behavimaghmdt been exercised by

the existing tests.

1.3 Scope

The approaches presented in this dissertation focus on automated sdftatimg. The activities
of automated software testing are not limited to automating the execution of siegréssts, for
example, by writing them in the JUnit testing framework [GBO03] or test scriptbp3, Abb04], or
by capturing and replaying them with tools [SCFPO0O0]. Our focused actwfiautomated software
testing have been described in Section 1.1.

The approaches presented in this dissertation focus on testing seqpesgiams but not con-
current programs. Most approaches presented in this dissertatios doctesting a program unit
(such as a class) written in modern object-oriented languages (suckads Bait the regression
testing approach focuses on testing a system written in procedural esy(guch as C). All the
approaches assume that the unit or system under test is a closed wsiteon sind there is a well-
de ned interface between the unit or system and its environment. Theagpes focus on testing
functional correctness or program robustness but not other qudlifyudes such as performance
and security. Chapter 8 discusses future directions of extending theaames to test new types of

programs and new types of quality attributes.

1.4 Outline

The remainder of this dissertation is organized as follows.
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Chapter 2 introduces the background information of automated softwdiegtesid surveys
related work. Chapter 3 describes the techniques for detecting reduagsramong automatically
generated tests. Chapter 4 further presents the techniques fortgenammredundant tests in the
rst place. Chapter 5 describes the techniques for selecting a smaktsobgenerated tests for
inspection. Chapter 6 introduces the techniques that abstract the bebftést executions for
inspection. Chapter 7 describes the techniques for comparing valuesspeegression testing in
order to expose behavioral differences between versions. Cléaptesents suggestions for future

work. Finally, Chapter 9 concludes with a summary of the contributions asdredearned.
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Chapter 2

BACKGROUND AND RELATED WORK

This chapter presents background information and discusses howsmarch relates to other
projects in software testing. Section 2.1 discusses test adequacy critbitd, usually specify
the objectives of testing. Section 2.2 presents existing automated testtgentzehniques. Sec-
tion 2.3 describes existing test selection techniques. Section 2.4 reviewsgregression testing
techniques. Section 2.5 presents existing techniques in behavior irdeegntSection 2.6 discusses

existing feedback loops in program analysis.

2.1 Test Adequacy Criteria

A test adequacy criterion provides a stopping rule for testing and a neasaot of test-suite
quality [ZHM97]. (A test adequacy criterion can be used to guide testtiefe which shall be
discussed in Section 2.3.) Based on the source of information used toysfestifg require-
ments, Zhu et al. [ZHM97] classi ed test adequacy criteria into four geoprogram-based crite-
ria, speci cation-based criteria, combined speci cation- and progrased criteria, and interface-
based criteriaProgram-based criteriapecify testing requirements based on whether all the iden-
ti ed features in a program have been fully exercised. Identi ed fesgun a program can be
statements, branches, paths, or de nition-use peipgci cation-based criterigpecify testing re-
qguirements based on whether all the identi ed features in a speci catioe begn fully exercised.
Combined speci cation- and program-based critegpecify testing requirements based on both
speci cation-based criteria and program-based critdngerface-based criterigpecify testing re-
guirements based on only the interface information (such as type andafmgegram inputs) with-
out referring to any internal features of a speci cation or progr&andom testing often based on
interface-based criteria. Speci cation-based criteria and interfasecriteria are types bfack-

box testingwhereas program-based criteria and combined speci cation- andgmelgased criteria
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are types ofvhite-box testing

Our testing research in this dissertation mostly relies on method inputs (bottiereabject
states and argument values in an object-oriented program) and methots@btyih receiver-object
states and return values in an object-oriented program). This is related faéetbased criteria.
But our research on test selection and abstraction is performed bagefémwed behavior, which is
often in the form of speci cations; therefore, the research is also ktatepeci cation-based crite-
ria (but without requiring speci cations). Our research on test gatitar additionally uses symbolic
execution to explore paths within a method; therefore, the research iskdsedto program-based
criteria.

In particular, our testing research is related to program-based testamjecriteria proposed to
operate in the semantic domain of program properties rather than the sydtao@in of program
text, which is the traditional focus of most program-based criteria. Hamleailsgble correctness
theory [Ham87] suggestsata-coverage testing uniformly sample the possible values of all in-
ternal variables at each control point in a program. However, it is afiecult or undecidable to
determine the possible values for variables in a program; therefore,m@tteompute the goal of
100 percent coverage (denominator) for data coverage criteria lilkaofle coverage criteria (such
as statement or branch coverage) but use the data coverage af éegiveuite as a baseline for com-
parison. Harder et al. [HMEOQ3] use operational abstractions [ECKEMBerred from a test suite
to reduce the samples needed to cover the data values for variables granpr@all [Bal04] pro-
poses predicate-complete coverage with the goal of covering all felaablaservable states de ned
by program predicates (either speci ed by programmers or generatahttnautomatic predication
abstractions [GS97,VPP00,BMMROL1]). These program predictegpartition the data values for
variables in a program.

Recently a speci cation-based test adequacy criterion chlbethded exhaustive testifigK01,
BKMO02, SYC'" 04, Khu03, Mar05] has been proposed to test a program, especiallthanbas
structurally complex inputs. Bounded exhaustive testing tests a prograih walid inputs up to
a given bound; the numeric bound, called the scope, is de ned for tlediinput structures.
Experiments [MAD 03,Khu03,SYC 04,Mar05] have shown that exhaustive testing within a small
bound can produce a high-quality test suite in terms of fault detection itippahd code coverage.

Test generation techniques for bounded exhaustive testing ofteinerdguelopers to specify a class
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invariant [LBR98, LG0O0], which describes the properties of a valid irgitucture, and a range of
(sampled) data values for non-reference-type variables in an inpatwgte. In bounded exhaustive
testing, developers can specify a scope so that testing stops whenrarmprisgested on all valid
inputs up to the scope. Alternatively, without requiring a prede ned sgceghaustive testing can
test a program on all valid inputs by starting from the smallest ones andvtdyaiticreasing the
input size until time runs out. Our research on test generation is a type@nflbd exhaustive testing

but does not require speci cations.

2.2 Test Generation

Generating test inputs for an object-oriented program involves two téskslirectly constructing
relevant receiver-object states or indirectly constructing them througghod sequences, and (2)
generating relevant method arguments. For the rst task, some specihehtised approaches rely
on a user-de ned class invariant [LBR98, LG00] to know whether aatly-constructed receiver-
object state is valid, and to directly construct all valid receiver-objetéstap to a given bound.
TestEra [MKO01, Khu03] relies on a class invariant written in the Alloy largguplSS01] and sys-
tematically generates tests by using Alloy Analyzer [JSS00], which doesdedbexhaustive, SAT-
based checking. Korat [BKM02, Mar05] relies on an imperative pagdican implementation for
checking class invariants. Korat monitors eld accesses within the execotian imperative pred-
icate and uses this information to prune the search for all valid object sfatesaugiven bound.
Inspired by Korat, the AsmLT model-based testing tool [GGSV02, Fou] ialdlades a solver for
generating bounded-exhaustive inputs based on imperative prediSate® other test generation
approaches rely on an application-speci ¢ state generator to constlidtreceiver-object states.
Ball et al. [BHR' 00] present a combinatorial algorithm for generating states based aticatiel
generator for complex data structures. Different from these pregippioaches, our test generation
approach does not require class invariants or dedicated state gembetause our approach does
not directly construct receiver-object states but indirectly constmectsiver-object states through
bounded-exhaustive method sequences.

Some test generation tools also generate different method sequenarsfgect-oriented pro-

gram. Tools based on (smart) random generation include Jtest [Par@®Jnm{mercial tool for
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Java) and Eclat [PEO5] (a research prototype for Java). TonedlaOHBl] uses a genetic algo-
rithm to evolve a randomly generated method sequence in order to achidwer biganch cov-
erage. Buy et al. [BOP0OQ] use data ow analysis, symbolic executiod, aromated deduc-
tion to generate method sequences exercising de nition-use pairs oft obijds. Our test gen-
eration approach generates bounded-exhaustive tests, which luareaboth high code cover-
age and good fault-detection capability, whereas these previous appsoeannot guarantee the
bounded-exhaustiveness of the generated tests. Like our appbmdicilava Path nder input gen-
erator [VPKO4] and the AsmLT model-based testing tool [GGSV02, Foeibteste exploration tech-
niques [CGP99] to generate bounded-exhaustive method sequerndbede two tools require de-
velopers to carefully choose suf ciently large concrete domains for niesinguments and AsmLT
additionally requires developers to choose the right abstraction funttansarantee the bounded-
exhaustiveness. Our approach uses symbolic execution to automaticaly rdéevant arguments
and explore the symbolic-state space, whose size is much smaller than thetemtate space
explored by Java Path nder input generator and AsmLT.

Existing test generation tools use different techniques to achieve thadséask in object-
oriented test generation: generating relevant method arguments. BtEnalpdK01, Khu03] and
Korat [BKMO02, Mar05] use a range of user-de ned values forgmting primitive-type arguments
(as well as primitive-type elds in receiver-object states) and use thminted-exhaustive test-
ing techniques to generate reference-type arguments if their class imtgaaia provided. In order
to generate primitive-type arguments, some tools such as JCrasher [@8D&clat [PEO5] use
prede ned default values or random values for speci ¢ primitive typEsr a non-primitive-type
argument, these tools use random method sequences where the last radithoetarn is of the
non-primitive type. Jtest [Par03] uses symbolic execution [Kin76, Claifijconstraint solving to
generate arguments of primitive types. Java Path nder input geneta®dr(Q3, VPKO04] can gen-
erate both method arguments and receiver-object states by using symieclitier and constraint
solving; its test generation feature is implemented upon its explicit-state modddecj¥ HBPOO].

Symbolic execution is also the foundation of static code analysis tools. Thaseypically do
not generate test data, but automatically verify simple properties of pnsgrdecently, tools such
as SLAM [BMMRO01, Bal04] and Blast [HIMS03, BCMO04] were adapted denerating inputs to

test C programs. However, neither of them can deal with complex datawtacwhich are the
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focus of our test generation approach. Our test generation afpatsx uses symbolic execution;
however, in contrast to the existing testing tools that use symbolic executiotest generation
approach uses symbolic execution to achieve both tasks (generatioceofereobject states and

method arguments) systematically without requiring class invariants.

2.3 Test Selection

There are different de nitions of test selection. One de nition of tedeston is related to test
generation (discussed in Section 2.2): selecting which test inputs to teen@oane other de nitions
of test selection focus on selecting tests among tests that have beentegbe@ause it is costly
to run, rerun, inspect, or maintain all the generated tests. Our test selappooach focuses on
selecting tests for inspection.

Test adequacy criteria (discussed in Section 2.1) can be directly useddi® tgst selection:
a test is selected if the test can enhance the existing test suite toward sgtesfigat adequacy
criterion. In partition testing [Mye79], a test input domain is divided into swhdins based on
some criteria (such as those test adequacy criteria discussed in Sectj@nd.then we can select
one or more representative tests from each subdomain. If a subdomatrcs/ered by the existing
test suite, we can select a generated test from that subdomain.

Pavlopoulou and Young [PY99] proposed residual structural @geeto describe the structural
coverage that has not been achieved by the existing test suite. If thatiexeof a later gener-
ated test exercises residual structural coverage, the test is selectadpection and inclusion in
the existing test suite. If we use residual statement coverage or brametage in test selection,
we may select only a few tests among generated tests although many unselsisteiay provide
new value like exposing new faults or increasing our con dence on tbhgram. But if we use
residual path coverage, we may select too many tests among generatedthesigh only some
of the selected tests may provide new value. Instead of selecting evetljaesbvers new paths,
Dickinson et al. [DLPOla, DLPO1b] use clustering analysis to partitiomuti@ns based on path
pro les, and use sampling techniques to select executions from clusteab$ervations. Regres-
sion test prioritization techniques [WHLB97,RUCO01, ST02], such a#iaddl structural coverage

techniques, can produce a list of sorted tests for regression testirsgrtieeidea can also be applied
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to prioritize tests for inspection. Our test selection approach complemengsekisting structural-
coverage-based test selection approaches because our apppeaates in the semantic domain
of program properties rather than the syntactic domain of program teidhwdhused by previous
program-based test selection approaches.

Goodenough and Gerhart [GG75] discussed the importance of spdonebased test selec-
tion in detecting errors of omission. Chang and Richardson use spechneatizerage criteria for
selecting tests that exercise new aspects of a unit's speci cations [CR8&8Jn algebraic speci ca-
tions [GH78] a priori, several testing tools [GMH81, BGM91, DF94, HI9BCC98] generate and
select a set of tests to exercise these speci cations. Unlike these spigmndbased approaches, our
test selection approach does not require speci cations a priori last Daikon [ECGNO1] to infer
operational abstractions, which are used to guide test selection.

Harder et al. [HMEOQ3] present a testing technique based on openadiosteactions [ECGNO1].
Their operational difference technique starts with an operational abetrayenerated from an ex-
isting test suite. Then it generates a new operational abstraction fromstreutee augmented by
a candidate test case. If the new operational abstraction differs fremrévious one, it adds the
candidate test case to the suite. This process is repeated until some muoflEandidate cases
have been consecutively considered and rejected. Both the opeldifter@nce approach and our
approach use the operational abstractions generated from testiemectOur approach exploits
operational abstractions' guidance to test generation, whereas thegiopal difference approach
operates on a xed set of given tests. In addition, their operationareifice approach selects tests
mainly for regression testing, whereas our approach selects tests maiinlgdection.

Hangal and Lam's DIDUCE tool [HLO2] detects bugs and tracks dowir tieet causes. The
DIDUCE tool can continuously check a program's behavior against ttretnentally inferred op-
erational abstractions during the run(s), and produce a report opethtional violations detected
along the way. A usage model of DIDUCE is proposed, which is similar to thitetest selection
problem addressed by our test selection approach. Both DIDUCE amnapproach make use of
violations of the inferred operational abstractions. The inferred att&irg used by our approach
are produced by Daikon [ECGNO1] at method entry and exit points,easddIDUCE infers a lim-
ited set of simpler abstractions from procedure call sites and object/stétibleeaccess sites. Also

DIDUCE does not investigate the effects of operational abstractionsbgdeeration.
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Our redundant-test detection can be seen as a type of test selectiartinget®n-redundant
tests out of automatically generated tests. Our test selection approach mirgerezated tests by
selecting a small number of most useful tests for inspection, whereasdumdant-test detection
approach tries to conservatively minimize generated tests from the otheeemalving useless tests.
Our redundant-test detection detects no redundant tests among testgepgbg some tools, such
as TestEra [MKO01], Korat [BKMO02], and Java Path nder input gexter [VPKO04], because these
tools intentionally avoid generating redundant tests in their test generatoags. Different from
the redundant-test avoidance mechanisms built in these tools, the mechanmsmesidundant-test
detection are more general and can be embedded in any test generaoastagpart of the test

generation process or a post-processing step after the test genpratiess.

2.4 Regression Testing

Regression testing validates a modi ed program by retesting it. Regressiimgtées used to ensure
that no new errors are introduced to a previously tested program wheprdigram is modi ed.
Because it is often expensive to rerun all tests after program modi cgtione major research
effort in regression testing is to reduce the cost of regression testinguivislcri cing the bene t

or sacri cing as little bene t as possible. For example, when some partgpobgram are changed,
regression test selection techniques [CRV94, RH97, GBI select a subset of the existing tests
to retest the new version of the programséferegression test selection technique [RH97] ensures
that the selected subset of tests contain all the tests that execute the teodesthadi ed from the
old version to the new version. Sometimes the available resource might moakew rerunning
the subset of regression tests selected by regression test selectitiguesh Recently regression
test prioritization techniques [WHLB97, RUCHO01, EMR02] have beeppsed to order regression
tests such that their execution provides bene ts such as earlier detetfauits.

Regression-test quality is not always suf cient in exhibiting output diffeces caused by newly
introduced errors in a program. Some previous test-generation appsogenerate new tests to
exhibit behavior deviations caused by program changes. For exagidi|lo and Offutt [DO91]
developed a constraint-based approach to generate unit tests thathdaih grogram-state devi-

ations caused by the execution of a slightly changed program line (in a nprashiced during
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mutation testing [DLS78, How82]). Korel and Al-Yami [KAY98] createdwdr code that compares
the outputs of two program versions, and then leveraged the existing ndxteest-generation ap-
proaches to generate tests for which the two versions will produceatffeutputs. However, this
type of test-generation problem is rather challenging and it is in fact aecish@ble problem. Our
regression testing research tries to tackle the problem by exploiting the gxisgiression tests and
checking more-detailed program behavior exercised inside the program.

Regression testing checks whether the behaviors of two programneesie the same given the
same test input. Reps et al. [RBDL97] proposgut@gram spectrurhto characterize a program's
behavior. One of the earliest proposed program spectaginespectrdBL96,RBDL97,HRS 00],
which are represented by the executed paths in a program. Harroldl¢R&" 00] later proposed
several other types of program spectra and investigated their potgppilatadions in regression
testing. Most of these proposed spectra are de ned by using the salientities exercised by
program execution. We refer to these types of program spectsgraactic spectra Harrold et
al. [HRS" 00] empirically investigated the relationship between syntactic spectra diffeseand
output differences of two program versions in regression testingir €kperimental results show
that when a test input causes program output differences betwesiong the test input is likely
to cause syntactic spectra differences. However their results shothéhedverse is not true. Our
regression testing research takes advantage of this phenomenon se expe behavioral devia-
tions by comparing program spectra instead of just comparing progrgpuateun regression testing.
To better characterize program behavior in regression testing, aaroksproposes a new class of
program spectra, value spectra, that enriches the existing progeatnasfamily. Value spectra are
de ned by using program states (variable values) and we refer to thésdf/program spectra as
semantic spectraErnst [Ern00, ECGNO1] developed the Daikon tool to infer operatiahatrac-
tions from program execution and these dynamically inferred abstraci#malso be considered as
a type of semantic spectra.

Memon et al. [MBNO3] model a GUI state in terms of the widgets that the GUI amttheir
properties, and the values of the properties. A GUI state correspoadsnction-entry or function-

exit state in our approach. Their experimental results show that compauang-detailed GUI

The name oBpectrumcomes frompath spectruniBL96, RBDL97], which is a distribution of paths derived from a
run of the program.
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states (e.g., GUI states associated with all or visible windows) from two versian detect faults
more effectively than comparing less-detailed GUI states (e.g., GUI staeca®d with the active
window or widget). Our approach also shows that checking more-detalealvior inside the black
box can more effectively expose behavioral deviations than checkaigha black-box output.
Our approach differs from their approach in two main aspects: ouoappris not limited to GUI

applications and our approach additionally investigates deviation propagatib deviation-root
localization.

Abramson et al. [AFMS96] developed the relative debugging technigueifies a series of user-
de ned assertions between a reference program and a suspgcamio These assertions specify
key data structures that must be equivalent at speci c locations in twgrames. Then a relative
debugger automatically compares the data structures and reports argndiéfe while both versions
are executed concurrently. Our approach does not require aseedassertions but compares
states at the entries and exits of user functions. The relative debugghmggee mainly aims at
those data-centric scienti ¢ programs that are ported to, or rewritteaf@ther computer platform,
e.g., a sequential language program being ported to a parallel langdagapproach can be applied
in the evolution of a broader scope of programs.

Jaramillo et al. [JGS02] developed the comparison checking approacimipace the outputs
and values computed by source level statements in the unoptimized and optiraeizexhs of a
source program. Their approach requires the optimizer writer to speeifméppings between the
unoptimized and optimized versions in the optimization implementation. Their appazaths the
earliest point where the unoptimized and optimized programs differ duringaimparison check-
ing. Our approach operates at the granularity of user-function égeswand uses two heuristics to
locate deviation roots instead of using the earliest deviation points. Maremweapproach does
not require any extra user inputs and targets at testing general appigcedtber than optimizers in

particular.

2.5 Behavior Inference

Ernst et al. [ECGNO1] developed the Daikon tool to dynamically infer afi@nal abstractions

from test executions. Operational abstractions are reported in the dbaxiomatic speci ca-
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tions [Hoa69, Gri87]. Our test selection approach uses these opaladiostractions to guide test
generation and selection. These abstractions describe the obsdatmhships among the values
of object elds, arguments, and returns of a single method in a class ioégr@hereas the ob-
server abstractions inferred in our test abstraction approach desbembserved state-transition
relationships among multiple methods in a class interface and use the returs vhligservers
to represent object states, without explicitly referring to object eldsnkét and Diwan [HDO3]
discover algebraic abstractions (in the form of algebraic speci cati@$7B]) from the execu-
tion of automatically generated unit tests. Their discovered algebraic etistiausually present
a local view of relationships between two methods, whereas obserteacluns present a global
view of relationships among multiple methods. Observer abstractions aréubfose of behavior
inference, complementing operational or algebraic abstractions.

Whaley et al. [WMLO02] extract Java component interfaces from sydemmexecutions. The
extracted interfaces are in the form of multiple nite state machines, each whvdontains the
methods that modify or read the same object eld. The observer abstradtifarred by our test
abstraction approach are also in the form of multiple nite state machines,adaghich is with
respect to a set of observers (containing one observer by defBltly. approach maps all concrete
states that are at the same state-modifying method's exits to the same abdgaQutéest abstrac-
tion approach maps all concrete states on which observers' returrs\valeiehe same to the same
abstract state. Although their approach is applicable to system-test exeglitis not applicable
to the executions of automatically generated unit tests, because their requiténgtate machine
would be a complete graph of methods that modify the same object eld. Ammais[ABL02]
mine protocol speci cations in the form of a nite state machine from systerhebescutions. Yang
and Evans [YEO04] also infer temporal properties in the form of the sttiptsern any two meth-
ods can have in execution traces. These two approaches face therséfeenpas Whaley et al.'s
approach when being applied on the executions of automatically generateests. In summary,
the general approach developed by Whaley et al. [WMLO02], Ammonk BtBL02], or Yang and
Evans [YEO04] does not capture object states as accurately as goeap@mnd none of them can be
applied to the executions of automatically generated unit tests.

Given a set of predicates, predicate abstraction [GS97, BMMRO1] ma&p#screte state to an

abstract state that is de ned by the boolean values of these predicdtes concrete state. Given a
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set of observers, observer abstraction maps a concrete state tdraoctagiate that is de ned by the
return values (not limited to boolean values) of these observers on theetestate. Concrete states
considered by predicate abstractions are usually those program siatesb program statements,
whereas concrete states considered by observer abstractionssarelfect states between method
calls. Predicate abstraction is mainly used in software model checkingeasebserver abstraction
in our approach is mainly used in helping inspection of test executions.

Kung et al. [KSGH94] statically extract object state models from classeaade and use them
to guide test generation. An object state model is in the form of a nite stateimacthe states
are de ned by value intervals over object elds, which are derivedhrfrpath conditions of method
source; the transitions are derived by symbolically executing methodsapgpuoach dynamically
extracts nite state machines based on observers during test executions.

Grieskamp et al. [GGSV02] generate nite state machines from executabteabstate ma-
chines. Manually speci ed predicates are used to group states in abstaie machines to hyper-
states during the execution of abstract state machine. Finite state machitrest alate machines,
and manually speci ed predicates in their approach correspond towavsanstractions, concrete
object state machines, and observers in our approach, respedteaigver, our approach is totally

automatic and does not require programmers to specify any speci catignedicates.

2.6 Feedback Loop in Program Analysis

There have been several lines of static analysis research that dbadkdoops to get better pro-
gram abstractions and veri cation results. Ball and Rajamani constréexa@back loop between
program abstraction and model checking to validate user-speci ed tedrgetfety properties of in-

terfaces [BMMRO1]. Flanagan and Leino use a feedback loop betameotation guessing and
theorem proving to infer speci cations statically [FLO1]. Guesses ob&ations are automatically
generated based on heuristics before the rst iteration. Human intermergie needed to insert
manual annotations in subsequent iterations. Giannakopoulou et atrumregsfeedback loop be-
tween assumption generation and model checking to infer assumptionsser-speci ed property

in compositional veri cation [CGP03, GPB02]. Given crude prograrstedrtions or properties,

these feedback loops in static analysis use model checkers or theaesnsiio nd counterexam-
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ples or refutations. Then these counterexamples or refutations aréougede the abstractions or
properties iteratively. Our work is to construct a feedback loop in dynamidysis, correspond-
ing to the ones in static analysis. Our work does not require users to\speaferties, which are
inferred from test executions instead.

Naumovich and Frankl propose to construct a feedback loop betwaits state veri cation
and testing to dynamically con rm statically detected faults [NFOO]. When a siggte veri er
detects a property violation, a testing tool uses the violation to guide test diettics® execution,
and checking. The tool hopes to nd test data that shows the violation tedle Based on the
test information, human intervention is used to re ne the model and restavetiher. This is an
example of a feedback loop between static analysis and dynamic analysithefiexample of a
feedback loop between static analysis and dynamic analysis is pro le-gjojgemization [PH90].
Our work focuses instead on the feedback loop on dynamic analysis.

Peled et al. present the black box checking [PVY99] and the adaptideinotecking ap-
proach [GPY02]. Black box checking tests whether an implementation withawrk structure
or model satis es certain given properties. Adaptive model checkimfppas model checking in
the presence of an inaccurate model. In these approaches, a fedmliyacs constructed between
model learning and model checking, which is similar to the preceding fekdbags in static anal-
ysis. Model checking is performed on the learned model against sorea gioperties. When
a counterexample is found for a given property, the counterexamplaripared with the actual
system. If the counterexample is con rmed, a fault is reported. If the 'sparample is refuted,
it is fed to the model learning algorithm to improve the learned model. Anothebée&doop is
constructed between model learning and conformance testing. If ndecexample is found for
the given property, conformance testing is conducted to test whethematimetemodel and the sys-
tem conform. If they do not conform, the discrepancy-exposing tegtesee is fed to the model
learning algorithm, in order to improve the approximate model. Then the improveelnsoused
to perform model checking in the subsequent iteration. The dynamic gadicin inference in our
feedback loop is corresponding to the model learning in their feedbapk &l the speci cation-
based test generation in our feedback loop is corresponding to therowrfce testing in their
feedback loop. Our feedback loop does not require some giveregieg but their feedback loop

requires user-speci ed properties in order to perform model chgckin
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2.7 Conclusion

This chapter has laid out the background for the research developies dissertation and discussed
how our research is related to other previous research in softwaregtdstiparticular, our research
does not require speci cations; therefore, it is related to prograreeasinterface-based test ade-
guacy criteria. However, our research operates on the semantic dolhpaggoam properties rather
than the syntactic domain of program text, which is often the focus of prodpased criteria. From
test executions, our research infers behavior, which is often in thedbspeci cations, and further
uses the inferred behavior to aid testing activities. In this perspectiveesaarch is also related
to speci cation-based testing. Our test generation approach is a typeuofled-exhaustive test-
ing; however, unlike previous research on bounded-exhaustitregesur research does not require
speci cations such as class invariants. Our test generation apprapldite symbolic execution
to achieve the generation of both receiver-object states (through msdiquences) and relevant
method arguments; previous testing research based on symbolic exedhtomexjuires speci ca-
tions or generates relevant arguments for a single method given a spexgéiver object. Different
from previous testing approaches based on structural coveragey, @ithredundant-test detection
or test selection approach keeps or selects a test if the test exerciségmavior inferred in the
semantic domain of program properties; in addition, the inferred behawsers to guide test gen-
eration. Different from previous regression testing approach, wtoatpares the black-box outputs
between program versions, our regression testing approach carthareemantic spectra inside
the black box. Finally, we have proposed a feedback loop betweendeetajion and behavior
inference by using behavior inferred from generated tests to guide beftegeneration and then

using new generated tests to achieve better behavior inference.
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Chapter 3

REDUNDANT-TEST DETECTION

Automatic test-generation tools for object-oriented programs, such agR&e88] (a commer-
cial tool for Java) and JCrasher [CS04] (a research prototypéafe), test a class by generating a
test suite for it. A test suite comprises a set of tests, each of which is arsmgoemethod invoca-
tions. When the sequences of two tests are different, these tools cathsgpjudge that these two
tests are not equivalent and thus both are needed. However, ta@naay situations where different
method sequences exercise the same behavior of the class under teseqliwaces can produce
equivalent stateef objects because some invocations do not modify state or becausertiffeate
modi cations produce the same state. Intuitively, invoking the same methods \eitbatine inputs
(i.e., the equivalent states of receiver objects and arguments) is ettundl test isredundantif
the test includes no new method invocation (i.e., method invocation whose ingifferent from
the input of any method invocation in previous tests). These redundanirtestase the cost of
generating, running, inspecting, maintaining a test suite but do not irceetEst suite's ability to

detect faults or increase developers' con dence on the code unster te

This chapter presents our Rostra approach for detecting redundenb#sed on state equiva-
lence. In the Rostra approach, we include ve techniques for reptiegethe incoming program
state of a method invocation. These ve state-representation techniduiggéddawo types: one is
based on the method sequence that leads to the state, and the other inasedtete states of the
objects in the program state. If the representations of two states are thergathen determine that
two states are equivalent. Based on state equivalence, we have dech@tant tests and imple-
mented a tool that dynamically detects redundant tests in an existing test saiteavé/evaluated
Rostra on 11 subjects taken from a variety of sources. The experimestdis show that around
90% of the tests generated by Jtest for all subjects and 50% of the testaitgehby JCrasher for
almost half of the subjects are redundant. The results also show thatingntioese redundant tests

does not decrease the branch coverage, exception coveradayhmigtection capability of the test
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suites.

The next section introduces a running example that is used to illustratenasap. Section 3.2
presents the ve techniques for representing states. Section 3.3 dstats equivalence based
on comparing state representation. Section 3.4 de nes redundant tests dra state equivalence.
Section 3.5 describes the experiments that we conducted to assess tdaeh@od then Section 3.6

concludes.

3.1 Example

We use an integer stack implementation (earlier used by Henkel and Diwad3]{Bs a running
example to illustrate our redundant-test detection techniques. Figure 3vs #he relevant parts
of the code. The arrastore contains the elements of the stack, aiwd is the number of the
elements and the index of the rst free location in the stack. The mepiust /pop appropri-
ately increases/decreases the size after/before writing/reading the elé&meionally, push /pop
grows/shrinks the array when teze is equal to the whole/half of the array length. The method
isEmpty is an observer that checks if the stack has any elements, and the ragtlated compares
two stacks for equality.

The following is an example test suite (written in the JUnit framework [GBO3) three tests

for theIntStack class:

public class IntStackTest extends TestCase f
public void testl() f
IntStack  s1 = new IntStack ();
sl.isEmpty();
s1.push(3);
sl.push(2);
s1.pop();
s1.push(5);

public void test2() f
IntStack  s2 = new IntStack ();
s2.push(3);
s2.push(5);



public class IntStack

private int [1 store;

private int size;

private static final int

public IntStack 0

INITIAL_CAPACITY = 10;
f

this .store = new int [INITIAL_CAPACITY];

this .size = 0;
]

public void push( int value) f

if (this .size ==

int [] store =

this .store.length) f

new int [this .store.length * 2J;

System .arraycopy(  this .store, O, store, O, this .size);

this .store = store;

g
this .store[ this .size++] = value;
g
public int pop()
return this .store[-- this .size];
g
public boolean isEmpty() f
return  (this .size == 0);
g
public boolean equals( Object other) f
if  (!(other instanceof IntStack )) return false
IntStack s = ( IntStack )other;
if (this .size != s.size) return false ;
for (int i =0;i< this .size; i++)
if (this .store[i] != s.store[i]) return false ;

return true )

Figure 3.1: An integer stack implementation
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public void test3()
IntStack ~ s3 =
s3.push(3);
s3.push(2);
s3.pop();

f

new IntStack ();
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Table 3.1: State representation and comparison

type technique representation comparison

method sequencedVholeSeq the entire method sequence| equality

ModifyingSeq | a part of the method sequencequality

concrete states | WholeState | the entire concrete state isomorphism

MonitorEquals| a part of the concrete state | isomorphism

PairwiseEquals the entire concrete state equals

A test suiteconsists of a set of tests, each of which is written as a public method.t&sttias
a sequence of method invocations on the objects of the class as well aguheeat objects of the
class's methods. For examptest2 creates a staci and invokes tw@ush methods onit. Some
existing test-generation tools such as Jtest [Par03] and JCrashel] [@&B@rate tests in such a form
as speci ed by the JUnit framework [GB03]. For these generated téss;orrectness checking
often relies on the code's design-by-contract annotations [Mey9R93p, which are translated
into run-time checking assertions [Par03, CLO2]. If there are no atioosain the code, the tools
only check the robustness of the code: whether the test execution ondbeehrows uncaught

exceptions [CS04].

3.2 State Representation

To de ne a redundant test (described in Section 3.4), we need toathar® a method invocation's
incoming program state, which is calledethod-entry state A method-entry state describes the
receiver object and arguments before a method invocation. Table 3us $he techniques that we
use to represent and compare states. Different techniques usertiffepresentations for method-
entry states and different comparisons of state representations. Eddse ve techniques uses
one of the two types of information in representing states: 1) method sespiand 2) concrete

states of the objects. We next explain the details of these two types and &dickaiques.
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3.2.1 Method Sequences

Each execution of a test creates several objects and invokes methdussenobjects. The rep-
resentation based on method sequences represents states usingeseqtiemethod invocations,
following Henkel and Diwan's representation [HDO3]. The state regmtzdion uses symbolic ex-

pressions with the concrete grammar shown below:

exp ::=primj invoc “.state " jinvoc “retval "
args:=2jexpjargs’ ”exp
invoc ::=method { " args ) ”

prim::=“null " j“true " j“false " j“0"j“1"j“-1"j:::

Each object or value is represented with an expression. Argumentsni@ttaod invocation
are represented as sequences of zero or more expressionsi@eyr commas); the receiver of
a non-static, non-constructor method invocation is treated as the rst matigoenent. A static
method invocation or constructor invocation does not have a receiber.sthte  and.retval
expressions denote the state of the receiver after the invocation anetdine of the invocation,
respectively. For brevity, the grammar shown above does not spepi#sg tput the expressions are
well-typed according to the Java typing rules [AGHOO0]. A method is reptegeuniquely by its
de ning class, name, and the entire signature. For brevity, we do nat almethod's de ning class
or signature in the state-representation examples below.

For example, the state o2 at the end ofest2 is represented as

push(push(<init>().state, 3).state, 5).state ,
where<init>  represents the constructor that takes no receiveraitc().state represents
the object created by the constructor invocation. This object becomesdbiar of the method
invocationpush(3) , and so on.

A method-entry state is represented by using tuples of expressions (twe &plequivalent if
and only if their expressions are component-wise identical). For examplend¢ithod-entry state
of the last method invocation tdst2 is represented bypush(<init>().state, 3).state,
5>, where the rst expressiopush(<init>().state, 3).state denotes the receiver-object
state and the second expresstodenotes the argument value. When collecting method sequences

for state representation, if a later-encountered expression (orxgubssion) is aliased with an
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earlier-encountered expression (or sub-expression) in a mettigdstate's representation, we
can replace the representation of the later-encountered expressiothavittenti er of the rst-

encountered aliased expression in the representation. Under this siteattimon-primitive-type
expression in the representation needs to be associated with a uniqueddelrtir example, con-

sider the following two testiest4 andtests

public void test4() f
IntStack  s4 = new IntStack ();
IntStack s = new IntStack ();

s4.equals(s);

public void test5() f
IntStack  s5 = new IntStack ();
s5.equals(sb);

If we do not consider aliasing relationships among expressions in stagsespation, the method-
entry states of the last method invocati@guals ) of the both tests are represented by the same
expression:<<init>().state, <init>().state> . However, these twequals method in-
vocations may exhibit different program behaviors if object identitiescamapared during the
equals method executions. After aliasing relationships are considered, the metiigdstate
representation ofquals in test4 is different from the one inest5 , which is then represented
by <<init>().state@1, @1> , where@1denotes the identi er of5 .

The state representation based on method sequences allows tests to copwimithmetic,
aliasing, and/or polymorphism. Consider the following manually written test6 andtest7

public void  test6()  f

IntStack t = new IntStack ();
IntStack s6 =t

for (int i =0;i<=1; i++)

s6.push(i);

public void test7() f
IntStack  s7 = new IntStack ();
int i =0;
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s7.push(i);
s7.push(i + 1);

Our implementation dynamically monitors the invocations of the methods on the abjaat
created in the tests and collects the actual argument values for thesdiimvetat represents each
object using a method sequence; for example, it representsba@hds7 at the end ofesté and
test7 aspush(push(<init>().state, 0).state, 1).state

We next describe two techniques that include different methods in the me#tpences for

state representation: WholeSeq and ModifyingSeq.

WholeSeq

This WholeSeq technigue represents the state of an object with an éapribsd includesll meth-
ods invoked on the object since it has been created, including the atinstr@ur implementation
obtains this representation by executing the tests and keeping a mappingljexcts to their cor-
responding expressions.

Recall that each method-entry state is represented as a tuple of expsessibrepresent the
receiver object and the arguments. Two state representations avalequif and only if the tuples
are identical. For example, WholeSeq represents the states pefb(e) intest3 andtestl as
<push(<init>().state, 3).state, 2> and<push(isEmpty(<init>().state).state,
3).state, 2> , respectively, and these two state representations are not equivalent.

The WholeSeq technique maintains a table that maps each object to a methedceetiat
represents that object. At the end of each method call, the sequencephedents the receiver

object is extended with the appropriate information that represents the call.

ModifyingSeq

The ModifyingSeq technigue represents the state of an object with aessipn that includesnly

those methods that modi ed the state of the object since it has been creatading the construc-

Although our implementation needs to run the tests to detect redundantrtdgtsescost of running redundant tests
is not saved, Section 3.4 presents the practical applications of ouwrabpr
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tor. Our implementation monitors the method executions to determine at run time wttegiier
modify the state.

Similar to the WholeSeq technique, the ModifyingSeq technique also maintainseathiab
maps each object to a method sequence that represents that objectqiérecseds extended with
the appropriate information that represents the call only when the methodtexehas modi ed
the receiver. ModifyingSeq dynamically monitors the execution and detesntliva the receiver
is modi ed if there is a write to a eld that is reachable from the receiver. MgdgSeq builds
and compares method-entry states in the same way as WholeSeq; howeaesdModifyingSeq
uses a coarser representation for objects than WholeSeq, ModifgjrogBend the representations
of more method-entry states to be equivalent. For exanigitegpty does not modify the state
of the stack, so ModifyingSeq represents the states befai®2) in bothtest3 andtestl as

<push(<init>().state, 3).state, 2> and thus nds their representations to be equivalent.

3.2.2 Concrete States

The execution of a method operates on the program state that includegrarprioeap. The repre-
sentation based on concrete states considers only parts of the heaje tte@éweant for affecting a
method's execution; we also call each part a “heap” and view it as dgrequles represent objects
and edges represent elds. LBtbe the set consisting of all primitive values, includingl , inte-
gers, etc. LeD be a set of objects whose elds form a $et(Each object has a eld that represents

its class, and array elements are considered index-labeled object elds.)

De nition 1. A heapis an edge-labelled graphO; Ei, whereE = fho;f; ooij 02 O:f 2 F;0%2
O[ Pg.

Heap isomorphism is de ned as graph isomorphism based on node bijeB#ini(2].

De nition 2. Two heap$01; E1i andhO,; E»i areisomorphidff there is a bijectioriz: O1 ! O

such that:

E, = fh¥o);f;(d))ijho;f;092 Eq;0°2 O1g]

fhi40); f; 0%jho;f;04 2 E1;0°2 Pg:
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Map ids; // maps nodes into their unique ids
int [] linearize( Node root, Heap <O,E>) f
ids = new Map);
return  lin(root, <O,E>);
)
int [] linC Node root, Heap <O,E>) f
if  (ids.containsKey(root))
return  singletonSequence(ids.get(root));
int id = ids.size() + 1;
ids.put(root, id);
int [] seq = singletonSequence(id);
Edge[] fields = sortByField( f <root, f, 0> in E g);
foreach  (<root, f, 0> in fields) f
if  (isPrimitive(o))
seg.add(uniqueRepresentation(0));
else
seq.append(lin(o, <O,E>));
g
return  seq;

Figure 3.2: Pseudo-code of linearization

The de nition allows only object identities to vary: two isomorphic heaps haeesdme elds
for all objects and the same values for all primitive elds.

Because only parts of the program heap before a method invocaticgiarant for affecting the
method's execution, a method-entry state of a method invocation is représeéitieooted heaps,

instead of the whole program heap.

De nition 3. A rooted heap is a pailr; hi of a root objectr and a heaph whose all nodes are

reachable fronr.

Although no polynomial-time algorithm is known for checking isomorphism ofgaigraphs,
it is possible to ef ciently check isomorphism of rooted heaps. Our implementéitiearizes
rooted heaps into sequences such that checking heap isomorphiespoius to checking sequence
equality. Figure 3.2 shows the pseudo-code of the linearization algorithm; simisrization

algorithms [VHBP0O, RDHI03, los02, AQR04] have been used in model checking [CGP99]. The
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linearization algorithm traverses the entire rooted heap in the depth- dgrostarting from the
root. When the algorithm visits a node for the rst time, it assigns a uniqueiideto the node,
keeping this mapping ifds to use again for nodes that appear in cycles. We can show that the

linearization normalizes rooted heaps into sequences.
Theorem 1. Two rooted heaplo; ; h1i andhoy; hoi are isomorphic iffinearize  (01; hy) = linearize  (0; hy).

We next describe three techniques that use concrete states in stasemégien: WholeState,

MonitorEquals, and PairwiseEquals.

WholeState

The WholeState technique represents the method-entry state of a methatiowaosing the heap
rooted from the receiver object and the arguménfByo state representations are equivalent iff
the sequences obtained from their linearized rooted heaps are identigalm@ementation uses
Java re ection [AGHOQ] to recursively collect all the elds that are ¢kable from the receiver and
arguments before a method invocation.

For example, the following left and right columns show the state represemaiiel ands2

beforepush(5) intestl andtest2 ,respectively:

/I s1 before push(5) /I s2 before push(5)
store = @1 store = @1
store.length = 10 store.length = 10
store[0] = 3 store[0] = 3
store[1] = store[1] = 0
store[2] = store[2] = O
store[9] = O store[9] = O

size = 1 size = 1

In both state representations, being of the integer array typatdtee eld is considered as a

node (not being a primitive value); therefore, the linearization algorithsigas a unique identi er

2The linearization algorithm in Figure 3.2 assumes only one root; howthemethod-entry state of a method in-
vocation is represented by the heap rooted from multiple nodes includthghmreceiver object and the arguments,
when some arguments are also object references. To handle multdewe can create a virtual node that points to
the receiver object and the arguments, and then use the algorithm tazéter heap rooted from this virtual node.
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@1to store . These two state representations are not equivalent, because the priiities of the

store[1] eld are different.

MonitorEquals

Like WholeState, MonitorEquals also represents a state with a rooted hedhisbheap is only a
subgraph of the entire rooted heap. The MonitorEquals technique ¢eetmser-de neaquals
methods to extract only the relevant parts of the rooted heap. MonitokEgbtains the values
hvo;:::;vni of a method invocation's receiver and arguments. It then invakesjuals(  Vv;)
for each non-primitivev; and monitors the eld accesses that these executions make. Then the
linearization algorithm in Figure 3.2 is revised to linearize only nodes ( elda} #re accessed
during theequals executions. The rationale behind MonitorEquals is that these executioessac
only the relevant object elds that de ne an abstract state.

MonitorEquals represents each method-entry state as a rooted heap edyes consist only
of the accessed elds and the edges from the root. Two state repriésestare equivalent iff the
sequences obtained from their linearized rooted heaps are identical.

For example, the following left and right columns show the state represemaifel ands2

beforepush(5) intestl andtest2 ,respectively:

/I sl.equals(sl) /I s2.equals(s2)

/I before sl.push(5) /I before s2.push(5)
store = @1 store = @1
store[0] = 3 store[0] = 3
size = 1 size = 1

The execution okl.equals(sl) or s2.equals(s2) before push(5) accesses only the
elds size , store , and elements oftore whose indices are up to the value ©ife . Then
although WholeState nds the state representations of the method-entry tst&espush(5) in
testl andtest2 are not equivalent, MonitorEquals nd them to be equivalent.

To collect the representation for the method-entry state of a method invocatioimplemen-
tation inserts at the method entry the code that invakesjuals( v;) for the receiver and each
non-primitive argument; before a method invocation. It then inserts code before eld-accdss by

code instructions to monitor their executions so that it can collect all eldsateticcessed within
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theequals executions. The MonitorEquals technique needs to carefully avoid the corapid
mization pattern that compares the receiver and the argument for idéuigity= other  within
equals methods; if the pattern appears witleiquals methods, MonitorEquals may collect fewer

elds than desired.

PairwiseEquals

Like MonitorEquals, the PairwiseEquals technique also leverages asereblequals methods

to consider only the relevant parts of the rooted heap. It implicitly uses thie gmogram heap

to represent method-entry states. However, it does not compare ¢gpestates by isomorphism.
Instead, it runs the test to build the concrete objects that correspondrectieer and arguments,
and then uses thequals method to compare pairs of states. It assigns a unique identi er to
a states; as its state representation if there exists no previously encounterecsststieh that
si.equals( Sp) returnstrue ; otherwises;'s representation is the unique identi er assigned4o
The state representations of two stagands, are equivalent iff the states' assigned identi ers are

identical (that iss;.equals( Sp) returnstrue ).

PairwiseEquals can nd more object's representations to be equivalemiMionitorEquals. For
example, consider a class that implements a set using an array. PairvateEmorts the represen-
tations of two objects to be equivalent if they have the same set of arrayrdlgmegardless of the
order, whereas MonitorEquals reports the representations of twaehjéb the same elements but
different order to be nonequivalent. However, when representenmq#thod-entry state of a method
invocation, unlike MonitorEquals, PairwiseEquals fails to include aliasingiogiships among the
receiver, arguments, and their object elds. For example, the methirg-state representations
of equals in bothtest4 andtest5 are the same, beingel, el> , whereel is the identi er
assigned t@, s4, ands5.

Our implementation collects the objects for the receiver and arguments ancbiingares them
by using Java re ection [AGHOQ] to invokequals methods. Note that subsequent test execu-
tion can modify these objects, so PairwiseEquals needs to reproduce ¢héatef comparison.
Our implementation re-executes method sequences to reproduce objegitermative would be to

maintain a copy of the objects.



37

3.3 State Equivalence

In the previous section (Section 3.2), we have presented ve techriguespresenting the method-
entry state of a method invocation, and have also described how to deterimétieewtwostate
representationgsre equivalent Our objective is to determine whether twaethod-entry statesre
equivalentsuch that invoking the same method on these two method-entry states exhibashe s
program behavior, thus having the same fault-detection capability. $pveveous projects [BGM9I1,
DF94, HDO03] de ned state equivalence by using observational etprice [DF94, LG00]. How-
ever, checking it precisely is expensive: by de nition it takes in nite time ¢teeck all method
sequences), so we use state-representation equivalence présehésgrevious section to approx-
imate state equivalence. Observational equivalence, as well as ole aparoach, assumes that
method executions are deterministic. For example, it is assumed that thereasdummness or
multi-threading interaction during method executions; otherwise, differextugions for the same
method input may produce different results, so model-checking techmj@@&P99] may be more
applicable than testing.

When we use state-representation equivalence to approximate statelemugey the ve tech-

niques have different tradeoffs in the following aspects:

Safety. We want to keep two method executions if their method invocations are on tvamuiva-
lent method-entry states; otherwise, discarding one of them may deeréestesuite's fault-
detection capability. Our approximation safe(or conservative) if the approximation pro-
duces no false negative, where a false negative is de ned as a staig tioh equivalent to

another one but their state representations are equivalent.

Precision. We want to reduce the testing efforts spent on invoking methods on éeptivaethod-
entry states; therefore, we want to reduce false positives, whelsegfasitive is de ned as a

state that is equivalent to another one but their state representatiortt arpiivalent.

Requirements. Different techniques have different requirements in the access ofjteedde un-

der test, time overhead, space overhead, etc.



38

3.3.1 Safety

We next discuss under what conditions our techniques are not s&fgrepose extensions for our
techniques to make our techniques safe. Two techniques based on megoetices (WholeSeq
and ModifyingSeq) are not safe: because the grammar shown in Se@idnd®es not capture a
method execution's side effect on an argument, a method can modify the Stateon-primitive-
type argument and this argument can be used for another later methoationo&ollowing Henkel
and Diwan's suggested extension [HD03], we can enhance the sshirar rule to address this

issue:
exp ::=primj invoc “.state " jinvoc “.retval " jinvoc". arg;”

where the added expression (invoalg; ") denotes the state of the modi déth argument after the
method invocation.

Two techniques based on method sequences (WholeSeq and Modifg)ray8anot safe if test
code modi es directly some public elds of an object without invoking any ofitsthods, because
these side effects on the object are not captured by method sequdincaddress this issue, the
implementation of the techniques can be extended to create a public eld-writittgpthéor each
public eld of the object, and monitor the static eld access in the test codeudimplementation
detects at runtime the execution of a eld-write instruction in test code, it i@secorresponding
eld-writing method invocation in the method-sequence representation.

WholeState, MonitorEquals, and PairwiseEquals are not safe whenehaten of a method
accesses some public static elds that are not reachable from thegeoei@rguments, or accesses
the content of a database or le uncontrolled through the receivergumaents. We can use static
analysis to determine a method execution's extra inputs besides the remei/f@arguments, and
then collect the state of these extra inputs as a part of the method-entry state.

Two techniques based on user-de neguals methods (MonitorEquals and PairwiseEquals)
are not safe if thequals methods are implemented not to respect observation equivalence, such
as not respecting the contract java.lang.Object [SMO03]. The contract requires that each
equals implements an equivalence relation, i.e., it should be re exive, symmetrictranditive.

In practice, we have found mostuals methods to implement observational equivalence; however,

if equals is weaker (i.e., returngsue for some objects that are not observationally equivalent),



39

our techniques based @quals may not be safe. Although the user need to carefully implement
theequals methods in order to guarantee the safety, our implementation can dynamicalkyazhe
approximation of observational equivalencedquals and help the user tune the method.
PairwiseEquals is not safe when aliasing relationships among the reegg@ments, and their
object elds can affect the observational equivalence, becaus&iBaEquals cannot capture alias-

ing relationships in its representation, as we discussed in Section 3.2.

3.3.2 Precision

When all ve techniques are safe, determined by the mechanisms of egpires states, their preci-
sionis in increasing order from the lowest to highest: WholeSeq, Modi§ég WholeState, Moni-
torEquals, and PairwiseEquals. We next discuss under what conditiertechnique may generally
achieve higher precision than its preceding technique in the list. Modifyopg®s achieve higher
precision than WholeSeq when there are invocations of state-preseneiigpds (e.g.isEmpty )
and these invocations appear in method sequences that representstdigs WholeState may
achieve higher precision than ModifyingSeq when there are invocatiostaite-modifying meth-
ods (e.g.remove ) that revert an object's state back to an old state that was reached ysigvio
with a shorter method sequence. MonitorEquals may achieve higher pretlisio WholeState
when some elds of an object are irrelevant for affecting observatieqaivalence. PairwiseE-
guals may achieve higher precision than MonitorEquals when there aréofeaiss; ands, where
sy.equals( Sp) returnstrue but they have different linearized heaps that consist of elds aeckss
within s;.equals(  s1) orsp.equals(  Sp) . The precision of MonitorEquals or PairwiseEquals re-
lies on the user-de nedquals method. Ifequals is stronger (i.e., returrfalse for two objects
that are observationally equivalent), MonitorEquals or PairwiseEquaysnmizachieve 100% pre-

cision.

3.3.3 Requirements

Our implementations of ve techniques operate on Java bytecode withouiriregJava source
code. Unlike WholeState or MonitorEquals, our implementation of WholeSeglifiiogSeq, or

PairwiseEquals does not require to access the internal states or thedeytddhe class under test.
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These three techniques can be applied when the internal states or thedeytéd¢he class under
test are not available, for example, when testing components [HCO1]mseargices [ACKMO02].
Although our implementation of WholeSeq or ModifyingSeq uses dynamic dsalys can per-
form a static analysis on the test code to gather the method sequence withautirgy the test code.
Although this static analysis would be conservative and less precise thalyribeic analysis, it
would enable the determination of state equivalence and the detection ntlesduests (described

in the next section) without executing them.

Generally WholeSeq and ModifyingSeq require less analysis time than Wht#eshd Mon-
itorEquals, because WholeSeq and ModifyingSeq do not require thetimtief object- eld val-
ues. ModifyingSeq requires more time than WholeSeq, because our impléioemtaModify-
ingSeq also needs to dynamically determine whether a method execution is macthfygng one.
When there are a relatively large number of nhonequivalent states,i§elguals typically requires
more time than MonitorEquals because PairwiseEquals compares the stateansigeration with
those previously encountered nonequivalent objects one by oneeagheur implementation of
MonitorEquals uses ef cient hashing and storing to check whether the staler consideration
is equivalent to one of those previously encountered states, becaukeow the representation

(sequence).

ModifyingSeq requires less space than WholeSeq. When tests contéiretglshort sequences,
WholeSeq or ModifyingSeq may require less space than WholeState or Memuitals for storing
the state representation of a single nonequivalent state; however, theutotaer of nonequivalent
states determined by WholeSeq or ModifyingSeq is larger than the total nwhimemequiva-
lent states determined by WholeState or MonitorEquals. MonitorEquals esdeiss space than
WholeState. PairwiseEquals may require less space for storing stateamtateons (being just
unique identi ers) than WholeState or MonitorEquals, whose state repisms consist of se-
guences linearized from object elds; however, our implementation ofWsgEquals needs to keep

a copy of each nonequivalent object around for later comparisamagslescribed in Section 3.2.
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3.4 Redundant Tests

We next show how equivalent states give rise to equivalent methodtéxes and de ne redundant
tests and test-suite minimization.

Each test execution produces several method executions.
De nition 4. A method executiohm; si is a pair of a methoan and a method-entry state

We denote byt] the sequence of method executions produced by &, tast we writdm; si 2
[t] when a method executidm; si is in the sequence far We de ne equivalent method executions

based on equivalent states.

De nition 5. Two method executiotm; s;i andhmsy; s,i are equivalentff m; = m, ands; and

S, are equivalent.
We further consider minimal test suites that contain no redundant tests.

De nition 6. A testt is redundanfor a test suites iff for each method execution ], there exists

an equivalent method execution of some test ffom
De nition 7. A test suiteS is minimal iff there is not 2 S that is redundant foSnftg.

Minimization of a test suit&® nds a minimal test suiteS p S%that exercises the same set of

nonequivalent method executionsfxoes.

De nition 8. A test suiteS minimizesa test suiteSPiff S is minimal and for each®2 S%and each

hm%sY 2 [t9, there exist 2 S andhm; si 2 [t] such thatm® s4 andhm; si are equivalent.

Given a test suit&® there can be several test suiggt SCthat minimizeS®. Among the test
suites that minimiz&° we could nd a test suite that has the smallest possible number of tests or the
smallest possible total number of method executions for the tests. Findingestishites reduces to
optimization problems called “minimum set cover” and “minimum exact coverfyaetvely; these
problems are known to be NP complete, and in practice approximation algoriterasexd [Joh74].

Our implementation runs the tests in a given test suite with its default test-exeoutien(such
as the one controlled by the JUnit framework [GB03]) and then minimizes thsu#e by using

a greedy algorithm. Running the tests in different orders can cause olenm@aptation to produce
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different minimized test suites; however, these different minimized test suitesice the same total
number of nonequivalent method executions.

In particular, our implementation collects method-entry states dynamically dush@xecu-
tions. We use the Byte Code Engineering Library [DvZ03] to instrument thiecbdes of the
classes under test at the class-loading time. The instrumentation adds ¢h®icodllecting state
representations at the entry of each method call in a test. For some techrii@lso adds the code
for monitoring instance- eld reads and writes. Our instrumentation collectsnéthod signature,
the receiver-object reference, and the arguments at the beginréaglomethod call in the test. The
receiver of these calls is usually an instance object of the class untleftiesnstrumentation does
not collect the method-entry states for calls that are internal to these olpatfesent techniques
also collect and maintain additional information. After nishing running theegivest suite, our
implementation outputs a minimized test suite in the form of a JUnit test class [GB03].

Our redundant-test detection techniques can be used in the followingriaetical applications:
test-suite assessment, test selection, test-suite minimization, and test generation

Assessment:Our techniques provide a novel quantitative comparison of test suifgscialy
those generated by automatic test-generation tools. For each test suiteclmigues can nd
nonequivalent object states, nonequivalent method executions,cemcedundant tests. We can
then use their metrics to compare the quality of different test suites.

Selection: Our techniques can be used to select a subset of automatically genestetb te
augment an existing (manually or automatically generated) test suite. We &eexisting test suite
and the new tests to our techniques, running the existing test suite rst. Theahitest suite that
our techniques then produce will contain those new tests that are noneaat with respect to the
existing test suite.

Minimization: Our techniques can be used to minimize an automatically generated test suite
for correctness inspection and regression executions. Without & gpexi cations, automatically
generated tests typically do not have test oracles for correctnedarapeand the tester needs to
manually inspect the correctness of (some) tests. Our techniques helptéraddocus only on the
non-redundant tests, or more precisely the nonequivalent methodtiexer Running redundant
tests is inef cient, and our techniques can remove these tests from asemrdest suite. However,

we need to be careful because changing the code can make a test ¢iulaindant in the old code
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to be non-redundant in the new code. If two method sequences in thed#docoduce equivalent
object statesandthe code changes do not impact these two method sequences [RTO A wilc

safely determine that the two sequences in the new code produce equalgkt states. Addition-
ally, we can always safely use our techniques to perform regressigprieritization [RUC01,ST02]

instead of test-suite minimization.

Generation: Existing test-generation tools can incorporate our techniques to avoidagiege
and executing redundant tests. Although our implementations of the techrageiesing dynamic
analysis, they can determine whether a method execoi®is equivalent to some other execution
beforerunningme; the method-entry state required for determining equivalence is availafoleebe
the execution. Test-generation tools that execute tests, such as Jt@8{ fraAsmLT [GGSVO02],
can easily integrate our techniques. Jtest executes already genestaethtbobserves their behav-
ior to guide the generation of future tests. Running Jtest is currently sigerit spends over 10
minutes generating the tests for relatively large classes in our experiment®(53.5)—but much
of this time is spent on redundant tests. In the next chapter, we will greeenour techniques can

be incorporated to generate only non-redundant tests.

3.5 Evaluation

This section presents two experiments that assess how well Rostra dethaidant tests: 1) we
investigate the bene t of applying Rostra on tests generated by existing twuds2) we validate
that removing redundant tests identi ed by Rostra does not decreasgiatity of test suites. We
have performed the experiments on a Linux machine with a Pentium IV 2.8 Git¢egsor using

Sun's Java 2 SDK 1.4.2 JVM with 512 MB allocated memory.

3.5.1 Experimental Setup

Table 3.2 lists the 11 Java classes that we use in our experimentimtStaek class is our running
example. TheJBStack class is taken from the experimental subjects used by Stotts et al. [SLA02].
The ShoppingCart  class is a popular example for JUnit [Cla00]. TBenkAccount class is

an example distributed with Jtest [Par03]. The remaining seven classdatarstructures used to

evaluate Korat [BKM02, MAD 03]. The rst four columns show the class name, the number of
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Table 3.2: Experimental subjects

class meths| public | ncnb | Jtest| JCrasher
meths| loc | tests| tests
IntStack 5 5 44 94 6
UBStack 11 11| 106 | 1423 14
ShoppingCart 9 8 70| 470 31
BankAccount 7 7 34| 519 135
BinSearchTree 13 8| 246| 277 56
BinomialHeap 22 17 | 535 6205 438
DisjSet 10 7| 166 | 779 64
FibonacciHeap 24 14 | 468 | 3743 150
HashMap 27 19 | 597 | 5186 47
LinkedList 38 32| 398 3028 86
TreeMap 61 25| 949 | 931 1000

methods, the number of public methods, and the number of non-comment|arnlibes of code

for each subject.

We use two third-party test generation tools, Jtest [Par03] and JC{&d@4], to automatically
generate test inputs for program subjects. Jtest allows the user to katdtieof calling sequences
between one and three; we set it to three, and Jtest rst generatesl@y sequences of length
one, then those of length two, and nally those of length three. JCrashematically constructs
method sequences to generate non-primitive arguments and uses dafawaldies for primitive
arguments. JCrasher generates tests as calling sequences with the femggh dhe last two

columns of Table 3.2 show the number of tests generated by Jtest anti€lCras

Our rst experiment uses the ve techniques to detect redundant testem@ those generated
by Jtest and JCrasher. Our second experiment compares the qualitigiofloand minimized
test suites using 1) branch coverage, 2) nonequivalent, uncaxggpteon count, and 3) fault-
detection capability. We adapted Hansel [Han03] to measure branchagevand nonequivalent,

uncaught-exception count. (Two exceptions are equivalent if theg theevsame throwing location
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and type.) To estimate the fault-detection capability, we use two mutation-analysddo Java:
Jmutation [MKOO02] and Ferastrau [MADD3]. We select the rst 300 mutants (i.e., 300 versions
each of which is seeded with a bug) produced by Jmutation and con gerastfau to produce
around 300 mutants for each subject. We estimate the fault-detection capahbditest suite by
using the mutant killing ratio of the test suite, which is the number of the killed mutanded by
the total number of mutants. To determine whether a test kills a mutant, we have\sptei ca-
tions and used the JML runtime veri er [CL02] to compare the method-exitstatd returns of the

original and mutated method executions.

3.5.2 Experimental Results

Figures 3.3 and 3.4 show the results of the rst experiment—the perceofagmiundant tests
generated—for Jtest and JCrasher, respectively. We also medbkarpdrcentages of equivalent
object states and equivalent method executions; they have similar distrbat$otihe redundant
tests. We observe that all techniques except WholeSeq identify ar@36adBJItest-generated tests
to be redundant for all subjects and 50% of JCrasher-generatedadstsredundant for ve out
of 11 subjects. Possible reasons for higher redundancy of Jtestaged tests include: 1) Jtest

generates more tests; and 2) Jtest-generated tests have longer call length

We observe a signi cant improvement achieved by ModifyingSeq oveo®eq in detecting
redundant tests. In Figure 3.3, this improvementifittack  is not so large as the one for other
subjects, becaugdetStack has only one state-preserving methathpty ), whereas other sub-
jects have a higher percentage of state-preserving methods in their ¢tafscies. There are some
improvements achieved by the last three techniques based on concreteogtat®lodifyingSeq.
But there is no signi cant difference in the results for the last three tiecks. We hypothesize that
our experimental subjects do not have many irrelevant object eldsdaninlg object states and/or
the irrelevant object elds do not signi cantly affect the redundant tietection.

Figures 3.5 and 3.6 show the elapsed real time of running our implementaticetoelundant
tests generated by Jtest and JCrasher, respectively. We obsérthetbapsed time is reasonable:
it ranges from a couple of seconds up to several minutes, determinedipritnathe class com-

plexity and the number of generated tests. In Figures 3.5, the elapsed timendbNEquals for
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BinomialHeap is relatively expensive, because the number of generated te&mbotialHeap
is relatively large and invoking itsquals is relatively expensive.

To put the analysis time of our techniques into perspective, we need tadeortise whole
test generation: if test-generation tools such as Jtest incorporatedchunigges into generation,
the time savings achieved by avoiding redundant tests would signi cantlyeekthe extra cost of
running our techniques. The next chapter will show how we can avaidrgéing redundant tests
based on our techniques.

Table 3.3 shows the results of the second experiment: nonequivaleatigirieexception counts
(columns 2 and 3), branch-coverage percentages (columns 4 aillirig,ratios for Ferastrau mu-
tants (columns 6 and 7), and killing ratios for Jmutation mutants (columns 8 arich®)columns
marked “jte” and “jcr” correspond to Jtest and JCrasher, respéctiVle original Jtest-generated
and JCrasher-generated test suites have the same measures asrdsgionding Rostra-minimized
test suites in all cases except for the four cases whose entries aredwmatk “*”. The differences
are due only to the MonitorEquals and PairwiseEquals techniques. The mididtest-generated
test suites fomtStack andTreeMap cannot kill three Ferastrau-generated mutants that the origi-
nal test suites can kill. This shows that minimization baseelprals can reduce the fault-detection
capability of a test suite, but the probability is very low. The minimized Jtestrgestbtest suites
for HashMap and TreeMap cannot cover two branches that the original test suites can cover. We
have reviewed the code and found that two elds of these classes edldarscaching; these elds
do not affect object equivalence (de ned byuals ) but do affect branch coverage. These four
cases suggest a further investigation on the usejodls methods in detecting redundant tests as

future work.

3.5.3 Threats to Validity

The threats to external validity primarily include the degree to which the supjegrams and
third-party test generation tools are representative of true practicesubjects are from various
sources and the Korat data structures have nontrivial size for utst @&the two third-party tools,
one—Jtest—is popular and used in industry. These threats could be figtlueed by experiments

on various types of subjects and third-party tools. The main threats to ihtexiidity include
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Table 3.3: Quality of Jtest-generated, JCrasher-generated, and minteszedites

class excptn| branch | Ferastrau Jmutation
count | cov[%] | kill[%] | Kkill [%]
jte |jer| jte| jer| jte| jer| jte| jer
IntStack 1| 1| 67| 50|*45| 40| 24| 23
UBStack 2| 0| 94| 56| 57| 25| 78| 37
ShoppingCart| 2| 1| 93| 71| 57| 51| 80| 20
BankAccount | 3| 3|100|100| 98| 98| 89| 89
BinSearchTree 3| 0| 67| 14| 33| 5| 57| 11
BinomialHeap| 3| 3| 90| 66| 89| 34| 64| 48
DisjSet 0] 0| 61| 51| 26| 18| 40| 29
FibonacciHeap 2| 2| 86| 58| 73| 21| 68| 35
HashMap 1| 1|*72| 43| 52| 23| 48| 24
LinkedList 19110| 79| 48| 24| 7| 25 9
TreeMap 4| 3|*33| 11|*16| 4| 16 7

instrumentation effects that can bias our results. Faults in our implementatish, J@zasher,
or other measurement tools might cause such effects. To reduce thests, thve have manually

inspected the collected execution traces for several program subjects.

3.6 Conclusion

Object-oriented unit tests consist of sequences of method invocatiomaviBe of an invocation
depends on the state of the receiver object and method arguments aitivérigeof the invocation.
Existing tools for automatic generation of object-oriented test suites, sultestsand JCrasher for
Java, typically ignore this state and thus generate redundant tests thasexke same method
behavior, which increases the testing time without increasing the ability to detstst

We have developed ve fully automatic techniques for detecting redurmagatt-oriented unit
tests. We have proposed four practical applications of the framewoekhade conducted exper-

iments that evaluate the effectiveness of our techniques on detectingdeeduests in test suites
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generated by two third-party test-generation tools. The results showuh&ahniques can sub-
stantially reduce the size of these test suites without decreasing their qlibkse results strongly
suggest that tools and techniques for generation of object-orientesdiitest must consider avoiding

redundant tests.
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Chapter 4

NON-REDUNDANT-TEST GENERATION

Unit tests are becoming an important component of software developmeatExtreme Pro-
gramming discipline [Bec00, Bec03], for example, leverages unit testsrtitpeontinuous and
controlled code changes. Although manually created unit tests are valtray®ften do not cover
suf cient behavior of the class under test, partly because manualéastation is time consuming
and developers often forget to create some important test inputs. Whigniemng the impor-
tance of unit tests, many companies have provided tools, frameworksseawides around unit
tests, ranging from specialized test frameworks, such as JUnit [GB0Akual Studio's new team
server [Mic04], to automatic unit-test generation tools, such as Para#efs[Par03] and Aigtar's
Agitator [Agi04]. However, within constrained resources, existing testegation tools often do
not generate suf cient unit tests to fully exercise the behavior of thesalasler test, for exam-
ple, by satisfying the branch-coverage test criterion [Bei90], let atos&onger criterion, such as
the bounded intra-method path coverage [BLOO] of the class under testvefave discussed in
Chapeter 3, wasting time on generating and running redundant tests is bneeason for existing
tools not to generate suf cient unit tests given constrained resources

In order not to be redundant, a test needs to exercise at least omegtbad execution (one that
is not equivalent to any of those exercised by earlier executed tessyn#e that we have a xed set
of values for method arguments, then in order to generate a non-retuadgt we need to exercise
at least one new receiver-object state. In other words, we neegltirexnew) receiver-object states
in order to generate non-redundant tests. In this chapter, we rsepte test-generation approach
that explores concrete states with method invocations (the approachwedsmbal by us [XMNO044a]
and Visser et al. [VPKO04] independently). Roughly this approach ggee non-redundant tests
only. However, this approach has two issues. First, this approacimasgbat a xed set of relevant
values for method arguments are provided beforehand; supplyingriélesant argument values is

often a challenging task for either developers or a third-party testing teador#i, this approach
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faces a similar state exploration problem as in explicit-state model checking9giG

To tackle these two issues, we have developed a test-generation dpaltex Symstra, that
uses symbolic execution [Kin76] of methods to explore symbolic states. Synsvalés, symbolic
representations of states, describe not only single concrete stategtdwalf concrete states, and
when applicable, symbolic representations can yield large improvementgraidously withessed
for example by symbolic model checking [McM93]. We use symbolic executiqggroduce sym-
bolic states by invoking a method with symbolic variables for primitive-type argsnénstead of
requiring argument values to be provided beforehand. Each symbgliant represents a set of
all possible concrete values for the argument. We present novel teesfior comparing symbolic
states of object-oriented programs. These techniques allow our Symptcaelp to prune the ex-
ploration of object states and thus generate tests faster, without compmthisiexhaustiveness of
the exploration. In particular, the pruning preserves the intra-methodpadnage of the generated
test suites. We have evaluated our Symstra approach on 11 subjectsfmbéth are complex
data structures taken from a variety of sources. The experimentdisrebow that our Symstra
approach generates tests faster than the existing concrete-statecappiiddP K04, XMN04b]. Fur-
ther, given the same time for generation, our new approach can getesite¢hat achieve better
branch coverage than the existing approaches.

The remainder of this chapter is structured as follows: Section 4.1 presemisiing example.
Section 4.2 describes the concrete-state approach that generatey tegifoling concrete states.
Section 4.3 introduces the representation of symbolic states producedbyplgyexecution. Sec-
tion 4.4 presents the subsumption relationship among symbolic states and Sestiomotiuces
the Symstra approach that uses state subsumption relationship to prundisiatate exploration.
Section 4.6 presents the experiments that we conducted to assess tlaehmwthen Section 4.7

concludes.

4.1 Example

We use a binary search tree implementation as a running example to illustraigsir&gapproach.
Figure 4.1 shows the relevant parts of the code. The binary searatldssBST implements a set

of integers. Each tree has a pointer to the root node. Each node hksrantand pointers to the
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class BST implements Set f

Node root;
static class Node f
int  value;
Node left;
Node right;
g
public void add( int value) f
if (root == null ) f root = new Node(); root.value = value; g
else f

Node t = root;

while  (true ) f

if (t.value < value) f /* cl *
if (tright == null ) f
tright = new Node(); t.right.value = value;
break ;
g else f t = tright; g
g else if (t.value > value) f r*c2*
if (tleft == null ) f
tleft = new Node(); t.left.value = value;
break ;
g else f t = tleft; g
g else f /* no duplicates*/ retun ; g /* c3 ¥
g
9
g
public void remove( int value) f .. g
public boolean contains( int wvalue) f .. g

Figure 4.1: A set implemented as a binary search tree

left and right children. The class also implements the standard set opsratidnadds an element,
if not already in the tree, to a leakkmove deletes an element, if in the tree, replacing it with the
smallest larger child if necessary; atmhtains  checks if an element is in the tree. The class also

has a default constructor that creates an empty tree.

Some tools such as Jtest [Par03] or JCrasher [CS04] test a classdrgifeg random sequences

of methods; forBST, they could for example generate the following tests (written in the JUnit
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framework [GBO3]):

public class BSTTest extends TestCase f
public void test1() f
BST t1 = new BST();
t1.add(0);
tl.add(-1);

tl.remove(0);

public void test2() f
BST t2 = new BST();
t2.add(2147483647);
t2.remove(2147483647);
t2.add(-2147483648);

Each test has a method sequence on the objects of the classestly., creates a treél ,
invokes twoadd methods on it, and then omemove . One strategy adopted by existing tools is
to exhaustively explore all method sequences or randomly explore somedrssthuences up to a
given length. These tools consider that two tests are both generated Hateydifferent method
sequences. As we have shown in Chapter 3, the conservative stpatetyces a high percentage
of redundant testes. The remainder of the chapter shows how towffggenerate non-redundant
tests that exercise the same program behavior as exercised by thogenestded by exhaustively

exploring all method sequences up to a given length.

4.2 Concrete-State Exploration

Unit-test generation for object-oriented programs consists of two patsng up receiver-object
states and generating method arguments. The rst part puts an objeet dads under test into a
particular state before invoking methods on it. The second part proghactsular arguments for
a method to be invoked on the receiver-object state. The concreteqspaiteaeh presented in this
section assumes a xed set of method arguments have been providedhaafd and invoke these

method arguments to explore and set up object states.
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A method-argument state characterized by a method and the values for the method arguments,
where a method is represented uniquely by its de ning class, name, andttreesignature. Two
method-argument states are equivalent iff their methods are the same amehfiseerooted from
their method arguments are equivalent (isomorphic).

Each test execution produces several method executions.

De nition 9. A method executiolhs,; ;i is a pair of a method-argument statg and a receiver-

object states, .1
Then we de ne equivalent method executions based on equivalerd.state

De nition 10. Two method executions,s; Sr1i and hsyo; S2i are equivalentiff sy; and sy, are

equivalent, ang;, ands;» are equivalent

Our test generation approach is a type of combinatorial testing. We genesédeto exer-
cise each possible combination of nonequivalent receiver-objecs statenonequivalent method-
argument states. In order to generate method-argument states, our intplonemonitors and
collects method arguments from the executions of existing tests. This mechemisplements
existing method argument generation based on a dedicated test data pichl ceuitains default
data values [Par03, CS04] or user-de ned data values [ParOB}alttice, programmers often write
unit tests [Bec00, Bec03], and these tests often contain some repteseatgument values. Our
approach takes advantage of these tests, rather than requiringrpnegrrsito explicitly de ne rep-
resentative argument values. When there are no manually written testddgsawe collect method
arguments exercised by tests generated by existing test-generation tctls,ssJtest [Par03] and
JCrasher [CS04].

In order to prepare nonequivalent receiver-object states, initiallgemerate a set of tests each
of which consist of only one constructor invocation. These initial testaigeempty” receiver-

object states. Then we generate new tests to exercise each nonedusalpty” object state with

1The de nition of a method execution is different from the one present&aition 3.4 of Chapter 3. This chapter rep-
resents the states of argument states and receiver states separdtelgémvenience of test generation, whereas Chap-
ter 3 represents the states of argument states and receiver stategle eegiresentation for the safety of redundant-test
detection, because there may be some aliasing relationships betwegueneiar and the receiver object, and repre-
senting them in a single representation is needed to capture these relasamshipniently.

2We can show that if two method executions are nonequivalent basedqurebeding de nition, then these two
method executions are nonequivalent based on the previous de nit®adtion 3.4 of Chapter 3.
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all nonequivalent method-argument states. After we execute the nexaged tests, from the exe-
cution, we collect new object states that are not equivalent to any af tiijsct states that have been
exercised by all all nonequivalent method-argument states. Thenmwezaje new tests to exercise
each new object state with all nonequivalent method-argument statesaiiigeiteration continues
until we run of memory or time, encounter no new object state, or reachraspsei ed iteration
number. The iterations of generating tests are basically a process ofiegpbbject states with
method invocations in a breadth- rst manner. The pseudo-code of thgeasration algorithm is
presented in Figure 4.2.

The inputs to our test-generation algorithm include a set of existing testsiemea-de ned max-
imum iteration number, which is the maximum length of method sequences in thagghtasts.
Our algorithm rst runs the existing tests and collects runtime information, imetudonequivalent
constructor-argument states and nonequivalent method-argument §tetalso collect the method
sequence that leads to a honequivalent object state or an argument tincal ragument state. We
use these method sequences to reproduce object states or arguments.

Then for each collected nonequivalent constructor-argument statereate a new test that
invokes the constructor with the arguments. We run the new test that m®dac'empty” receiver-
object state. From the runtime information collected from running the new testletermine
whether the receiver-object state produced by the constructor texedsi a new one (not being
equivalent to any previously collected one); if so, we put it into a frorstir

Then we iterate each object state in the frontier set and invoke eachuigaleqt method-
argument state on the object state. Each combination of an object state atttbd argument list
forms a new test. We run the new test and collect runtime information. If thedvieeobject state
produced by the last method execution in the new test is a new one, we mevwheceiver-object
state into the new frontier set for the next iteration. In the end of the diiteration, we replace
the content of the current frontier set with the content of the new frosger We next start the
subsequent iteration until we have reached the maximum iteration numberfosritier set has no
object state. In the end of the algorithm, we return the generated tests abbweteall iterations.
These tests are exported to a test class written in the JUnit framework [GB0O3

Since invoking a state-preserving method on an object state does ngectienstate, we can

still invoke other methods on the object state in the same test. We merge genessteas much
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Set testGenConcreteExp(  Set existingTests, int  maxlterNum) f
Set newTests = new Set ();

Runtimelnfo runtimelnfo = execAndCollect(existingTests);

Set nonEqConstructorArgStates = runtimelnfo.getNonEqConst ructorArgStates();
Set nonEgMethodArgStates = runtimelnfo.getNonEgMethodArgS tates();

llcreate empty symbolic states

Set frontiers = new Set ();

foreach  (constructorArgState in  nonEgConstructorArgStates) f

Test newTest = makeTest(constructorArgState);
newTests.add(newTest);
runtimelnfo = execAndCollect(newTest);

frontiers.add(runtimelnfo.getNonEqObjState());

g
/lexercise new states from each iteration with each method- argument state
for (int i=1;i<=maxiterNum && frontiers.size()>0;i++) f
Set frontiersForNextlter = new Set ();
foreach  (objState in frontiers) f
foreach (argState in  nonEgMethodArgStates) f
Test newTest = makeTest(objState, argState);
newTests.add(newTest);
runtimelnfo = execAndCollect(newTest);
frontiersForNextlter.add(runtimelnfo.getNonEqObjSta te());
g
g
frontiers.clear();
frontiers.addAll(frontiersForNextlter);
g
return  newTests;
g

Figure 4.2: Pseudo-code implementation of the test-generation algorithioh asxploring con-
crete states.

as possible by reusing and sharing the same object states among multiple agtinoent state.
This reduces the number of the generated tests and the execution cosgehtrated test suite.
The generated test suite contains no redundant tests, since our combiiggioeration mechanism
guarantees that the last method execution produced by each test isuivatesg to any method

execution produced by earlier executed tests.

Our implementation uses Java re ection mechanisms [AGHOO] to generatexandte new
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Figure 4.3: A part of the explored concrete states

tests online. In the end of test generation, we export the tests genefiiedah iteration to a

JUnit test class code [GB03], based on JCrasher's test codeagiendunctionality [CS04].

When we tesBST by using the test generation algorithm in Figure 4.2, we can provide three

values foradd's argumentiadd(1) , add(2) , andadd(3) , and set the maximum iteration number

as three. Figure 4.3 shows a part of the explored concrete states B®Tratass. Each explored

state has a heap, which is shown graphically in the gure. The construstoreates an empty tree.

In the rst iteration, invokingadd on the empty tree with three arguments 2, and3) produces

three new statessp, Sz, andS,), respectively. In the second iteration, invokismgd(1) onS, does

not modify the receiver-object state, still beiSg. Invokingadd(2) andadd(3) on S, produces

two new statesSs andSg), respectively. Similar cases occur 8gpandS,.

After exploring an edge (state transition), we generate a speci ¢ testetwier this edge. We

generate the test by traversing the shortest path starting from the ectyestriuctor invocatiomgw
BST() ) to the current edge, and outputting the method invocations along the patixdrople, the

test that we generate to exercise the edge f8grto Sg is:
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public void testEdgeFromS5ToS8() f
BST t = new BST();
t.add(1);
t.add(3);
t.add(2);

We can see that there are two major issues when we use the test gendgatiithma in Fig-
ure 4.2 to tesBST. First, the algorithm assumes that developers or third-party tools proweiea
relevant values for the method arguments. For example, if we want toajerests to reachBST
object with eight elements, we need to provide at least eight differeresédwadd 's argument. For
complex classes, it is often a challenging task for developers or thitgjoais to produce relevant
values for their method arguments. Second, the algorithm faces the stiisiexgroblem when
exploring concrete states with a even relatively small number of providecehettyument values.
For example, the algorithm runs out of memory when it is used toB8Ftwith seven different
values for the arguments afid andremove and with the maximum iteration number as seven.

In fact, invoking threeadd method invocations on the empty tree to re8¢hS,, andS3 exercise
the same program behavior: basically these method invocations put arr integgen empty binary
search tree. Invokingdd(3) on S, exercises the same program behavior as invokituy3)
on S3: basically each method invocation inserts an integer into a binary searctommeggning a
smaller integer. To tackle the state exploration problem, we can construbstacion function
that maps similar concrete states into a single abstract state. One challemgetbaronstruct this
abstraction function automatically. The next section presents our newagbprcalled Symstra,
that uses symbolic execution to automatically group several concrete stat@ssimgle symbolic
state, if these concrete states are isomorphic in an abstract level anddhreaehed by executing

the same path of the program.

4.3 Symbolic-State Representation

The symbolic execution [Kin76] of a method accepts method inputs in the fosyrbolic vari-
ables instead of actual arguments values. In the symbolic execution of an ajented program,

the receiver object of a method invocation can beymbolic statesSymbolic states differ from
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concrete states, on which the usual program executions operate, isythbblic states contain
a symbolic heap that includes symbolic expressions with symbolic variablel és1symbolic
variables connected with their associated types' operators), and cafgairtonstraints on these
variables.

We view a symbolic heap as a graph: nodes represent objects (as \pealnis/e values and
symbolic expressions) and edges represent object eldsOUst some set of objects whose elds
form a set-. Each object has a eld that represents its class. We consider asaysexts whose

elds are labelled with (integer) array indexes and point to the array elesnen

De nition 11. A symbolic heap is an edge-labelled gragd; Ei, whereE p O£ F £ (O
fnull g[ U) such that for each eld of eacho 2 O exactly ondo;f;0% 2 E. A concrete heap

has only concrete values®2 O [f null g[ P.
Given the de nition of a symbolic heap, we can then de ne a symbolic stateddy:
De nition 12. A symbolic statdiC; Hi is a pair of a constraint and a symbolic heap.

The usual execution of a method starts with a concrete state of the reabjeet and method-
argument values, and then produces one return value and oneteostate of the receiver object.
In contrast, the symbolic execution of a method starts with a symbolic state ofdbigereobject
and symbolic variables of method arguments, and then produces sateral values and several
symbolic states of the receiver object.sgmbolic execution tregharacterizes the execution paths
followed during the symbolic execution of a program. An edge representsthod invocation
whose symbolic execution follows a speci ¢ path. A node in the tree reptesesymbolic state
produced by symbolically executing a speci c path of a method. Figure owsla part of the
symbolic execution tree foBST when we invoke a method sequence consisting of onlyatlte
method.

The constructor oBST rst creates an empty tre8;, whose constraint isue . Then we invoke
add on S; with symbolic variablex; as the argument. The symbolic executioradfi on S; can
explore one path, producing a symbolic st8evhose heap contains the elemgptand constraint
is still true . In general, while an execution of a method with concrete arguments m®edune

state, the symbolic execution of a method with symbolic arguments can prodgcel states, thus
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Figure 4.4: A part of the symbolic execution tree

Ug

resulting in an execution tree. For example, the symbolic execution aefithen S, with symbolic
variablex, as the argument produces three symbolic st&#esS4, andSs), which are produced
by following three different paths withiadd, in particular, taking three different brancheg,(c2,
andc3) labeled in the method body afid (Figure 4.1): ifx; = X2, the tree does not change, and if

X2 > X 1 (OrXz < X 1), X2 is added in the right (or left) subtree.

Following the typical symbolic executions [Kin76, KPV03, VPK04], our implenation sym-
bolically explores both branches f statements, modifying the constraint with a conjunct that
needs to hold for the execution to take a certain branch. In this contexpiisgaint is callegbath
condition because it is a conjunction of conditions that need to hold for the exedatitake a
certain path and reach the current address. This symbolic executictlydexplores every path of
the method under consideration. The common issue in the symbolic executiontiethamber of
paths may be in nite (or too large as it grows exponentially with the numberaridires). In such

cases, we can use the standard set of heuristics to explore only soreepathis [VPK04, BPS00].

Our implementation executes code on symbolic states by rewriting the code &deoparsym-
bolic expressions [KPV03, VPKO04]. Furthermore, Symstra implements thlemtion of different
branches by re-executing the method from the beginning for each pélttoutvstoring any inter-

mediate states. Note that Symstra re-executes only one method (for diffater), not the whole
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method sequence. This effectively produces a depth- rst exploratigraths within one method,
while the exploration of states between methods is breadth- rst as explairthé next section.
Our Symstra prototype also implements the standard optimizations for symboliatiexed-irst,
Symstra simpli es the constraints that it builds at branches; speci callypiestonjoining the path
condition so farC and the current branch conditi@P (whereCCis a condition from anf or its
negation), Symstra checks if some of the conjuncts impliesC® if so, Symstra does not conjoin
CC Second, Symstra checks if the constr&&& CPis unsatis able; if so, Symstra stops the cur-
rent path of symbolic execution, because it is an infeasible path. Thent8ymstra prototype can

use the Simplify [DNSO03] theorem prover or the Omega library [Pug92] tolchasatis ability.

4.4 Symbolic-State Subsumption

This section presents techniques that compare two symbolic states: chisckimayphism of their
symbolic heaps and checking implication relationships between their constrtetse techniques
help determine symbolic-state subsumption: whether one symbolic state sulifenogiser. We

use symbolic-state subsumption to effectively prune the exploration of dimskates (Section 4.5).

4.4.1 Heap-lsomorphism Checking

We de ne heap isomorphism as graph isomorphism based on node bijeBtdiJ2]. We want
to detect isomorphic heaps because invoking the same methods on them leguisdtent method
behaviors and redundant tests; therefore, it suf ces to explore amdyrepresentative from each
isomorphism partition. Nodes in symbolic heaps contain symbolic variablesesosivde ne a
renamingof symbolic variables. Given a bijectiogn : V ! V, we extend it to the wholg :

U! Uasfollows:¢(p) = pforallp 2 P,and¢( ui;::i;up) = ¢(ua);:::;é(un) for all

bound variables, avoiding capture as usual.

De nition 13. Two symbolic heapdO4; E1i andhO,; E»i are isomorphiciff there are bijections
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¥%. 01! Ozand¢ :V ! V suchthat:

E, = fhio);f;%(ad)ijho;f;042 E1;0°2 O1g[fh %40);f; null ijho;f; null i2 Eig]

fh¥40); f; ¢ (0%ijho; f;04 2 E1; %2 Ug:

The de nition allows only object identities and symbolic variables to vary: twanisgohic
heaps have the same elds for all objects and equal (up to renaming) grekpressions for all
primitive elds.

Our test generation based on state exploration does not consider tleepeatiram heap but
focuses on the state of several objects (including the receiver olijdcarguments of a method
invocation); in this context, the state of an objeds a rooted heap, which is characterized by the
values of the elds ofb and elds of all objectgeachablefrom o.

We linearizerooted symbolic heaps into integer sequences such that checking syimébafic-
isomorphism corresponds to checking sequence equality. Figure 45 ¢he linearization algo-
rithm for a symbolic rooted heap. It starts from the root and traversebahp in a depth- rst
manner. It assigns a unique identi er to each object that is visited for thigime, keeps this map-
ping in objs , and reuses it for objects that appear in cycles. It also assigns aeudigpti er to
each symbolic variable, keeps this mappingars , and reuses it for variables that appear several
times in the heap.

This algorithm extends the linearization algorithm shown in Figure 3.2 of Chaptih linSymExp
that handles symbolic expressions; this improves on the approach ofhiduwet al. [KPV03,
VPKO04] that does not use any comparison for symbolic expressionscaWehow that our lin-

earization normalizes rooted heaps.

Theorem 2. Two rooted heapBO1; E;i (with rootr;) andhO;; E»i (with rootr,) are isomorphic

iff linearize  (r1;hOq;Eji)=linearize  (r2;hO2; E2i).

4.4.2 State-Subsumption Checking

When the rooted heaps in two symbolic states are isomorphic, these two synmbtdic @e not
necessarily equivalent (based on the observational equivaler®[DGO00]), because the con-

straints in these two symbolic states may not be equivalent (two constrairggaralent if they
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Map<Object,int> objs; // maps objects to unique ids

Map<SymVar,int>  vars; // maps symbolic variables to unique ids

int [] linearize( Object root, Heap <O,E>) f
objs = new Map); vars = new Map();

return  lin(root, <O,E>>;

int [] lin( Object root, Heap <O,E>) f
if  (objs.containsKey(root))
return  singletonSequence(objs.get(root));
int id = objs.size() + 1; objs.put(root, id);
int [] seq = singletonSequence(id);
Edge[] fields = sortByField( f <root, f, 0> in E g);
foreach  (<root, f, o> in fields) f
if  (isSymbolicExpression(0)) seq.append(linSymExp(0));
elseif (0 == null ) seq.append(0);
else seq.append(lin(o, <O,E>)); // pointer to an object
9
return  seq;

int [] inSymExp(  SymExp e) f
if (isSymVar(e)) f
if  (!vars.containsKey(e))
vars.put(e, vars.size() + 1);
return  singletonSequence(vars.get(e));
g elseif (isPrimitive(e)) return  uniqueRepresentation(e);
else f /I operation with operands
int [] seq = singletonSequence(uniqueRepresentation(e.getO peration()));
foreach (SymExp e' in e.getOperands())
seq.append(linSymExp(e"));

return Seq;

Figure 4.5: Pseudo-code of linearization for a symbolic rooted heap

have the same set of solutions). Two symbolic states are equivalent ifgdhmysent the same set of

concrete states. To effectively prune the exploration of symbolic statedewe the subsumption
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boolean checkSubsumes( Constraint C1, Heap H1,
Constraint C2, Heap H2) f

int [] i1 = linearize(root(H1), H1);
Map<SymVar,int> v1 = vars; // at the end of previous linearization
Set<SymVar> nl = variables(C1) - vl.keys(); // variables not in the heap
int [] i2 = linearize(root(H2), H2);
Map<SymVar,int> v2 = vars; // at the end of previous linearization
Set<SymVar> n2 = variables(C2) - v2.keys(); // variables not in the heap
if (i1 <> i2) return false
Renaming ¢ = v2 * vii 1 J/ compose v2 and the inverse of vi
return  checkValidity( ¢(9n2:C2) )9 nip:Cy);

Figure 4.6: Pseudo-code of subsumption checking for symbolic states

relationships among symbolic states. Intuitively a symbolic sSatabsumes another o2 if the
concrete states represented®wre a superset of the concrete states represent&d iyen if we
have explored®, we do not need to explo®®, because the behaviors exercised by invoking meth-
ods onS°would have been exercised by invoking methodSohVe can more effectively prune the
exploration of symbolic states based on symbolic-state subsumption thandrasgohbolic-state
equivalence.

We next formally de ne symbolic state subsumption based on the concrepss ltleat each
symbolic state represents. To instantiate a symbolic heap into a concreteweapplace the

symbolic variables in the heap with primitive values that satisfy the constraing isptmbolic state.

De nition 14. Aninstantiationl (hC; Hi) of a symbolic statéC; Hi is a set of concrete heaps°
such that there exists a valuatiort V ! P for which” (C) is true andH Cis the evaluatiori (H)

of all expressions il according to” .

De nition 15. A symbolic statdiC;; H1i subsumesnother symbolic stateC,; Hi, in notation
hC1;H1i § h Cy; Hoi, iff for each concrete heaﬂg 2 | (hCy; H2i), there exists a concrete heap

H921 (hCy; Hyi) such thatH ? andH 9 are isomorphic.

We use the algorithm in Figure 4.6 to check if the constraifiaf H »i, after suitable renaming,

implies the constraint diC1; H1i. When some symbolic variables are removed from the heaps, for
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example, by aemove method, these symbolic variables do not appear in the heaps but may appear
in a constraint. Therefore, the implication is universally quanti ed over timdy(renamed) symbolic
variables that appear in the heaps and existentially quanti ed over the $igr@anables that do not
appear in the heaps (more precisely onlyHn, because the existential quanti er for in the
premise of the implication becomes a universal quanti er for the whole implication

We can show that this algorithm is a conservative approximation of subsumptio
Theorem 3. If checkSubsumes (hCq;H1i; hCy; Hoi) thenhCq; H1i subsumebC,; Hoi.

For example, we can show that the heap$&inand S, (Figure 4.4) are isomorphic and the
implication(8x19x2(X1 = X2) ) true) holds. Then we can determii$e subsume$,. Similarly
we can determin&g subsumesS;. Note that the renaming operation on constraints (shown in
Figure 4.6) is necessary for us to show that the constrait ahplies the constraint dbs.

Our Symstra approach gains the power and inherits the limitations from theigaehused
to check the implication on the (renamed) constraints. Our implementation usesribgadi-
brary [Pug92], which provides a complete decision procedure fabirger arithmetic, and CVC
Lite [BB04], an automatic theorem prover, which has decision proceduoreseveral types of con-
straints, including real linear arithmetic, uninterpreted functions, aredgsBecause these checks
can consume a lot of time, our implementation further uses the following catserapproxima-
tion: if free-variablesgn;: C;) are not a subset of free-variablgéqn,: C,)), returnfalse  without

checking the implication.

4.5 Symbolic-State Exploration

We next present how our Symstra approach systematically exploresnimbg-state space. The
state space consists of all symbolic states that are reachable with the symbolitian of a method
for the class under test. Our Symstra approach exhaustively expltrasnaed part of the sym-
bolic state space using a breadth- rst search. The pseudo-code tégtigeneration algorithm is
presented in Figure 4.7.

The inputs to our test-generation algorithm include a set of constr@camd non-constructor
methodsM of the class under test, and a user-de ned maximum iteration number, whibb is

maximum length of method sequences in the generated tests. We rst invokeeastructor on
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Set testGenSymExp( Set C, Set M, int maxiterNum) f
Set newTests = new Set ();
llcreate empty symbolic states
Set frontiers = new Set ();
foreach  (constructor in C) f
Runtimelnfo runtimelnfo = symExecAndCollect(constructor);
newTests.addAll(runtimelnfo.solveAndGenTests());

frontiers.addAll(runtimelnfo.getNonSubsumedObjState s());
g
/lexercise non-subsumed symbolic states with symbolic exe cution of methods
for (int i=1l;i<=maxlterNum && frontiers.size()>0;i++) f
Set frontiersForNextlter = new Set ();
foreach  (objState in frontiers) f
foreach (method in M) f
Runtimelnfo ~ runtimelnfo = symExecAndCollect(objState, method);
newTests.addAll(runtimelnfo.solveAndGenTests());
frontiersForNextlter.addAll(runtimelnfo.getNonSubsu medObjStates());
g
g
frontiers.clear();
frontiers.addAll(frontiersForNextlter);
g
return  newTests;

Figure 4.7: Pseudo-code implementation of the test-generation algorithich tiasxploring sym-
bolic states.

the initial symbolic state, which isp = hrue ;fgi : the constraint is true, and the heap is empty.
The symbolic execution of the constructor produces some “empty” reeelject states. Then
for each symbolic state produced by the symbolic execution, we generate Weealso determine
whether the symbolic state is subsumed by any previously collected symboljdfstatewe collect

it into a frontier set.

Then we iterate each symbolic-object state collected in the frontier set askkieach method
in M on the object state. We create a new test for each symbolicSttaduced by the symbolic
execution of the method. 8 is not subsumed by any previously collected symbolic state, we collect

S into the new frontier set for the next iteration. Otherwise, we prune tlileduexploration oS: S
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represents only a subset of the concrete heaps that are représestate symbolic state previously
collected for exploration; it is thus unnecessary to expffarther. Pruning based on subsumption
plays the key role in enabling our algorithm to explore large state spacesx&mple S, andSy

in Figure 4.4 are pruned because we have collected and exi8gm@@dSg, which subsum&, and
Sy, respectively.

In the end of the current iteration, we replace the content of the cuin@mtier set with the
content of the new frontier set. We next start the subsequent iteratidnuwenhave reached the
maximum iteration number or the frontier set has no symbolic state. In the ene alfgbrithm, we
return the generated tests collected over all iterations. These tests aredxp a test class written
in the JUnit framework [GB03].

During the symbolic-state exploration, we build speci ¢ concrete tests thdttedhe states
explored through the symbolic execution of a method. Whenever we nishtaaden's symbolic
execution that generates a symbolic st&ieH i, we rst generate aymbolic testwhich consists
of the constrainC and the sequence of method invocations along the shortest path starting fro
the edge of constructor invocation to the edgenfds symbolic execution. We then instantiate the
symbolic test using the POOC constraint solver [SR02] to solve the cortshraiver the symbolic
arguments for methods in the sequence. Based on the produced sol@iohbtain concrete argu-
ments for the sequence leadingt; Hi. We export such concrete test sequences into a JUnit test
class [GB03]. We also export the constrathtissociated with the test as a comment for the test in
the JUnit test class.

For example, the tests that we generate to exercise the edg&frim®s and the edge frors,
to S5 in Figure 4.4 are:

public void testEdgeFromS2ToS3() f
* x1 > x2 *
int  x1 = -999999;

int  x2 = -1000000;
BST t = new BST();
t.add(x1);
t.add(x2);

public void testEdgeFromS2ToS5() f
* x1 < x2 *
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int  x1 = -1000000;
int  x2 = -999999;

BST t = new BST();
t.add(x1);

t.add(x2);

A realistic suite of unit tests contains more sequences that test the interplagebedd,
remove , andcontains methods. Section 4.6 summarizes such suites.

At the class-loading time, our implementation instruments each branching padihé alass
under test for measuring branch coverage at the bytecode level.olinglsuments each method
of the class to capture uncaught exceptions at runtime. Given a symbdécastthe entry of
a method execution, our implementation uses symbolic execution to achieve rstireciverage
within the method, because symbolic execution systematically explores allléepaths within the
method. If the user of Symstra is interested in only the tests that achieve aeehbtoverage,
our implementation selects only the generated tests that increase brancageowe throw new
uncaught exceptions. Our implementation can also be extended for selestimthat achieve new

bounded intra-method path coverage [BLOO].

4.6 Evaluation

This section presents our evaluation of Symstra for exploring states aedagi@g tests. We com-
pare Symstra with the concrete-state approach shown in Section 4.2. Wedéasloped both
approaches within the same infrastructure, so that the comparison dogisenan unfair advan-
tage to either approach because of unrelated improvements. In thesgnexpe, we have used
the Simplify [DNSO03] theorem prover to check unsatis ability of path condgiothe Omega li-
brary [Pug92] to check implications, and the POOC constraint solverZ5R0Gsolve constraints.
We have performed the experiments on a Linux machine with a Pentium IV 2.8pBidEssor
using Sun's Java 2 SDK 1.4.2 JVM with 512 MB allocated memory.

Table 4.1 lists the 11 Java classes that we use in the experiments. The 3asses were
previously used in evaluating our redundant-test detection approaséried in Chapter 3, and the

last ve classes were used in evaluating Korat [BKM02]. The columniheftable show the class
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Table 4.1: Experimental subjects

class methods under test some private methods| #ncnb #
lines | branches
IntStack push,pop - 30 9
UBStack push,pop - 59 13
BinSearchTreeg add,remove removeNode 91 34
BinomialHeap insert,extractMin ndMin,merge 309 70
delete unionNodes,decrease
LinkedList add,remove,removelLast addBefore 253 12
TreeMap put,remove xAfterlns 370 170
xAfterDel,delEntry
HeapArray insert,extractMax heapifyUp,heapifyDown 71 29

name, the public methods under test (that the generated sequencesafprsime private methods
invoked by the public methods, the number of non-comment, non-blank linesdefin all those

methods, and the number of branches for each subject.

We use both approaches to explore states Uy iterations; in other words, we generate tests
that consist of sequences with upNomethods. The concrete-state approach also requires concrete
values for arguments, so we set it to Udedifferent arguments (the integers from ONo;j 1)
for methods under test. Table 4.2 shows the comparison between Symstitzearahcrete-state
approach. We consid@ in the range from ve to eight. (FoN < 5, both approaches generate
tests really fast, usually within a couple of seconds, but those tests dav®glood quality.) We
tabulate the time to generate the tests (measured in seconds, Columns 3 amdnimber of
explored symbolic and concrete object states (Columns 4 and 8), the nuinpenerated tests
(Columns 5 and 9), and the branch covefagehieved by the generated tests (Columns 6 and 10).
In Columns 5 and 9, we report the total number of generated tests and, patbetheses, the

cumulative number of tests that increase the branch coverage.

During test generation, we set a three-minute timeout for each iteration bfeladth- rst ex-

3We measure the branch coverage at the bytecode level during thextimeaton of both approaches, and calculate
the total number of branches also at the bytecode level.
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ploration: when an iteration exceeds three minutes, the exhaustive diqgiasbeach approach is
stopped and the system proceeds with the next iteration. We use a “*” maglaéh entry where
the test-generation process timed out; the state exploration of these entodsnger exhaustive.
We use a “~" mark for each entry where its corresponding approamdeeed the memory limit.
The results indicate that Symstra generates method sequences of the gl leften much
faster than the concrete-state approach, thus enabling Symstra totgéomegar method sequences
within a given time limit. Both approaches achieve the same branch coveragetitod sequences
of the same lengtN . However, Symstra achieves higher coverage faster. It also talsanésory
and can nish generation in more cases. These results are due to thiediaeach symbolic state,
which Symstra explores at once, actually describes a set of concrietg, sthich the concrete-state
approach must explore one by one. The concrete-state approanterfteeds the memory limit

whenN =7 orN = 8, which is often not enough to guarantee full branch coverage.

4.7 Conclusion

We have proposed Symstra, an approach that uses symbolic executemetatg a small number
of non-redundant tests that achieve high branch and intra-method @aghage for complex data
structures. Symstra exhaustively explores symbolic states with symbolic antgiopeto a given
length. It prunes the exploration based on state subsumption; this prymgiedsup the exploration,
without compromising its exhaustiveness. We have implemented the apprdeivauated it on
11 subjects, most of which are complex data structures. The results sab@ytmstra generates
tests faster than the existing concrete-state approaches, and givamid¢se limit, Symstra can
generate tests that achieve better branch coverage than these exigtoaraps.

We nally discuss how Symstra can be leveraged in speci cation-baséidgeand extended to

improve performance and address some inherent limitations of symbolic executio

Speci cations. Although the work in this dissertation including the Symstra approach has been
developed to be used in the absence of speci cations, Symstra's testatjen can be guided by
speci cations if they are provided. These speci cations can include nagihe- and post-conditions

and class invariants, written in the Java Modelling Language (JML) [LBRY8&e JML tool-set
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transforms these constructs into run-time assertions that throw JML-spexteptions when vi-
olated. Speci cation-based testing normally needs to gendegtd method invocations whose
method-entry states satisfy pre-conditions and class invariants, i.e., aptiexts for these con-
structs are thrown at method entries. By default, Symstra does not expitirer a state resulting
from an exception-throwing method execution; therefore, Symstra eglegal method sequences.
If during the exploration Symstra nds a method invocation that violates a gasdition or invari-
ant, Symstra has discovered a bug; Symstra can be con gured to teegeca tests and continue or
stop test generation. If a class implementation is correct with respect to discspien, paths that
throw post-condition or invariant exceptions should be infeasible.

Our implementation for Symstra operates on the bytecode level. It can mpetdsting of the
speci cations woven into method bytecode by the JML tool-set or by similar tddise that in this
setting Symstra essentially uses black-box testing [VPKO04] to explore onde thymbolic states
that are produced by method executions that satisfy pre-conditiondaswiavariants; conditions
that appear in speci cations simply propagate into the constraints assowitited symbolic state
explored by Symstra. Using symbolic execution, Symstra thus obtains theatjenef legal test

sequences “for free”.

Performance. Based on state subsumption, our current implementation for Symstra expi@res
or more symbolic states that have the isomorphic heap. We can extend our imf@géareto
explore exactly onenion symbolic state for each isomorphic heap. We can create a union state
using a disjunction of the constraints for all symbolic states with the isomorphft li&ech union
state subsumes all the symbolic states with the isomorphic heap, and thus explasinunion
states can further reduce the number of explored states without comprgthisiexhaustiveness of
the exploration. (Subsumption is a special case of unio@»i) Cq, thenCy _ C, simpli es to
Ci1.)

Symstra enables exploring longer method sequences than the condetpgt@aches. How-
ever, users may want to have an exploration of even longer sequeraeseve some test purpose.
In such cases, the users can apply several techniques that tradeathetge of the intra-method
path coverage for longer sequences. For example, the users mayepatstraction functions for

states [LGO0O0], as used for instance in the AsmLT generation tool [Fobjnary methods for com-
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paring states (e.gequals ), as used for instance in our Rostra approach (Chapter 3). Symatra ca
then generate tests that instead of subsumption use these user-prawvidgdns for comparing
state. This leads to a potential loss of intra-method path coverage but&feditr, user-controlled
exploration. To explore longer sequences, Symstra can also usersthedéistics [VPK04,BPS00]

for selecting only a set of paths instead of exploring all paths.

Limitations. The use of symbolic execution has inherent limitations. For example, it caneot
cisely handle array indexes that are symbolic variables. This situatiomsoiccsome classes, such
asDisjSet andHashMap used previously in evaluating Rostra (Chapter 3). One solution is to
combine symbolic execution with (exhaustive or random) exploration basedrrete arguments:
a static analysis would determine which arguments can be symbolically exeantethr the rest,
the user would provide a set of concrete values [Fou].

So far we have discussed only methods that take primitive arguments. Weat clirectly trans-
form non-primitive arguments into symbolic variables of primitive type. Howewe can use
the standard approach for generating non-primitive arguments: dgertieean also as sequences of
method calls that may recursively require more sequences of method oabsgmtually boil down
to methods that have only primitive values (ol ). (Note that this also handles mutually recursive
classes.) JCrasher [CS04] and Eclat [PEQ5] take a similar approawthé solution is to trans-
form these arguments into reference-type symbolic variables and entiensymbolic execution to
support heap operations on symbolic references. Concrete objprdseating these variables can
be generated by solving the constraints and setting the instance elds esatjon. However, the
collected constraints are often not suf cient to generate legal instaimcedich case an additional

object invariant is required.
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Table 4.2: Experimental results of test generation using Symstra and tbeet®sstate approach

Symstra Concrete-State Approach
class N time| stateg testy %cov time| stateg testy %cov
UBStack 5 0.95 22 43(5)] 92.3 4,98/ 656| 1950(6) 92.3

6 4.38 30 67(6)| 100.0 31.83 3235 13734(7) 100.0
7 7.20 41 91(6)| 100.0| *269.68|*10735|*54176(7) *100.0
8 10.64 55| 124(6) 100.0 - - - -
IntStack 5 0.23 12 18(3)] 55.6 12.76 4836 5766(4) 55.6
6 042 16 24(4) 66.7 - - - -
7 0.50, 20 32(5)| 88.9 | *689.02/*30080|*52480(5) *66.7
8 0.62 24 40(6)| 100.0 - - - -
BinSearchTree| 5 7.06 65| 350(15) 97.1 4.80 188| 1460(16) 97.1
6 28.53 197| 1274(16) 100.0 23.05 731 7188(17) 100.0
7 136.82 626/ 4706(16) 100.0 - - - -
8 | *317.76|*1458|*8696(16) *100.0 - - - -
BinomialHeap | 5 1.39 6 40(13) 84.3 4.97 380 1320(12) 84.3
6 2.55 7 66(13) 84.3 50.92 3036/12168(12) 84.3
7 3.80 8| 86(15) 90.0 - - - -
8 8.85 9| 157(16) 914 - - - -
LinkedList 5 0.56 6 25(5)| 100.0| 32.61] 3906 8591(6) 100.0
6 0.66 7 33(5)| 100.0| *412.00] *9331|*20215(6) *100.0
7 0.78 8 42(5) 100.0 - - - -
8 0.95 9 52(5)| 100.0 - - - -
TreeMap 5 3.20 16| 114(29) 76.5 3.52 72| 560(31) 76.5
6 7.78 28| 260(35) 82.9 12.42 185| 2076(37) 82.9
7 19.45 59| 572(37) 84.1 41.89 537| 6580(39) 84.1
8 63.21 111| 1486(37) 84.1 - - - -
HeapArray 5 1.36 14 36(9) 75.9 3.75 664 1296(10) 75.9
6 259 20| 65(11) 89.7 - - - -
7 4.78 35| 109(13) 100.0 - - - -
8 11.20 54| 220(13) 100.0 - - - -
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Chapter 5

TEST SELECTION FOR INSPECTION

In practice, developers tend to write a relatively small number of unit tekishvin turn tend to
be useful but insuf cient for high software quality assurance. Souteraatic test-generation tools,
such as Parasoft Jtest [Par03], attempt to Il the gaps not covereshypynanually generated unit
tests; these tools can automatically generate a large number of unit test inpuésdise the pro-
gram. However, there are often no expected outputs (oracles) fer slwesmatically generated test
inputs and the tools generally only check the program's robustneskionbeehether any uncaught
exception is thrown during test executions [KJS98, CS04]. Manualijyimy the outputs of such
a large number of test inputs requires intensive labor, which is usually atipata Unit-test selec-
tion is a means to address this problem by selecting the most valuable subisetotomatically
generated test inputs. Then programmers can inspect the executioissrfitih smaller set of test
inputs to check the correctness or robustness, and to add oracles.

If a priori speci cations are provided with a program, the execution of automaticallgrgen
ated test inputs can be checked against the speci cations to determineibetmess. In addition,
speci cations can guide test generation tools to generate test inputs.x&mpée, the precondi-
tions in speci cations can guide test generation tools to generate only valiohpegs that satisfy
the preconditions [Par03, BKM02]. The postconditions in speci caticas guide test generation
tools to generate test inputs to try to violate the postconditions, which are fqdsiag test in-
puts [Par03, KAY96, Gup03]. Although speci cations can bring us miagye ts in testing, speci -
cations often do not exist in practice.

We have developed theperational violationapproach: a black-box test generation and selec-
tion approach that does not requar@riori speci cations. Anoperational abstractiomescribes the
actual behavior during program execution of an existing unit test suNME®8]. We use the gen-
erated operational abstractions to guide test generation tools, so thablthean more effectively

generate test inputs that violate these operational abstractions. If thetiereof an automati-
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cally generated test input violates an operational abstraction, we setetetsthinput for inspection.
The key idea behind this approach is that the violating test exercises aeatwef of program
behavior that is not covered by the existing test suite. We have implementeappitisach by in-
tegrating Daikon [ECGNO01] (a dynamic invariant detection tool) and the cowiaiétarasoft Jtest
4.5 [Par03].

The next section describes the example that we use to illustrate our appr8ackion 5.2
presents the operational violation approach. Section 5.3 describespbenesnts that we con-

ducted to assess the approach and then Section 5.4 concludes.

5.1 Example

This section presents an example to illustrate how programmers can usepoosacpto test their
programs. The example is a Java implementati8stack of a bounded stack that stores unique
elements of integer type. Figure 5.1 shows the class including several nietblednentations that
we shall refer to in the rest of the chapter. Stotts et al. coded this Java imyibdioe to experiment
with their algebraic-speci cation-based approach for systematicallytiogeanit tests [SLA02];
they provided a web link to the full source code and associated test ssiitéts et al. also speci ed
formal algebraic speci cations for the bounded stack.

In the class implementation, the array edtems contains the elements of the stack, and the
integer eld numberOfElements is the number of the elements and the index of the rst free
location in the stack. The integer elohax is the capacity of the stack. Thwp method simply
decreasesumberOfElements . Thetop method returns the element in the array with the index
of numberOfElements-1  if numberOfElements >= 0 . Otherwise, the method prints an error
message and returas as an error indicator. ThgetSize method returnaumberOfElements
Given an element, theMember method returnsrue if it nds the same element in the subarray
of elems up tonumberOfElements , and returndalse otherwise.

Stotts et al. have created two unit test suites for this class: a basic JUIBJG&st suite (8
tests), in which one test method is generated for a public method in the targsetatal a JAX test
suite (16 tests), in which one test method is generated for an axiaf&Stack 's algebraic speci -

cations. The basic JUnit test suite does not expose any fault but dhe #\X test cases exposes
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public class UBStack f

private int [l elems;
private int numberOfElements;
private int max;

public  UBStack() f
numberOfElements = 0;
max = 2;

elems = new int [max];

g
public void push( int k) f .. g
public void pop() f numberOfElements--; g

public int top() f
if (numberOfElements < 1) f
System .out.printin("Empty Stack");
return -1,
g else f

return  elems[numberOfElements-1];

g
public int getSize() f return  numberOfElements; g
public boolean isMember( int k) f
for (int index=0; index<numberOfElements; index++)
if (k==elems[index])
return true

return false

Figure 5.1: TheuBStack program

one fault (handling aop operation on an empty stack incorrectly). In practice, programmers usu-
ally x the faults exposed by the existing unit tests before they augment thiéast suite. In this
example and for our analysis of our approach, instead of xing the sagbdault, we remove this

fault-revealing test case from the JAX test suite to make all the existing B¢ pass.
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5.2 Operational Violation Approach

In this work, the objective aofinit-test selectiois to select the most valuable subset of automatically
generated tests for inspection and then use these selected tests to augnesistithg tests for a
program unit. More precisely, we want to select generated tests tosxerprogram unit's new
behavior that is not exercised by the existing tests. Since manual efi@tusred to verify the
results of selected test inputs, it is important to select a relatively small nuohbests. This is
different from the problems that traditional test selection techniqguesasld€R99, HMEO3]. In
those problems, there are test oracles for unselected test inputs.fofeeselecting a relatively
large number of tests during selection is usually acceptable for those mstbet is not practical
in this work. More formally, the objective of unit-test selection in this contexbignswer the

following question as inexpensively as possible:

Problem. Given a program unit u, a set S of existing tests for u, and a test t from &' st
generated tests for u, does the execution of t exercise at least oneatare fihat is not exercised

by the execution of any test in S?

If the answer is yeg, is removed frons' and put intoS. Otherwiset is removed frons' and
discarded. In this work, the initial s8tcomprises the existing unit tests, which are usually manually
written. The seB' of unselected tests is automatically generated tests.

The termfeatureis intentionally vague, since it can be de ned in different ways. For exangp
new feature could be fault-revealing behavior that does not occingiilire execution of the existing
tests. A new feature could be a predicate in the speci cations for the uRBQL A new feature
could be program behavior exhibited by executing a new structural esuitis, as statement, branch,
or def-use pair.

Our operational violation approach uses operational abstractions tactéidze program fea-
tures. Anoperational abstractions a collection of logical statements that abstract the program's
runtime behavior [HMEOQS3]. Itis syntactically identical to a formal speci catién contrast to a for-
mal speci cation, which expresses desired behavior, an operatibsttbation expresses observed
behavior. Daikon [ECGNO1], a dynamic invariant detection tool, can led trs infer operational
abstractions (also called invariants) from program executions of téessihese operational ab-

stractions are in the form of DbC annotations [Mey92, LBR98, ParO2jik@ examines variable
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values computed during executions and generalizes over these vallxsaitoaperational abstrac-
tions. Like other dynamic analysis techniques, the quality of the test suitdsaffee quality of the
analysis. De cient test suites or a subset of suf cient test suites mapeip to infer a generaliz-
able program property. Nonetheless, operational abstractionsadfieom the executed test suites
constitute a summary of the test execution history. In other words, thetexexof the test suites

all satisfy the properties in the generated operational abstractions.

Our approach leverages an existing speci cation-based test gemei@bido generate new tests
and selects those generated tests that violate the operational abstradtmesl iffom the existing
tests. Our implementation uses Parasoft Jtest 4.5 [Par03]. Jtest can taatlyngenerate unit
tests for a Java class. When speci cations are provided with the classcdtemake use of them
to perform black-box testing. The provided preconditions, postconditionclass invariants give
extra guidance to Jtest in its test generation. If the code has precondiitesstries to generate
test inputs that satisfy all of them. If the code has postconditions, Jtestajes test inputs that
verify whether the code satis es these conditions. If the code has cleasants, Jtest generates
test inputs that try to make them fail. By default, Jtest tests each method byatiege@rguments
for them and calling them independently. In other words, Jtest basicakythéecalling sequences
of length one by default. Tool users can set the length of calling seqaenche range of one to
three. If a calling sequence of length three is speci ed, Jtest rst tllesalling sequences of length
one followed by all those of length two and three sequentially.

Section 5.2.1 next explains the basic technique of the approach. Secti@npBeBents the
precondition removal technique to complement the basic technique. Secti@ndgstribes the

iterative process of applying these techniques.

5.2.1 Basic technique

In the basic technique (Figure 5.2), we run the existing unit test suite orrdlgegon that is instru-
mented by the Daikon front end. The execution produces a data tracshleh contains variable
values computed during execution. Then we use Daikon to infer operbsibsimactions from the
data trace le. We extend the Daikon toolset to insert the operational akbistra into the source

code as DbC annotations. We feed the resulting annotated code to Jtebtawtnimatically gener-
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Figure 5.2: An overview of the basic technique

ates and executes new tests. The two symptoms of an operational violatitwateae operational
abstraction is evaluated to ksse , or that an exception is thrown while evaluating an operational
abstraction. When a certain number of operational violations have ecchafore Jtest exhausts
its testing repository, Jtest stops generating test inputs and reportsiap&raiolations. Jtest ex-
ports all the operational violations, including the violating test inputs, to a text Given the
exported text le, we automatically comment out the violated operational atitng in the source
code. At the same time, we collect the operational violations. Then we intekeabain, which
is given the program with reduced operational abstractions. We rédpegateceding procedure it-
eratively until we cannot nd any operational violations. We call thesattens asnner iterations
to avoid their being confused with the iterations described in Section 5.2.3.inke iterations
mainly comprise the activities of Jtest's test generation and execution, dtesdton report, and
our violated-operational-abstraction collection and removal. These inmatigtes enable Jtest to

fully generate violating tests.

Given the collected operational violations, we select the rst encouthtexst for each violated
operational abstraction. So when there are multiple tests that violate the samaéiayal abstrac-

tion, we select only the rst encountered one instead of all of them. Sirssdegted violating test
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might violate multiple operational abstractions, we group together all of theatpeal abstractions
violated by the same test. Then we sort the selected violating tests based omther of their vi-

olated operational abstractions. We put the tests that violate more operatisiractions before
those that violate fewer ones. The heuristic behind this is that a test thaegiolre operational
abstractions might be more valuable than a test that violates fewer onen.piggammers cannot

afford to inspect all violating tests, they can inspect just the top parts qirtbetized tests.

We nally produce a JUnit [GBO03] test class, which contains the sorteafistolating test in-
puts as well as their violated operational abstractions. We developedfarseqgration tools in Perl
to fully automate the preceding steps, including invoking Daikon and Jtesp@stdrocessing the
text le. After running the integration tools, programmers can then exeauitespect the resulting
sorted tests to verify the correctness of their executions. Optionallyrgrogers can add assertions

for the test inputs as test oracles for regression testing.

One example of operational violations is shown in Figure 5.3. The exampletedia de -
ciency of the JAX test suite. The top part of Figure 5.3 shows two reld¢eatd (JAX Tests 1 and 2)
used for inferring thésMember method's two violated postconditionassertTrue in the tests is
JUnit's built-in assertion method). The postconditions are followed by thetingléest input gen-
erated by Jtest. In the postconditio@ypost is used to denote postconditions. Tme keyword is
used to refer to the value of an expression immediately before calling the métleayntax to use
$pre is $pre(expressionType, expression) . Thes$result keyword is used to represent

the return value of the method.

The violated postconditions show the following behavior exhibited by the egistists:

2 TheisMember(3) method is invoked iff its return value taie .

2 TheisMember(3) method is invoked iff theumberOfElements  (after the method invoca-

tion) is 1.

The test input of invokingsMember(3) method on an empty stack violates these two ungeneral-

izable postconditions.
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JAX Test 1:
UBStack stack = new UBStack();
assertTrue(!stack.isMember(2));
JAX Test 2:
UBStack stackl = new UBStack();
UBStack stack2 = new UBStack();
stackl.push(3);
assertTrue(stackl.isMember(3));
stackl.push(2);
stackl.push(l);//because max is 2, this push cannot put 1 in to stackl
stack2.push(3);
stack2.push(2);
/lthe following assertion makes sure 1 is not in stackl

assertTrue(stackl.isMember(1l) == stack2.isMember(1));

Inferred postconditions for isMember:
@post: [($pre(int, k) == 3) == ($result == true)]
@post: [($pre(int, k) == 3) == (this.numberOfElements == 1) ]

Violating Jtest-generated test input:

UBStack THIS = new UBStack ();
boolean RETVAL = THIS.isMember (3);

Figure 5.3: An example of operational violations using the basic technique

5.2.2 Precondition removal technique

In the basic technique, when the existing test suite is de cient, the infemszbpditions might
be overconstrained so that Jtest Iters out valid test inputs during tewrggon and execution.
However, we often need to exercise the unit under more circumstanaesviia is constrained
by the inferred overconstrained preconditions. To address thistebei® feed the annotated code
to Jtest, we use a script to automatically remove all inferred preconditiodsyarthus enable
Jtest to exercise the unit under a broader variety of test inputs. IncEadving preconditions can
make test generation tools less guided, especially those tools that genstat@amly based on
preconditions [BKMO02]. Another issue with this technique is that removingrietl preconditions
allows test generation tools to generate invalid test inputs if some values omgtar type are

invalid.
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Figure 5.4 shows one example of operational violations and the use of thisqae.@invariant
is used to denote class invariants. The example indicates a de ciency oasie JJnit test suite,
and the violating test exposes the fault detected by the original JAX test Jiieeviolated post-

conditions and invariant show the following behavior exhibited by the exisésts:

2 After the invocation of theoop() method, the element on top of the stack is equal to the

element on the second to top of the stack before the method invocation.

2 After the invocation of th@op() method, thenumberOfElements  is equal to0 or 1.

2 In the entries and exits of all the public methods, thenberOfElements  is equal to0, 1,

or2.

Since the capacity of the stack2s the inferred behavior seems to be normal and consistent
with our expectation. Jtest generates a test that invppg§ on an empty stack. In the exit of
the pop() method, thenumberOfElements is equal to-1 . This value causes the evaluation of
the rst postcondition to throw an exception, and the evaluation of the skpostcondition or the
invariant to get thdalse value. By looking into the speci cations [SLA02] fasBStack , we can
know that the implementation does not appropriately handle the case wherepthe method is
invoked on an empty stack; the speci cations specify that the empty stackdbsimaintain the same
empty state when theop() method is invoked.

The example in Figure 5.5 shows a de ciency of the JAX test suite, and thativig test exposes
another new fault. This fault is not reported in the original experimenA[&]. The inferred
postcondition states that the method return is equal tdf the numberOfElements  is equal to
0. The code implementer uses as the error indicator for calling thep() method on an empty
stack instead of atopEmptyStack  exception speci ed by the speci cations [SLA02] . According
to the speci cations, this stack should also accommodate negative integengdethés operational
violation shows that usingl as an error indicator makes tk@p method work incorrectly when
the-1 element is put on top of the stack. This is a typical value-sensitive faulesed a full-
path-coverage test suite cannot guarantee to expose this fault. Tibédadmique does not report
this violation because of the overconstrained preconditions. The existgash only positive

integers into the stack, so Daikon infers several preconditions faothanethod, which prevent
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Basic JUnit Test 1:
UBStack stack = new UBStack();
stack.push(3);
stack.pop();
Basic JUnit Test 2:
UBStack stack = new UBStack();
stack.push(3);
stack.push(2);
stack.pop();

Inferred postconditions for pop:
@post: [( this.elems[this.numberOfElements] ==
this.elems[$pre(int, this.numberOfElements)-1] )]
@post: [this.numberOfElements == 0 ||
this.numberOfElements == 1]

Inferred class invariant for UBStack:

@invariant: [this.numberOfElements == 0 ||
this.numberOfElements == 1 ||
this.numberOfElements == 2]

Violating Jtest-generated test input:
UBStack THIS = new UBStack ();
THIS.pop ();

Figure 5.4: The rst example of operational violations using the precondigonoval technique

the-1 element from being on top of the stack. One such precondition is:
@pre: for (int i = 0 ; i <= this.elems.length-1; i++)
$assert ((this.elems[i] >= 0));
where@pre is used to denote a precondition ebabsert is used to denote an assertion statement

within the loop body. Both the loop and the assertion statement form the mlidoan

5.2.3 lterations

After we perform the test selection using the techniques in Sections 5.28. 28dwe can further
run all the violating tests together with the existing ones to infer new operatidastilactions. By

doing so, we can automatically remove or weaken the operational abstragtitated by the vi-
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JAX Test 3:
UBStack stack = new UBStack();
stack.push(3);
stack.push(2);
stack.pop();
stack.pop();
stack.push(3);
stack.push(2);
int oldTop = stack.top();

JAX Test 4:
UBStack stack = new UBStack();
assertTrue(stack.top() == -1);

JAX Test 5:
UBStack stackl = new UBStack();
UBStack stack2 = new UBStack();
stackl.push(3);
assertTrue(stackl.top() == 3);
stackl.push(2);
stackl.push(1);
stack2.push(3);
stack2.push(2);
assertTrue(stackl.top() == stack2.top());
stackl.push(3);
assertTrue(stackl.top() == 3);

Inferred postcondition for top:
@post: [($result == -1) == (this.numberOfElements == 0)]

Violating Jtest-generated test input:
UBStack THIS = new UBStack ();
THIS.push (-1);
int RETVAL = THIS.top ();

Figure 5.5: The second example of operational violations using the piiticorremoval technique

olating tests. Based on the new operational abstractions, Jtest mighaigenew violating tests
for the weakened or other new operational abstractions. We repeptdbess described in Sec-
tions 5.2.1 and 5.2.2 until there are no reported operational violations ortlhatilser-speci ed

maximum number of iterations has been reached. We call these iterationgeasterations Dif-
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(1st iteration)
Inferred postcondition for isMember:

@post: [($result == true) == (this.numberOfElements == 1)]

Violating Jtest-generated test input:
UBStack THIS = new UBStack ();
THIS.top ();

THIS.push (2);
boolean RETVAL = THIS.isMember (1);

(2nd iteration)
Inferred postcondition for isMember:
@post:[($result == true) $implies (this.numberOfElement s == 1)]

Violating Jtest-generated test input:
UBStack THIS = new UBStack ();
THIS.push (2);

THIS.push (0);
boolean RETVAL = THIS.isMember (0);

Figure 5.6: Operational violations during iterations

ferent from the inner iterations described in Section 5.2.1, these outdrateraperate in a larger
scale. They mainly comprise the activities of the existing tests' execution, Daikperational-
abstraction generation, our DbC annotation insertion, the inner iteratioth®ua test selection and
augmentation. We have used a script to automate the outer iterations. Inttbetheschapter, for

the sake of brevity, iterations will refer to outer iterations by default.

Figure 5.6 shows two operational violations during the rst and secondtiters on the JAX
test suite. The JAX test suite exhibits that the return ofisMember() method istrue iff the
numberOfElements  after the method execution is equal Xo In the rst iteration, a violating
test shows that if theaumberOfElements  after the method execution is equalitpthe return of
theisMember() method is not necessarityue (it can befalse ). After the rst iteration, we
add this violating test to the existing test suite. In the second iteration, with threesuigd test
suite, Daikon infers an updated postcondition by weakeningthgredicate (meaning iff or ) to

the $implies  predicate (meaniny ). The updated postcondition shows that if the return of the
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isMember() method istrue , thenumberOfElements after the method execution is equalito
In the second iteration, another violating test shows that if the return ofNenber() method
is true , thenumberOfElements after the method execution is not necessarily equal (ib can
be equal t@2). After the second iteration, we add this violating test to the existing test suite. |
the third iteration, Daikon eliminates thfimplies  predicate since Daikon does not observe any

correlation between the return of teember() method and thaumberOfElements

5.3 Evaluation

Testing is used not only for nding bugs but also for increasing oura@emce in the code under test.
For example, generating and selecting tests for achieving better struzmiveshge can increase our
con dence in the code although they do not nd bugs; indeed, thesedantbe used as regression
tests executed on later versions for detecting regression bugs. Altlmamgtpproach tries to I
gaps in the existing test suite or to identify its weakness in order to improve its qoalitgpproach
does not intend to be considered as a general approach for gegenadirselecting tests (based on
the current program version) to increase the existing test suite's tigpabexposing future arbi-
trarily introduced bugs (on future program versions) during progratimtenance. Therefore, when
we designed our experiments for assessing the approach, we dicermattestion testing [BDLS80]
to measure the capability of the selected tests in nding arbitrary bugs in gletestead, we con-
ducted experiments to primarily measure the capability of the selected testsafimg\aomalous
behavior on the real code, such as revealing a fault in terms of coesecor a failure in terms of
robustness. We do not distinguish these two types of anomalous behewérde in the absence of
speci cations we often could not distinguish these two cases precisetexXample, the violating
tests shown in Figure 5.4 and Figure 5.5 would have been consideredatid bests for reveal-
ing failures if the actual precondition fpop() were(this.numberOfElements > 0) and the
actual precondition fopush(int k) were(k >= 0) ; however, these two tests are valid fault-
revealing tests based @BStack 's speci cations [SLA02]. Indeed, we could try to hand-construct
speci cations for these programs; however, the code implementation anochents for these pro-
grams alone are not suf cient for us to recover the speci cationsdeigfly preconditions) easily

and we do not have easy access to the program intentions originally gesidiade authors' mind.
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Note that if a selected test does not expose anomalous behavior, it mighitcstile value in lling
gaps in the existing test suite. However, in the absence of speci catiomsuit be too subjective
in judging these tests in terms of providing value; therefore, we did nobperéuch a subjective
judgement in our experiments.

In particular, the general questions we wish to answer include:

1. Is the number of automatically generated tests large enough for progrartoalopt unit-

test selection techniques?

2. Is the number of tests selected by our approach small enough forapromrs to inspect
affordably?

3. Do the tests selected by our approach have a high probability of egparsimalous program

behavior?

4. Do the operational abstractions guide test generation tools to betteatpetests for violating

the operational abstractions?

We cannot answer all of these questions easily, so we designed experitoaive an initial
sense of the general questions of ef cacy of this approach. In thairéng of this section, we rst
describe the measurements in the experiments. We then present the expiasimeémentation. We

nally describe the experimental results and threats to validity.

5.3.1 Measurements

In particular, we collected the following measurements to address thes@qgsetirectly or indi-

rectly:

2 Automatically generated test count in the absence of any operationad@hstr@¢AutoT ):
We measured the number of tests automatically generated by Jtest alone isetheeatif any
operational abstraction. We call these testsraguided-generated testEhis measurement is

related to the rst question.

2 Selected test count$elT ): We measured the number of the tests selected by a test selection

technique. This measurement is related to the second question, as welf@sgtheuestion.
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2 Anomaly-revealing selected test couART): We measured the number of anomaly-revealing
tests among the selected tests. These anomaly-revealing tests expose aspnogiam be-
havior (related to either faults in terms of correctness or failures in ternobasiness). After
all the iterations terminate, we manually inspect the selected tests, violated mubistots,
and the source code to determine the anomaly-revealing tests. Althoughsbeeliction
mechanism described in Section 5.2.1 guarantees that no two selected teststhiensame
set of postconditions, multiple anomaly-revealing tests might suggest the saooagition
or expose the same fault in different ways. This measurement is relategltturth question,

as well as the fourth question.

We collected thetAutoT measurement for each subject program. We collected$e and
#ART measurements for each combination of the basic/precondition removal teebnigubject
programs, and number of iterations. These measurements help answest tiiveee questions.

To help answer the fourth question, we used Jtest alone to produceladgyenerated tests,
then ran the unguided-generated tests, and check them against thttonadabstractions (keeping
the preconditions) generated from the existing tests. We selected thosieleshgenerated tests
that satis ed preconditions and violated postconditions. We then collectedS#lg and#ART
measurements for each subject program, and compared the measureitieti® vwwnes for the
basic technique.

In addition, we used Jtest alone to produce unguided-generated testgaththe unguided-
generated tests, and check them against the operational abstraaioosi(rg the preconditions)
generated from the existing tests. We selected those unguided-gertesttethat violated post-
conditions. We then collected thSelT and#ART measurements for each subject program, and

compared the measurements with the ones for the precondition removal tezhniq

5.3.2 Experiment instrumentation

Table 5.1 lists the subject programs that we used in the experiments. Egebtqrbgram is a
Java class equipped with a manually written unit test suite. The rst columwsslize names
of the subject programs. The second and third columns show the numpeblaf methods, and

the number of lines of executable code for each program, respectiveé/fourth column shows
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Table 5.1: Subject programs used in the experiments.

program #pmethod| #loc | #tests| #AutoT | #EXT
UB-Stack(JUnit) 11 47 8 96 1
UB-Stack(JAX) 11| 47 15 96 1
RatPoly-1 13| 161 24 223 1
RatPoly-2 13| 191 24 227 1
RatPolyStack-1 13 48 11 128 4
RatPolyStack-2 12 40 11 90 3
BinaryHeap 10 31 14 166 2
BinarySearchTree 16 50 15 147 0
DisjSets 4 11 3 24 4
QueueAr 7 27 11 120 1
StackAr 8 20 16 133 1
StackLi 9 21 16 99 0

the number of test cases in the test suite of each program. The last two cquesesnt some

measurement results that we shall describe in Section 5.3.3.

Among these subjectsB-Stack(JUnit) andUB-Stack(JAX) are the example (Section 5.1)
with the basic JUnit test suite and the JAX test suite (with one failing test refovesbec-
tively [SLAO2]. RatPoly-1 /RatPoly-2 andRatPolyStack-1 /RatPolyStack-2  are the stu-
dent solutions to two assignments in a programming course at MIT. Theséeskdolutions passed
all the unit tests provided by instructors. The rest of the subjects comedrdata structures text-
book [Wei99]. Daikon group members developed unit tests for 10 datatgteuclasses in the
textbook. Most of these unit tests use random inputs to extensivelyigxeéhe programs. We ap-
plied our approach on these classes, and ve classes (the last ve anih of Table 5.1) have at

least one operational violation.

In the experiments, we used Daikon and Jtest to implement our approactiewdeped a set
of Perl scripts to integrate these two tools. In Jtest's con guration for ¥peements, we set the
length of calling sequence as two. We used Daikon's default con gurdtinthe generation of op-

erational abstractions except that we turned on the inference of caraitivariants. In particular,



91

we rst ran Jtest on each subject program to collect#thetoT measurement in the absence of any
operational abstraction. We exported the unguided-generated tesecfoprogram to a JUnit test
class. Then for each program, we conducted the experiment usingdicgdszhnique, and repeated

it until we reached the third iteration or until no operational violations wepented for the opera-
tional abstractions generated from the previous iteration. At the endchfitmation, we collected
the#SelT and#ARTmeasurements. We performed a similar procedure for the preconditionaemov

technique.

5.3.3 Experimental results

The fth column of Table 5.1 shows th#AutoT results. From the results, we observed that except
for the especially smalbisjSets  program, Jtest automatically generated nearly 100 or more tests.
We also tried setting the length of the calling sequence to three, which cawestdalproduce
thousands of tests for the programs. This shows that we need test selectiniques since it is not
practical to manually check the outputs of all these automatically generated tests

The last column#ExT) of Table 5.1 shows the number of the automatically generated tests that
cause uncaught runtime exceptions. In the experiments, since all theleztiosy methods under
comparison additionally select this type of tests, #8elT and#ART measurements do not count
them for the sake of better comparison.

Table 5.2 and Table 5.3 show t&elT and#ART measurements for the basic technique and
the precondition removal technique, respectively. In either tableit¢hation 1, iteration 2, and
iteration 3columns show the results for three iterations. In Table 5.2uttgriidedcolumn shows
the results for selecting unguided-generated tests that satisfy precoaditid violate postcondi-
tions. In Table 5.3, thenguidedcolumn shows the results for selecting unguided-generated tests
that violate postconditions (no matter whether they satisfy preconditionsjther table, for those
#SelT with the value of zero, their entries and their associa#®dT entries are left blank. The
bottom two rows of either table show the median and average percentagg@RTadmong#SelT .

In the calculation of the median or average percentage, the entries w#ti® value of zero are

not included.

The numbers of tests selected by both techniques vary across difieoginams but on average
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Table 5.2: The numbers of selected tests and anomaly-revealing seletsadsiag the basic tech-
nique for each iteration and the unguided-generated tests

program iteration 1 iteration 2 iteration 3 unguided
#SelT #ART | #SelT #ART | #SelT #ART | #SelT #ART

UB-Stack(JUnit) 1 0 2 0
UB-Stack(JAX) 3 0
RatPoly-1 2 2
RatPoly-2 1 1 1 1
RatPolyStack-1
RatPolyStack-2 1 0
BinaryHeap 3 2 1 0 2 2
BinarySearchTree
DisjSets 1 1 1 1
QueueAr 6 1 2 1
StackAr 5 1 1 0 1 1
StackLi

mediang¢ART#SelT ) 20% 0% 0% 100%

averagefART/#SelT ) 45% 25% 0% 88%

their numbers are not large, so their executions and outputs could bedevith affordable human
effort. The basic technique selects fewer tests than the precondition akteotanique. This is
consistent with our hypothesis that the basic technique might overconssaigeneration tools.
We observed that the number of tests selected by either technique is highethehnumber of
tests selected by checking unguided-generated tests against opéedigirections. This indicates
that operational abstractions guide Jtest to better generate tests to viotate Speci cally, the

precondition removal technique gives more guidance to Jtest for dempaaomaly-revealing tests
than the basic technique. There are only two subjects for which the babitiqae generates
anomaly-revealing tests but Jtest alone does not generate any (shdablén5.2); however, the
precondition removal technique generates more anomaly-revealing tastdtéish alone for most

subjects (shown in Table 5.3).

We observed that, in the experiments, the selected tests by either technigwehtigh probabil-

ity of exposing anomalous program behavior. In the absence of spéicires, we suspect that many
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Table 5.3: The numbers of selected tests and anomaly-revealing seletde$ileg the precondition
removal technique for each iteration and the unguided-generated tests

program iteration 1 iteration 2 iteration 3 unguided
#SelT #ART | #SelT #ART | #SelT #ART | #SelT #ART
UB-Stack(JUnit) 15 5 6 1 1 0 4 1
UB-Stack(JAX) 25 9 4 0 3 1
RatPoly-1 1 1
RatPoly-2 1 1 1 1
RatPolyStack-1 12 8 5 2 1 0
RatPolyStack-2 10 7 2 0
BinaryHeap 8 6 8 6 6 0 4 3
BinarySearchTree 3 3 1 1
DisjSets 2 2 1 1
QueueAr 11 1 4 1 4 1
StackAr 9 1 1 0 1 1
StackLi 2 0 1 0
mediang¢ART/#SelT ) 68% 17% 0% 75%
averagefART/#SelT ) 58% 22% 0% 62%

of these anomaly-revealing tests are failure-revealing test inputs; pnogges can add precondi-
tions, condition-checking code, or just pay attention to the undesirabkvimehwhen the code's

implicit assumptions are not written down.

We describe a concrete case for operational violations in the experinsdotoas. RatPoly-1
andRatPoly-2  are two student solutions to an assignment of implememutgoly , which rep-
resents an immutable single-variate polynomial expression, suddi asx‘i 10°, and “x3| 2o
x2+53 ax +3”. In RatPoly 's class interface, there is a methdiy for RatPoly ‘s division
operation, which invokes another methixjree ; degree returns the largest exponent with a non-
zero coef cient, or 0 if theRatPoly is “0”. After we ran with Daikon the instructor-provided test
suite on bottRatPoly-1  andRatPoly-2 , we got the same DbC annotations for both student solu-
tions. The precondition removal technique selects one violating test forstadent solution. The
selected violating test fdRatPoly-1 is different from the one foRatPoly-2 ; this result shows

that Jtest takes the code implementation into account when generating testatthie given DbC
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Inferred postcondition for degree:

$result >= 0

Violating Jtest-generated test input (for RatPoly-1):
RatPoly t0 = new RatPoly(-1, -1);//represents -1*x"-1
RatPoly THIS = new RatPoly (-1, 0);//represents -1*x"0
RatPoly RETVAL = THIS.div (t0);//represents (-1*x"0)/(-1 *x-1)

Violating Jtest-generated test input (for RatPoly-2):
RatPoly t0 = new RatPoly(1, 0);/represents 1*x"0
RatPoly THIS = new RatPoly (1, -1);//represents 1*x™-1
RatPoly RETVAL = THIS.div (t0);//represents (1*x™-1)/(1* x"0)

Figure 5.7: Operational violations f®atPoly-1 /RatPoly-2

annotations. The selected test fatPoly-1  makes the program in nitely loop until a Java out-
of-memory error occurs and the selected testRatPoly-2  runs normally with termination and
without throwing exceptions. These tests are not generated by Jtestwathout being guided with
operational abstractions. After inspecting the code and its comments, we tfoatrthese selected
tests are invalid, because there is a preconddion= 0 for RatPoly(int ¢, int €) . This case
shows that the operational abstraction approach can help generatptesto crash a program and

then programmers can improve their code's robustness when speci saierabsent.

We observed that although those non-anomaly-revealing selected tewts elgpose any fault,
most of them represent some special class of inputs, and thus may bbleafuselected for re-
gression testing. We observed, in the experiments, that a couple of iteratiergood enough in
our approach. Jtest's test generation and execution time dominates tlvegrtime of applying our
approach. Most subjects took several minutes, buBth&yHeap andRatPolyStack programs
took on the order of 10 to 20 minutes. We expect that the execution time captib@zed if fu-
ture versions of Jtest can better support the resumption of test geneasatioexecution after we

comment out the violated operational abstractions.
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5.3.4 Threats to validity

The threats to external validity primarily include the degree to which integratetdghrty tools, the
subject programs, and test cases are representative of true prattise threats could be reduced
by more experiments on wider types of subjects and third-party tools. d¥adésst 4.5 is one of
the testing tools popularly used in industry and the only speci cation-basgdyémeration tool
available to us at the moment. Daikon is the only publicly available tool for géngraperational
abstractions. Daikon's scalability has recently been tackled by usingniecrial algorithms for
invariant detection [PE04]. In our approach, we use Daikon to infariants based on only manual
tests in addition to selected violating tests; the size of these tests is often smallvefiodtest 4.5
is not designed for being used in an iterative way; if some operationabaliens can be violated,
we observed that the number of inner iterations can be more than a dozeheaalapsed time
could be longer than ve minutes for some subjects. We expect that thebgitglaf Jtest in
our setting could be addressed by enhancing it to support incremertgetesration when DbC
annotations are being changed. Furthermore, the elapsed time for Jtstistemeration can be
reduced by enhancing it to avoid generating redundant tests (desoribdapter 4). Alternatively
we can use other speci cation-based tools with more ef cient mechanismegbgeneration, such
as Korat [BKMO02].

We mainly used data structures as our subject programs and the progearstatvely small
(the scalability of Jtest 4.5 poses dif culties for us to try large subjectsnbtg that this is not
the inherent limitation of our approach but the limitation of one particular implementafiour
approach). Although data structures are better suited to the use of imvaeizction and design-
by-contract speci cations, Daikon has been used on wider typesogirams [Dai0O4]. The success
of our approach on wider types of programs also depends on thelyinddesting tool's capabil-
ity of generating test inputs to violate speci cations if there exist violating tqattsn We expect
that the potential of our approach for wider types of programs coulcdutiber improved if we
use speci cation-based testing tools with more powerful test generatipabddy, such as Ko-

rat [BKMO02], CnC [CS05], and our Symstra tool presented in Chapter 4

The main threats to internal validity include instrumentation effects that can brasesults.

Faults in our integration scripts, Jtest, or Daikon might cause such effecteduce these threats,
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we manually inspected the intermediate results of most program subjects. Timehngats to
construct validity include the uses of those measurements in our experimastess our approach.
We measured the number of anomaly-revealing tests to evaluate the vallectédéests. In future

work, we plan to measure some other possible attributes of the selected tests.

5.4 Conclusion

Selecting automatically generated test inputs to check correctness andnaulgenexisting unit
test suite is an important step in unit testing. Inferred operational abstractat as a summary of
the existing test execution history. These operational abstractions hntgst generation tools to
better produce test inputs to violate the abstractions. We have developegettational violation
approach for selecting generated tests that violate operational abstsadiese selected violating
tests are good candidates for inspection, since they exercise nevapréeatures that are not cov-
ered by the existing tests. We have conducted experiments on applyingpittaelp on a set of
data structures. Our experimental results have shown that the size efeéhted tests is reasonably
small for inspection, the selected tests generally expose new interestiagidreliing the gaps
not covered by the existing test suite, and the selected tests have a higihifitplof exposing

anomalous program behavior (either faults or failures) in the code.

Our approach shows a feedback loop between behavior infereddesigeneration. The feed-
back loop starts with existing tests (constructed manually or automatically) or existang pro-
gram runs. After running the existing tests, a behavior inference taoinfar program behavior
exercised by the existing tests. The inferred behavior can be exploitaddst-generation tool in
guiding its test generation, which generates new tests to exercise newdret#ome generated
tests may violate the inferred proprieties (the form of the inferred behaakthese violating tests
are selected for inspection. Furthermore, these selected tests ard@tuedxisting tests. The ex-
isting tests augmented by the new selected tests can be used by the behakémcmtool to infer
behavior that is closer to what shall be described by a speci cation (ifitaaually constructed)
than the behavior inferred from the original existing tests. The new egddsehavior can be further
used to guide test generation in the subsequent iteration. Iterations teruoniiate user-de ned

maximum iteration number has been reached or no new behavior has beeedrifom new tests.
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This feedback loop provides a means to producing better tests and bettexiapated speci ca-
tions automatically and incrementally. The feedback loop not only allows usitobgae ts of
speci cation-based testing in the absence of speci cations, but alstetacke issue of dynamic
behavior inference: the quality of the analysis results (inferred behavéavily depends on the

quality of the executed tests.
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Chapter 6

TEST ABSTRACTION FOR INSPECTION

Automatic test-generation tools can generate a large number of tests fos.awltsout a prior
speci cations, developers usually rely on uncaught exceptions oeatspe execution of generated
tests to determine program correctness. However, relying on only ghtexceptions for catching
bugs is limited and inspecting the execution of a large number of generatedstésisractical.
The operational violation approach presented in Chapter 5 selects et sfiligenerated tests for
inspection; these selected tests exhibit new behavior that has not bereised by the existing
tests. In this chapter, we present thieserver abstractiomapproach that abstracts and summarizes
the object-state-transition information collected from the execution of getktests. Instead of
inspecting the execution of individual tests, developers can inspecuthmarized object-state-
transition information for various purposes. For example, developargspect the information to
determine whether the class under test exhibits expected behavior. Penget@n also inspect the
information to investigate causes of the failures exhibited by uncaughpeus. Developers can
inspect the information for achieving better understanding of the classr test or even the tests
themselves.

From the execution of tests, we can construct an object state machine){@Stdte in an OSM
represents the state that an object is in at runtime. A transition in an OSMegpsenethod calls
invoked through the class interface transiting the object from one statetioesinStates in an OSM
can be represented by using concrete or abstract representatéroninete-state representatiof
an object, in short asoncrete object statés characterized by the values of all the elds transitively
reachable from the object (described in Section 3.2.2 of Chapter 3).nérete OSM is an OSM
whose states are concrete object states. Because a concrete OSM imoftemplicated to be
useful for understanding, we extract an abstract OSM that contagtisaat states instead of concrete
states. Arabstract stateof an object is de ned by aabstraction functiofLGO00Q]; the abstraction

function maps each concrete state to an abstract state. Our obseivactasapproach de nes
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abstraction functions automatically by usingaservey which is a public method with a non-void
return! In particular, the observer abstraction approach abstracts a conbjets state exercised
by tests based on the return values of a set of observers that aredneakthe concrete object
state. Anobserver abstractiois an OSM whose states are represented by abstract representations
that are produced based on observers. We have implemented a tool Qiadied, for the observer
abstraction approach. Given a Java class and its initial unit test (eitherafhanonstructed or
auotmatically generated), Obstra identi es concrete object states extbgisiee tests and generates
new tests to augment these initial tests. Based on the return values of alss¢nfers, Obstra maps
each concrete object state to an abstract state and constructs an OSM.

The next section describes the example that we use to illustrate our appr&action 6.2
presents the observer abstraction approach. Section 6.3 descritmgetiences of applying the

approach on several data structures and then Section 6.4 concludes.

6.1 Example

We use a binary search tree implementation as a running example to illustratesewer abstrac-
tion approach. Figure 6.1 shows the relevant parts of the code. Thehaas246 non-comment,
non-blank lines of code and its interface includes eight public methods § tteemn are observers),
some of which are a constructor (denotediig() ), boolean contains(Mylnput info) ,
void add(Mylnput info) , andboolean remove (Mylnput info) . The MyInput argu-
ment type contains an integer eld which is set through the class constructdyinput imple-
ments theComparable interface and twaMylnput are compared based on the values of their

elds. Parasoft Jtest 4.5 [Par03] generates 277 tests for the class.

6.2 Observer Abstraction Approach

We rst discuss the test argumentation technique that enables the dynatmsctiex of observer

abstractions (Section 6.2.1). We next describe object state machineg theirepresentations of

Wwe follow the de nition by Henkel and Diwan [HD03]. The de nition diffefsom the more common de nition that
limits an observer to methods that do not change any state. We havetfmirstiate-modifying observers also provide
value in our approach and state modi cation does not harm our approac
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class BST implements Set f

Node root;
static class Node f
Mylnput info;
Node left;
Node right;
g
public void add( Mylnput info) f
if (root == null ) f root = new Node(); root.info = info; g
else f

Node t = root;

while  (true ) f

if (t.info.compareTo(info) < 0) f .. g
else if (t.value.compareTo(info) > 0) f ... g
else f /* no duplicates*/ return ; g
g
g
g
public boolean remove( Mylnput info) f
Node parent = null ; Node current = root;
while  (current != null ) f
if  (info.compareTo(current.info) < 0) f .. g
else if (info.compareTo(current.info) > 0) f ... g

else f break ; g

)
if  (current == null ) return false ;

return true )

g
public boolean contains(  Mylnput info) f .. g

Figure 6.1: A set implemented as a binary search tree

observer abstractions (Section 6.2.2). We then de ne observer efistraand illustrate dynamic

extraction of them (Section 6.2.3).
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6.2.1 Test Augmentation

We use the WholeState technique to represent the concrete state of drf®b@tion 3.2.2 of Chap-
ter 3). The technique represents timcrete object statef an object as the heap rooted from the
object; the rooted heap is further linearized to a sequence of the valube adlds transitively
reachable from the object. Two concrete object states are equivdldmiifrooted heaps are iso-
morphic. A set ofnonequivalent concrete object statmmntain concrete object states any two of
which are not equivalent. fnethod-argument state characterized by a method and the values for
the method arguments (Section 4.2 of Chapter 4). Two method-argumentas&eguivalent iff
their methods are the same and the heaps rooted from their method arguraestsnarphic. A set

of nonequivalent method-argument statestain method-argument states any two of which are not

equivalent.

After we execute an initial test suite, the WholeState technique identi es aiquowalent ob-
ject states and nonequivalent method-argument states that were exdrgithe test suite. We then
apply the test augmentation technique that generates new tests to exechigmssible combina-
tion of nonequivalent object states and nonequivalent non-cotatmnethod-argument states. A
combination of a receiver-object state and a method-argument state fonethad invocation. We
augment the initial test suite because the test suite might not invoke eachiestiseall nonequiv-
alent object states; invoking observers on a concrete object stateeissaeg for us to know the
abstract state that encloses the concrete object state. The augmengeddeagiarantees the invo-
cation of each nonequivalent non-constructor method-argument stat@ch nonequivalent object
state at least once. In addition, the observer abstractions extraatethie@ugmented test suite can
better help developers to inspect object-state-transition behavior. Thdesdtypf the test aug-
mentation algorithm i©(JCSj £j MCj), whereCS is the set of the nonequivalent concrete states
exercised by the initial test suife for the class under test aldC is the set of the nonequivalent

method calls exercised By.
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6.2.2 Object State Machine

We de ne an object state machine for a clgss:

De nition 16. An object state machinfDSM)M of a classc is a sextupleM = (1, O, S, %,

., INIT ) wherel, O, andS are nonempty sets of method callscls interface, returns of these
method calls, and states df objects, respectivelyNIT 2 S is the initial state that the machine
is in before calling any constructor methodoft: S£ 1 ! P(S) is the state transition function
and, :S£ 1! P(O) is the output function wheie (S) andP (O) are the power sets of S and O,
respectively. When the machine is in a current staa@d receives a method calfrom| , it moves

to one of the next states speci edH; i) and produces one of the method returns given (syi).

In the de nition, amethod callis characterized by a method-argument state (a method and
the arguments used to invoke the method), not including the receivertaigeée. A method call
together with a receiver-object state affects the behavior of a methodaitiwvn. When a method
call in a class interface is invoked on a receiver-object state, an ghtaxception might be thrown.

To represent the state where an object is in after an exception-throwithgdneall, we introduce

a special type of states in an OSkkception statesAfter a method call on a receiver-object state
throws an uncaught exception, the receiver object is in an exceptiref@mesented by the type
name of the exception. The exception-throwing method call transits the dfgjecthe object state

before the method call to the exception state.

6.2.3 Observer Abstractions

The object states in an OSM can be concrete or abstract. The obdestraction approach automat-
ically constructs abstraction functions to map a concrete state to an ab&ttaciffiese abstraction
functions are de ned based on observers. We rst de ne an oleseiollowing previous work on

specifying algebraic speci cations for a class [HDO3]:

De nition 17. Anobserverof a classc is a methodbin c's interface such that the return type of

obis not void.

The de nition is adapted from the de nition of nite state machine [LY96];\ever, an object state machine is not
necessarily nite.
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For exampleBSTs observers includéoolean contains(Mylnput info) andboolean
remove (Mylnput info) but [init]() andvoid add(Mylnput info) are not observers.

An observer call is a method call whose method is an observer. Giversaccend a set
of observer callOB = foby;oly;::;; ok, g of ¢, the observer abstraction approach constructs an
abstraction ot with respect tdOB. In particular, a concrete stats is mapped to an abstract state
as de ned byn valuesOBR = fobr; obr,; ::;; obr,g, where each valuebr; represents the return

value of observer caih invoked oncs.

De nition 18. Given a clasg and a set of observer cal@B = foly; oby; :::; ob,g of ¢, anobserver
abstractiorwith respect t@B is an OSMM of csuch that the states M are abstract states de ned

by OB.

For example, consider one BETs observelkcontains(Mylnput info) . Jtest generates tests
that exercise two observer calls famtain : contains(a0.v:7;) andcontains(a0:null;) ,
whereai represents thé + 1) th argument andi.v represents the eld of the (i + 1) th argu-
ment. Argument values are speci ed following their argument names gepdrg “ ” and different
arguments are separated hy™Now consider eBST object's concrete staies produced by invok-
ing BST's constructor. Because invokirmgntains(a0.v:7;) or contains(a0:null;) oncs
returnsfalse , the abstract statas for csis represented bffalse , false g.

Figure 6.2 shows the observer abstractioB8f with respect to the twaontains  observer
calls and augmented Jtest-generated tests. In the gure, nodes repbst#act states and edges
represent state transitions (method calls). The top state in the gure is maitkelllIT , indicating
the object state before invoking a constructor. The second-to-top stateked with two observer
calls and theirfalse return values. This abstract state encloses those concrete statesauch th
when we invoke these two observer calls on those concrete states, theirni@ues aréalse . In

the central state, the observer calls throw uncaught exceptions anat Weeexception-type name

NullPointerException in the positions of their return values. The bottom state is an exception
state, which is marked with the exception-type naxi#PointerException . An object is in
such a state after a method call on the object throws\thiointerException . In the next

section, we shall describe transitions in observer abstractions while esergrthe technique for

extracting observer abstractions.
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[nit]O2+-[141]

contains(a0.v:7;)=false
contains{a0:null;)=false

add{a0:null;)?~[2/2] add{a0.v:7;)?/[1/1] remove(a0.v:7;)?ruel[1/1]

contains(a0.v:7;)=NullPointerException
contains{@0:null;)=NullPointerException

contains(a0.v:7;)=true
contains{a0:null;)=false

remove{a0:null;?/~[1/2]

add(a0.v:7;)?/-[2/2] /

add(a0.v:0;)?/-[1/2] ——
bdacao:nulty2r-22] /' remove(a0:null;)?/~[1/1]
ALL_ARGS [5/6] P

contains(a0.v:7;)?+[2/2]
contains{a0:null;)?/~[2/2]
ALL_ARGS [4/4]

remove(a0:null;)?/[2/2]

NullPointerException

Figure 6.2:contains  observer abstraction of BST

An OSM can be deterministic or nondeterministic. In a nondeterministic OSM gtemndinistic
transitions can offer insights into some irregular object behavior (Sectibsh®ws some examples
of exploring nondeterministic transitions). To help characterize nondetistinitransitions, we
have de ned two numbers in a dynamically extracted OSM: transition coutgraission counts.
Assume a transition transits stateSsiart t0 Seng, the transition countassociated with is the
number of concrete states enclose&ip,; that are transited t8¢nq by t. Assuman is the method
call associated with, the emission counassociated witlSsiart andm is the number of concrete
states enclosed i8sat and being at entries ah (but not necessarily being transited $gnq).

If the transition count of a transition is equal to the associated emission dhentransition is
deterministic and nondeterministic otherwise.

Each transition from a starting abstract state to an ending abstract stat&kedmath method
calls, their return values, and some counts. For example, the Jtestigentast suite foBST
includes two tests:

public class BSTTest extends TestCase f

public void testl() f

BST bl = new BST();
Mylnput m1 = new Mylnput (0);

b1l.add(md);

bl.remove( null );
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public void test2() f
BST b2 = new BST();

b2.remove( null );

The execution obl.remove(null) in testl does not throw any exception. Both before
and after invokingbl.remove(null) in testl , if we invoke the two observer calls, their return
values ardalse ; therefore, there is a state-preserving transition on the second-toatep §To
present a succinct view, by default we do not show state-presetnangitions.) The execution of
bl.remove(null) intestl throws aNullPointerException . If we invoke the two observer
calls before invokingp1.remove(null) intest2 , their return values arfalse ; therefore, given
the method execution dfl.remove(null) in test2 , we extract the transition from the second-
to-top state to the bottom state and the transition is markedrertbve(a0:null;)?/ i . Inthe
mark of a transition, when return values awéd or method calls throw uncaught exceptions, we
put “i " in the position of their return values. We put™ after the method calls and * after
return values if return values are nqt" We also attach two numbers for each transition in the
form of [N/M] , whereN is the transition count ankllis the emission count. If these two numbers
are equal, the transition is deterministic, and is nondeterministic otherwiseugetteere are two
different transitions from the second-to-top state with the same methockcaiVe(a0:null;)

(one transition is state-preserving being extracted fiestl ), the transitiorremove(a0:null;)
from the second-to-top state to the bottom state is nondeterministic, being divadhg/2] . We
display thicker edges and bold-font texts for nondeterministic transitiorthegodevelopers can

easily identify them based on visual effect.

6.2.4 Dynamic Extraction of Observer Abstractions

We dynamically extract observer abstractions of a class from unit-testiggns. The number of
the concrete states exercised by an augmented test suite is nite and théaxetthe test suite is

assumed to terminate; therefore, the dynamically extracted observerciibasare also nite.
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Given an initial test suitd@ for a classc, we rst identify the nonequivalent concrete sta@S
and method-argument stateiC exercised byl'. We then augment with new tests to exercise
CS with MC exhaustively, producing an augmented test stiteWe have described these steps
in Section 6.2.1T %exercises each nonequivalent concrete sta@Srwith each method-argument
state inM C ; therefore, each nonequivalent observer calMi€ is guaranteed to be invoked on
each nonequivalent concrete stat€ig at least once. We then collect the return values of observer
calls inMC for each nonequivalent concrete stateCif. We use this test-generation mechanism
to collect return values of observers, instead of inserting observeohetlls before and after any
call site to thec class inT, because the latter does not work for state-modifying observers, which
change the functional behavior of

Given an augmented test suif€ and a set of observer cal®B = fob;ob;:::: ohyg, we go
through the following steps to produce an observer abstradfioim the form of OSM. Initially
M is empty. During the execution @f® we collect the following tuple for each method execution
in C's interface: (CSentry ; M; MI; CSexit ), WhereCsentry , M, Mr, andcset are the concrete object
state at the method entry, method call, return value, and concrete objecatsiatemethod exit,
respectively. Ifm's return type is void, we assign “ to mr. If m's execution throws an uncaught
exception, we also assign “ to mr and assign the name of the exception typedq;; , called an
exception stateThe concrete object state at a constructor's enttiisT |, called aninitial state

After the test execution terminates, we iterate on each distinct (@sl@ry ; m; Mr; CSexit )
to produce a new tupl@sentry , M, Mr, aSexit ), Whereasenyry andaseyt are the abstract states
mapped fronTsenry andcsexit based oOB, respectively. I€seit is an exception state, its mapped
abstract state is the samecasyit , whose value is the name of the thrown-exception typesdfiy
is an initial state, its mapped abstract state is HHllT . If cseyie iS not exercised by the initial
tests before test augmentation but exercised by new tests, wesyapto a special abstract state
denoted adN=A, because we have not invok@B on csej; Yet and do not have a known abstract
state forcSqyit -

After we produceg(@sSentry , M, Mr, aSexit) from (CSentry ; M; MI; CSexit ), We then addiSentry
andaseyit toM as states, and put a transition fraisenyy t0 asexit in M . The transition is denoted
by a triple (@Sentry ; M?=mr!; aSeyit ). If @Sentry , @Sexit , OF (ASentry ; M?=Mr!; aseyit ) is already

presentirM , we do not add it. We also increase the transition countdegnry ; m?=mr!; aseyit ),
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denoted a(asyyy ;m2=mraseq )» WhiCh is initialized to one whei@sentry ; m?=mr!; asexit ) is
added toM at the rst time. We also increase the emission countdsdnyy andm, denoted as
Clasenry ;m)- After we nish processing all distinct tuple&€sentry ; M; Mr; CSexit ), We post X the
label of each transitiofasentry ; M?=mr!; asexit ) With [Caseny, im2=mr tasex: )/Casenry ;m)l- The
complexity of the extraction algorithm for an observer abstracti@(j€Sj£j OBj), whereCS is
the set of the nonequivalent concrete states exercised by an initiabitest sasndOB is the given

set of observers.

To present a succinct view, we do not displdyA states and the transitions leadingNeA
states. In addition, we combine multiple transitions that have the same startingding abstract
states, and whose method calls have the same method names and signatweesve/dombine
multiple transitions, we calculate the transition count and emission count of thkiged transi-
tions and show them in the bottom line of the transition label. When a combineditam®ntains
all nonequivalent method calls of the same method name and signature, we. BdARGS in
the bottom line of the transition label. For example, in Figure 6.2 ctimains edge from the
central state to the bottom state is labeled vfitt. _ARGS, because theontains edge com-
prisescontains(a0.v:7;) andcontains(a0:null;) , Which are the only ones faontains

exercised by the initial test suite.

When a transition contains only method calls that are exercised by newaggohéests but not
exercised by the initial tests, we display a dotted edge for the transition. &omde, in Figure 6.2,
there is a dotted edge from the right-most state to the bottom state because tbe caditfor the

edge is invoked in the augmented test suite but not in the initial test suite.

To focus on understanding uncaught exceptions, we create a sprcéition observeand
construct an observer abstraction based on it. Figure 6.3 shows tiqatiexeobserver abstraction of
BST extracted from the augmented Jtest-generated tests. The exceptioreobs&ps the concrete
states that are ndNIT or exception states to an abstract state cale&MALThe mapped abstract
state of an initial state is stilNIT and the mapped abstract state of an exception state is still the

same as the exception-type name.
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init])2/-[1/1]

add(a0.v:7;)?/-[2/4]
add(a0.v:0;)?/-[1/4]
add(a0:null;)?/-[2/4]
ALL_ARGS [5/12]

contains(a0.v:7;)?/-[2/5]
contains(a0:null;)?/-[2/5]
ALL_ARGS [4/10]

emove(a0:null;)?/-[4/5]

NullPointerException

Figure 6.3:exception  observer abstraction of BST

6.3 Evaluation

We have used Obstra to extract observer abstractions from a variptp@fams, most of which
were used to evaluate our work in the preceding chapters. Many of grlegeams manipulate
nontrivial data structures. In this section, we illustrate how we applied ®bsttwo complex data
structures and their automatically generated tests. We applied Obstra oethesgles on a MS
Windows machine with a Pentium IV 2.8 GHz processor using Sun's Javak21sh2 JVM with

512 Mb allocated memory.

6.3.1 Binary Search Tree Example

We have describeBST in Section 6.1 and two of its extracted observer abstractions in Figure 6.2
and 6.3. Jtest generates 277 tests for BST. These tests exercisenggquivalent concrete ob-
ject states in addition to the initial state and one exception state, 12 noneqtivafeconstructor
method calls in addition to one constructor call, and 33 nonequivalent metleadtéons. Obstra
augments the test suite to exercise 61 nonequivalent method executi@slapked real time for
test augmentation and abstraction extraction is 0.4 and 4.9 secondstivespec

Figure 6.3 shows thatiullPointerException is thrown by three nondeterministic transi-
tions. During test inspection, we want to know under what conditions thepdion is thrown.

If the exception is thrown because of illegal inputs, we can add negegssgonditions to guard
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against the illegal inputs. Alternatively, we can perform defensivgnamming: we can add input
checking at method entries and throw more informative exceptions if thekicigetails. How-
ever, we do not want to over-constrain preconditions, which wouldgmtdegal inputs from being
processed. For example, after inspecting the exception OSM in Figurevé.8hould not con-
sider that illegal arguments include all argumentsdad, thenull argument foremove , or all
arguments forcontains , although doing so indeed prevents the exceptions from being thrown.
After we inspected theontains OSM in Figure 6.2, we gained more information about the ex-
ceptions and found that callingdd(a0:null;) after calling the constructor leads to an unde-
sirable state: callingontains on this state deterministically throws the exception. In addition,
calling remove(a0:null;) also deterministically throws the exception and calliig throws

the exception with a high probability of 5/6. Therefore, we had more camcdein considering

null as an illegal argument fardd and preventing it from being processed. After we prevented
add(a0:null}) , two remove(a0:null;) transitions still throw the exception: one is determin-
istic and the other is with 1/2 probability. We then consideneti as an illegal argument for
remove and prevented it from being processed. We did not need to impose strigtien on the
argument ofcontains . Note that this process of understanding the program behavior dbes no

need the access to the source code.

We found that there are three different argumentsaftit but only two different arguments
for contains , although these two methods have the same signatures. We could add a method
call of contain(a0.v:0;) to the Jtest-generated test suite; therefore, we could have three ob-

server calls for theontains OSM in Figure 6.2. In the new OSM, the second-to-top state in-

cludes one more observer catintains(a0.v:0)=false and the nondeterministic transition of
remove(a0:null;) ?/-[1/2] from the second-to-top state to the bottom state is turned into a
deterministic transitiomemove(aO:null;)?/-[1/1] . In general, when we add new tests to a

test suite and these new tests exercise new observer calls in an OSM téisersthhe OSM can
be re ned, thus possibly turning some nondeterministic transitions into detetinioiges. On the
other hand, adding new tests can possibly turn some deterministic transitionemneterministic

ones.
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Figure 6.4:exception  observer abstraction amepOk observer abstraction éfashMap

Figure 6.5:get observer abstraction éfashMap

6.3.2 Hash Map Example

A HashMap class was given ifava.util. HashMap from the standard Java libraries [SM03]. A
repOK and some helper methods were added to this class for evaluating KoratQBKWhe class

has 597 non-comment, non-blank lines of code and its interface includasghli® methods (13 ob-

servers), some of which afiit]() , void setlLoadFactor(float f) ,void putAll(Map
t) , Object remove(Mylnput key) , Object put(Mylnput key, Mylnput value) , and
void clear() . Jtest generates 5186 tests fshMap. These tests exercise 58 nonequivalent

concrete object states in addition to the initial state and one exception staen@§uivalent non-
constructor method calls in addition to one constructor call, and 416 nosmepti method execu-

tions. Obstra augments the test suite to exercise 1683 nonequivalent raetications. The elapsed
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Figure 6.6:isEmpty observer abstraction ¢fashMap (screen snapshot)

real time for test augmentation and abstraction extraction is 10 and 15 secesectively.

We found that the exception OSM bfashMap contains one deterministic transition, which is
putAll(a0:null;) from NORMAIto NullPointerException , as is shown in the left part of
Figure 6.4. Therefore, we consideredl as an illegal argument fguutAll . We checked the
Java API documentation fa#ashMap [SMO03] and the documentation states thatAll  throws
NullPointerException if the speci ed map iswll . This description con rmed our judgment.
In other observer abstractions, to provide a more succinct view, ulleédbstra does not dis-
play any deterministic transitions leading to an exception state in the exception k#Eskuse the

information conveyed by these transitions has been re ected in the excép8i.

We found an error irsetLoadFactor(float f) , a method that was later added to facil-
itate Korat's test generation [BKMO02]. The right part of Figure 6.4 shdherepOk OSM of
HashMap. repOk is a predicate used to check class invariants [LGO00]. If calleygOk on
an object state returnfalse , the object state is invalid. By inspecting thepOK OSM, we
found that callingsetLoadFactor ~ with any argument value deterministically leads to an invalid
state. We checked the source codeetfoadFactor  and found that its method body is simply
loadFactor = f; , WhereloadFactor isanobject eld and is the method argument. The com-

ments for a private eldhreshold states that the value tfreshold  shall be(int)(capacity
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* loadFactor) . Apparently this property is violated when settilogdFactor ~ without updat-
ing threshold  accordingly. We xed this error by appending a call to an existing privagthod
void rehash() in the end ofsetLoadFactor 's method body; theehash method updates the
threshold  eld using the new value of thiwadFactor  eld.

Figure 6.5 shows thget OSM of HashMap. In the representation of method returns on a tran-
sition or in a stateret represents the non-primitive return value astch  represents the eld of
the non-primitive return value. Recall that a transition with a dotted edge isis&d only by new
generated tests but not by the initial tests. We next walk through the szémarhich developers
could inspect Figure 6.5. During inspection, developers might focus élpioration of an OSM
on transitions. Three such transitions akear , remove , andput . Developers are not surprised
to see thatlear orremove transitions cause a nonemptiashMap to be empty, as is shown by
the transitions from the top or bottom state to the central state. But devekmgesarprised to see
the transition ofput(a0:null;al:null) from the top state to the central state, indicating that
put can cause a nonempHashMap to be empty. By browsing the Java APl documentation for
HashMap [SMO03], developers can nd thatiashMap allows either a key or a value to il ;
therefore, thenull return ofget does not necessarily indicate that the map contains no mapping
for the key. However, in the documentation, the description for the retfrget states: “the value
to which this map maps the speci ed key, or null if the map contains no mappinbifokey.” After
reading the documentation more carefully, they can nd that the descrippiogef (but not the
description for the returns afet ) does specify the accurate behavior. This nding shows that the
informal description for the returns gét is not accurate or consistent with the descriptiogexf
even in such widely published Java APl documentation [SMO3].

Figure 6.6 shows a screen snapshot ofifiienpty OSM of HashMap. We con gured Ob-
stra to additionally show each state-preserving transition that has the sanogimathe as another
state-modifying transition. We also con gured Obstra to display on eack edty the method
name associated with the transition. When developers want to see the detatimosition, they
can move the mouse cursor over the method name associated with the trangltiberathe de-
tails are displayed. We have searched the Internet for manually createdrechines for common
data structures but few could be found. One manually created state mémhineontainer struc-

ture [Ngu98] is almost the same as tkEmpty OSM of HashMap shown in Figure 6.6. There are
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two major differences. THENIT state and thgnit]() transition are shown in Figure 6.6 but not
in the manually created state machine. The manually created state machine arfmotatest ele-
ment” for the state-preserving transiticmmove(a0) (pointed by the mouse cursor in Figure 6.6)
on theisEmpty()=false state and “last element” for the state-modifying transitemove(a0)
(shown in the middle of Figure 6.6) starting from tisEmpty()=false state; Figure 6.6 shows
these two transition names in bold font, indicating them to be nondeterministic. Méetakat some
of these manually speci ed conditions for a transition can be inferred mgusaikon [ECGNO1]

on the variable values collected in the starting state and method argumentstfangigon.

6.3.3 Discussion

Our experiences have shown that extracted observer abstractiorgelminvestigate causes of
uncaught exceptions, identify weakness of an initial test suite, nd bugglass implementation or
its documentation, and understand class behavior. Although many obabsteactions extracted
for the class under test are succinct, some observer abstractionll ar@ngplex, containing too
much information for inspection. For example, three observerashMap, such agollection
values() , have 43 abstract states. The complexity of an extracted observemdiostrdepends
on both the characteristics of its observers and the initial tests. To congralatmplexity, we
can display a portion of a complex observer abstraction based onpesgresl! Itering criteria or

extract observer abstractions from the executions of a user-spestileset of the initial tests.

Although theisEmpty OSM of HashMap is almost the same as a manually created state ma-
chine [Ngu98], our approach does not guarantee the completendiss tésulting observer ab-
stractions — our approach does not guarantee that the observeactibss contain all possible
legal states or legal transitions. Our approach also does not guathatebe observer abstrac-
tions contain no illegal transitions. Instead, the observer abstractionfufigitte ect behavior
exercised by the executed tests; inspecting observer abstractionshetplidentify weakness of
the executed tests. This characteristic of our approach is shared lydgtteamic inference tech-

niques [ECGNO1,HDO03, WML02, ABLO2].
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6.4 Conclusion

It is important to provide tool support for developers as they inspeattbeutions of automatically
generated unit tests. We have proposed the observer abstractioacppo aid inspection of test
executions. We have developed a tool, called Obstra, to extract obsdxsteactions from unit-
test executions automatically. We have applied the approach on a varietggrhms, including
complex data structures; our experiences show that extracted obabsteactions provide useful
object-state-transition information for developers to inspect.

The preceding chapter discusses a feedback loop between behterenge and test generation.
This chapter shows a type of behavior inference: we infer obsebatragtions from the execution
of unit tests. The test augmentation in our observer abstraction appnaadxploited exercised-
concrete-state information inferred from the execution of the initial test.sQite test generation
tools presented in Chapter 4 can be further extended to exploit the ihfgvserver abstractions to
guide their test generation process: given an inferred observieaetien, the test generation tools
can try to generate tests to create new transitions or states in the abstrab&arth& new observer
abstraction (inferred from both the initial tests and new tests) can be ugaiithe test generation
tools to generate tests in the subsequent iteration. Iterations terminate uetddeused maximum

iteration number has been reached or no new transition or state has lresdififom new tests.
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Chapter 7

PROGRAM-BEHAVIOR COMPARISON IN REGRESSION TESTING

Regression testing retests a program after it is modi ed. In particularessgn testing com-
pares the behavior of a new program version in order to the behavér old program version to
assure that no regression faults are introduced. Traditional rémnegsting techniques use pro-
gram outputs to characterize the behavior of programs: when runnirsguthe test on two program
versions produces different outputs (the old version's output is sometiteeed as the expected
output for the test), behavior deviations are exposed. When thesegitretaviations are unex-
pected, developers identify them as regression faults, and may primcgebug and x the exposed
regression faults. When these behavior deviations are intended dompé, being caused by bug-
xing program changes, developers can be assured so and mateupdaexpected outputs of the
tests.

However, an introduced regression fault might not be easily expasezh if a program-state
difference is caused immediately after the execution of a new faulty statemefidulh might not
be propagated to the observable outputs because of the information Ibstingy effects. This
phenomenon has been investigated by various fault models [Mor90, ¥0&392, TRC93]. Re-
cently aprogram spectrunhmas been proposed to characterize a program's behavior inside tke blac
box of program execution [BL96, RBDL97]. Some other program specuch as branch, data
dependence, and execution trace spectra, have also been proptheeliterature [BL96, HRS00,
RBDLI7].

In this chapter, we propose a new class of program spectra called spectra The value
spectra enrich the existing program spectra family [BL96, HR® RBDL97] by capturing internal
program states during a test execution. An internal program state iaotbiazed by the values
of the variables in scope. Characterizing behavior using values ofblesidgs not a new idea.
For example, Calder et al. [CFE97] propossdue pro ling to track the values of variables during

program execution. Our new approach differs from value pro ling io twajor aspects. Instead of
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tracking variable values at the instruction level, our approach tracksialtprogram states at each
user-function entry and exit as the value spectra of a test execut&teathof using the information
for compiler optimization, our approach focuses on regression testingroparing value spectra
from two program versions.

When we compare the dynamic behavior of two program versiodsyiationis the difference
between the value of a variable in a new program version and the condisg one in an old
version. We compare the value spectra from a program's old versiomamndversion, and use
the spectra differences to detect behavioral deviations in the new nersiWe use a deviation-
propagation call tree to show the details of the deviations.

Some deviations caused by program changes might be intended suchwag-byng changes
and some deviations might be unintended such as by introduced regresdisnTo help develop-
ers determine if the deviations are intended, it is important to present to gdeveline correlations
between deviations and program changesdefiation rootis a program location in the new pro-
gram version that triggers speci ¢ behavioral deviations. A deviatiahigamong a set of program
locations that are changed between program versions. We propokeiwmistics to locate deviation
roots based on the deviation-propagation call tree. ldentifying the deviedints for deviations
can help to understand the reasons for the deviations and determine minettdeviations are
regression-fault symptoms or just expected. Identi ed deviation roagisbeaadditionally used to
locate regression faults if there are any.

The next section presents the example that we use to illustrate the de niticaduaf spectra.
Section 7.2 presents the value-spectra comparison approach. SectilmsariBes our experiences

of applying the approach on several data structures and then Sectiocontlddes.

7.1 Example

To illustrate value spectra, we use a sample C program shown in Figurehislprogram receives
two integers as command-line arguments. The program outpufgshe maximum of two integers

is less thard, outputso if the maximum of them is equal 1@, and outputal if the maximum of

!Deviation detection in this dissertation is different from the software deviaitalysis technique developed by
Reese and Leveson [RL97]. Their technique determines whethetveasefspeci cation can behave well when there
are deviations in data inputs from an imperfect environment.
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#include <stdio.h>

1 int max(int a, int b) {

2 if (@ >= b) {

3 return a;

4 } else {

5 return b;

6 }

7}

8 int main(int argc, char *argv[]) {
9 int i, j;

10 if (argc = 3) {

11 printf("Wrong arguments!");
12 return 1;

13 }

14 i = atoi(argv[l]);

15 j = atoi(argv[2)]);

16 if (max(i,j) >= 0{

17 if (max(i, j) == 0}
18 printf("0");

19 } else {

20 printf("1");

21 }

22 } else {

23 printf("-1");
24}

25 return O;

26 }

Figure 7.1: A sample C program

them is greater thab. When the program does not receive exactly two command-line arguritents,

outputs an error message.

The execution of a program can be considered as a sequence oélergram states. Each
internal program state comprises the program'’s in-scope variables eind/dfues at a particular

execution point. Each program execution unit (in the granularity of stateileck, code fragment,
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function, or component) receives an internal program state and tloeluges a new one. The
program execution points can be the entry and exit of a user-functesuan when the program
execution units are those code fragments separated by user-fundli@itecsa Program output

statements (usually output of 1/O operations) can appear within any of firogeam execution

units. Since it is relatively expensive in practice to capture all internajrara states between the
executions of program statements, we focus on internal program states gnanularity of user

functions, instead of statements.

A function-entry stat&s®"" is an internal program state at the entry of a function execution.
Se"Y comprises the function's argument values and global variable valudendion-exit state
SeXit js an internal program state at the exit of a function execut®#! comprises the function
return value, updated argument values, and global variable valuéstiNgS®t does not consider
local variable values. If any of the preceding variables at the functibry @r exit is of a pointer
type, theSe""y or SeXit additionally comprises the variable values that are directly or indirectly
reachable from the pointer-type variable.fukction executiohSe"" ; S&Xitj js a pair of a function
call's function-entry stat&®"" and function-exit stat&* .

Figure 7.2 shows the internal program state transitions of the sample pragttathe command
line arguments of0 1" . In the program execution, tleain function calls themax function twice

with the same arguments, and then outputs as is shown inside the cloud in Figure 7.2.

7.2 Value-Spectra Comparison Approach

We rst introduce a new type of semantic spectra, value spectra, whieglhused to characterize
program behavior (Section 7.2.1). We next describe how we compavelie spectra of the same
test on two program versions (Section 7.2.2). We then describe the depatipagations exhibited
by spectra differences (Section 7.2.3). We nally present two heurigtidscate deviation roots

based on deviation propagation (Section 7.2.4).

7.2.1 Value Spectra

We propose a new class of semantic speatadiie spectrabased on exercised internal program

states. Value spectra track the variable values in internal program stéiiek, are exercised as a
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Figure 7.2: Internal program state transitions of the sample C progracntéxe with input'0 1"

Table 7.1: Value spectra for the sample program with iriput”

spectra pro led entities

value hit main( entry (3,"0","1"), exit (3,"0","1",0))
max(entry (0,1), exit (0,1,1))

value count| main( entry (3,"0","1"), exit (3,"0","1",0))*1
max(entry (0,1), exit (0,1,1))*2

’

value trace | main( entry (3,"0","1"), exit (3,"0","1",0))
max(entry (0,1), exit (0,1,1)),
max(entry (0,1), exit (0,1,1)),
output "1"

program executes.

We propose three new variants of value spectra:

2 User-function value hit spectréin short asvalue hit spectra Value hit spectra indicate

whether a user-function execution is exercised.
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2 User-function value count spectf@ short asvalue count spectja Value count spectra

indicate the number of times that a user-function execution is exercised.

2 User-function value trace spect(m short assalue trace spectia Value trace spectra record

the sequence of the user-function executions traversed as a pregeantes.

Table 7.1 shows different value spectra and output spectra for thdes@gogram execution
with input”0 1" . We represent a user-function execution using the following form:
funcname( entry (argvals), exit (argvals,ret)) wherefuncname represents the function
name.argvals afterentry represents the argument values and global variable values at the func-
tion entry,argvals afterexit represents the updated argument values and global variable values
at the function exit, andet represents the return value of the function. Function executions in
value hit spectra or value count spectra do not preserve order, vethile trace spectra do preserve
order. In value count spectra, a count market*ohum" is appended to the end of each function
execution to show that the function execution is exercisgd times. Note that if we change the
secondmax function call frommax(i,j)  tomax(j,i) , we will have two distinct entities famnax
in the value hit and value count spectra. It is because these two funsteatens will become
distinct with different function-entry or function-exit states. In value&rapectra; _" markers
are inserted in the function-execution sequence to indicate functiontexeceturns [RRO1]. The
value trace spectra for the sample program showsthit callsmaxtwice. Without these markers,
the same function-execution sequence would result frain calling max andmax calling max.

The value trace spectra strictly subsume the value count spectra, analikecount spectra
strictly subsume the value hit spectra. The output spectra are incompueiigtbleny of the three
value spectra, since the program's output statements inside a particuidumsi@on body might
output some constants or variable values that are not captured in thdtiosion's entry or exit
state. For example, when we shuf e thgeintf  statements in thenain function body, the pro-
gram still has the same value spectra but different output spectra. @thiétrehand, the executions
with different value spectra might have the same output spectra. Howekien those function
bodies containing output statements are not modi ed in verBigrthe value trace spectra strictly
subsumes the output spectra. In addition, if we also collect the entry éredaggs of system output

functions in the value trace spectra, the value trace spectra strictly suliseimgtput spectra.
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Value trace spectra strictly subsume dynamically detected invariants beemstis Daikon
tool [Ern00, ECGNO1] generalizes invariants from variable valuesdbate value trace spectra.
Because Daikon infers invariants for each function separately andrdee among function exe-
cutions does not affect the inference results, value count speatratelsly subsume dynamically
detected invariants. However, value hit spectra are not comparabl@aamnityally detected invari-
ants because the number of data samples can affect Daikon's infeesuts [Ern00, ECGNO1].
For example, after we eliminate the secaomak method call by caching the return value of the rst
max method call, we will have the same value count spectra but Daikon might everfinvariants
for max when running the two program versions with inpat1" , because too few data samples

exhibit some originally inferred invariants.

Execution-trace spectra strictly subsume any other program spectigiingcthe three value
spectra. Other syntactic spectra, such as branch, path, and deteddepe spectra are incompa-
rable with any of the three value spectra. For example, when we changgateenent of =
atoi(argv[1]) toi = atoi(argv[l]) + 1 , we will have the same traditional syntactic spec-
tra but different value spectra with inpt@ 1" running on the two program versions. On the other
hand, when we move the statemenpofitf('1") from within the innerlse branch to after the
innerelse branch, and add a redundant statenienti + 1 after theprintf("1") statement,
we will have different traditional syntactic spectra, but the same valuetrspwith input”0 1"

running on the two program versions.

7.2.2 Value Spectra Differences

To compare program behavior between two program versions, weorapace value spectra from
two program versions when we run the same test on them. To compare thespaltra from two
program versions, we need to compare function executions from teesiens. We can reduce the
comparison of two function executions to the comparison of the functioy-anil function-exit
states from these two function executions, including these states' functinas)aignatures, and
the variable values. When some variables in a function entry or exit stap@iters, their variable
values are memory addresses. In the presence of these pointer wriablieing a test on the

same program twice might produce different value spectra. If we justégimese pointer-variable
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values, we lose the referencing relationships among variables. Tosadti®g problem, we perform
a linearization algorithm shown in Figure 3.2 of Chapter 3 on each functitny-@r function-

exit state. In particular, when we encounter a reference-type vanabitestead of collecting its
value (memory address) in the state representation, we collect the follogpngsentation for the

variable:

2 collect “null”if (v ==null ).

2 collect “notnull” if (v '= null ) and there exists no previously encountered variablsuch
that v ==v' ).

2 collectvname' otherwise, whergname' is the name of the earliest encountered variable

such thaty ==v' )and ¢ != null ).

Two statesS; andS; areequivalentrepresented &; ~ S if and only if their state representa-
tions are the same; otherwise am@nequivalentrepresented &, 6 S,. Two function executions
f1:hST™Y SNt andf, :hSS™™ ; SSXti areequivalentf and only if they have the same function
name and signatur&™” © SS™Y, andS$t - S$. The comparison of value count spectra
additionally considers the number of times that equivalent function exesudi@exercised. Given
a function execution in the new version, the compared function executiom iolthversion is the
one that has the same function name, signature, and function-entry $tatecannot nd such a
function execution in the old version, the compared function execution ésrgoty function execu-
tion. An empty function execution has a different function name, function sigeafunction-entry
state, or function-exit state from any other regular function executions.

The comparison of value trace spectra further considers the calling<cantésequence order in
which function executions are exercised. If we want to determine whitleralue trace spectra are
the same, we can compare the concatenated function-execution sexjotaevalue traces. If we
want to determine the detailed function-execution differences betweenatwe trace spectra, we
can use the constructed dynamic call tree and the GNU Diffutils [GNUO2]ntpene the function-
execution traces of two value trace spectra. After the comparison, wharction executiorf is
present in Versiom but absent in Versioh, we can consider that an empty function execution in

Versionb is compared withi in Versiona.
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7.2.3 Deviation Propagation

Assume new:hSsaw’ ; SEXi is a function execution in a program's new version &g :ksglr(‘j“y ; St
is its compared function execution in the program’s old versiohdf, andf o4 are equivalent, then

f hew IS @anon-deviated function executiolf f e, andf 54 are not equivalent, thef,ey is adevi-

ated function executio’We have categorized a deviated function execution into one of the following

two types:

2 Deviation container fnew is @ deviation container, B5en’ ~ Scy” but S 6 SEL.
If a function execution is identi ed to be a deviation container, developarsknow that a
certain behavioral deviation occurssidethe function execution. Note that when there is a
certain behavioral deviation inside a function execution, the function éxaceight not be
observed to be a deviation container, since the behavioral deviation nughérmpropagated

to the function exit.

2 Deviation follower f ey is @ a deviation follower, iBSAYY 6 Sglré”y . If a function execution

is identi ed to be a deviation follower, developers can know that a certairayieral devi-
ation occursheforethe function execution. For value count spectra particularly, a function
execution in a program's new version can be categorized as a devialiondbif its count

is different from the count of the compared function execution from thgpagram version.

we need to use a matching technique (similar as the one used in the value tetta spm-
parison) to identify which particular function executions in one versiorabsent in the other

version.

The details of value spectra differences can provide insights into deviatigragation in the
execution of the new program version. To provide such details, we ateagation information to a
dynamic call tree, where a vertex represents a single function executicameedge represents calls
between function executions. From the trace collected during a testtexeowe rst construct
a dynamic call tree and then annotate the call tree with deviation informationrtodateviation-
propagation call tree. Figure 7.3 shows the deviation-propagation cadl trfetwo test executions
on a new (faulty) version of thieas program. Thacas program, its faulty versions, and test suite

are contained in a set siemens programs [HFGO94], which are used in the experiment described
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(The execution of the 58th test)
O main
b__ O initialize
b O alt_sep_test
b__ O Non_Crossing_Biased_Climb
j  b_O Inhibit_Biased_Climb
j b_O Own_Above_Threat
b__ O Non_Crossing_Biased_Descend
j b__O Inhibit_Biased_Climb
j b__O Own_Below_Threat-------- [dev follower]

i b_O ALIM------mmmmmmeeeee- [dev follower]
b O Own_Above_Threat

(The execution of the 91st test)
O main
b O initialize
b O alt_sep_test-----------------—- [dev container]
b O Non_Crossing_Biased_Climb
i b__O Inhibit_Biased_Climb
j b__O Own_Above_ Threat
j b_O ALIM
b O Own_Below_Threat
b O Non_Crossing_Biased_Descend- [dev container]
b O Inhibit_Biased_Climb
b O Own_Below_Threat

Figure 7.3: Value-spectra-based deviation-propagation call treeseM/grogram version (the 9th
faulty version) of thecas program

in Section 7.3. In the call trees, each node (showd)as associated with a function execution, and
parent node calls its children nodes. For brevity, each node is marke@mitlthe corresponding
function name. The execution order among function executions is from phie the bottom, with

the earliest one at the top. If there is any deviated function executionyittida type is marked in
the end of the function name.
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Usually behavioral deviations are originated from certain program lotatioat are changed
in the new program version. These program locations are cdéetion roots The function that
contains a deviation root is callelviation-root containerin the new version of theas program,

a relational operator in the old version is changed te=. The function that contains this changed
line isNon_Crossing _Biased _Descend .

Some variable values at later points after a deviation-root execution mi@ét ldm the ones
in the old program version because of the propagation of the deviatione déetation root. The
deviations at the function exit of the deviation-root container might cawseld¢fiation-root con-
tainer to be observed as a deviation container. Note that some callers ef/tagah-root container
might also be observed as deviation containers. For example, in the loliveeeaof Figure 7.3,
the deviation-root containéton_Crossing _Biased _Descend is observed as a deviation container

and its callemlt _sep _test is also observed as a deviation container.

Sometimes deviations after a deviation-root execution might not be propagate exit of the
deviation-root container, but the deviations might be propagated to thesotisome callees of the
deviation-root container, causing these callees to be observed asatefadlowers. For example,
in the upper call tree of Figure 7.3, the deviation-root container's caftea@sBelow _Threat and

ALIM are observed as deviation followers.

7.2.4 Deviation-Root Localization

In the previous section, we have discussed how deviations are ptedageen a known deviation

root. This section explores the reverse direction: locating deviation roabs®rving value spectra
differences. This task is calledeviation-root localization Deviation-root localization can help
developers to better understand which program change(s) causeosérwed deviations and then

determine whether the deviations are expected.

Recall that given a function executidRew:hSson’ ; SEXi, if fhew IS @ deviation container,

Shew’ is not deviated buSEXt is deviated; iff ney is a deviation followerSSen’ has already
been deviated; if new is @ non-deviated function execution, neitt&§ty’ nor SEX is deviated.
Deviation roots are likely to be within those statements executed within a deviatitaimer or

before a deviation follower. The following two heuristics are to narrowmltve scope for deviation
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roots based on deviation propagation effects:

Heuristic 1 Assumef is a deviation follower andj is the caller off . If (1) g is a devia-
tion container or a non-deviated one, and (2) any function executioneketys entry and the
call site off is a non-deviated one, deviation roots are likely to be among those statements ex
ecuted between thg's entry and the call site of, excluding user-function-call statements. For
example, in the upper call tree of Figure 7GynBelow _Threat is a deviation follower and its
caller Non_Crossing _Biased _Descend is a non-deviated one. THhehibit _Biased _Climb
invoked immediately before th®@wnBelow Threat is a non-deviated one. Then we can ac-
curately locate the deviation root to be among those statements executedrbétereantry of
Non_Crossing _Biased _Descend and the call site obwnBelow _Threat .

Heuristic 2 Assumef is a deviation container. If any df's callees is a hon-deviated one,
deviation roots are likely to be among those statements executed wiHumction body, exclud-
ing user-function-call statements. For example, in the lower call tree oféig:3, the function
executionNon_Crossing _Biased _Descend is a deviation container and any of its callees is a
non-deviated one. Then we can accurately locate the deviation root imdregathose statements
executed within th&lon_Crossing _Biased _Descend 's function body.

When multiple changes are made at different program locations in the rogwapn version,
there might be more than one deviation root that cause behavioral desialiandeviation root's
deviation effect is not propagated to the execution of another deviatidnanad each deviation root
causes their own value spectra differences, our heuristics can lathtddviation roots at the same

time.

7.3 Evaluation

This section presents the experiment that we conducted to evaluate ooacppWe rst describe
the experiment's objective and measures as well as the experiment instatiorerWe then present

and discuss the experimental results. We nally discuss analysis cosheeads to validity.

7.3.1 Objective and Measures

The objective of the experiment is to investigate the following questions:
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1. How different are the three value spectra types and output spepeairtyterms of their

deviation-exposing capability?

2. How accurately do the two deviation-root localization heuristics locateg¥iation root from

value spectra?

Given spectra typ8, programP, new versiorP %, and the se€ T of tests that cover the changed
lines, 1etDT (S;P; PS CT) be the set of tests each of which exhibsspectra differences and
LT (S;P;P%CT) be the subset dbT (S; P; P% CT) whose exhibited spectra differences can be
applied with the two heuristics to accurately locate deviation roots. To ansuestions 1 and 2,

we use the following two measures, respectively:

2 Deviation exposure ratioThe deviation exposure ratio for spectra typis the number of the

tests inDT (S; P; P% CT) divided by the number of the tests @iT, given by the equation:
iDT (SiP;P%CT)j
JCT]
2 Deviation-root localization ratio The deviation-root localization ratio for spectra types the
number of the tests inT (S; P; P% CT) divided by the number of the testsii (S; P; P% CT),

; LT (S;P;,PSCT)j
given by the equatlonj‘DT((Woﬁ

Higher values of either measure indicate better results than lower valugbe kxperiment,
we measure the deviation-root localization ratio in the function granularitthisconvenience of
measurement. That is, when the deviation-root localization locates the dewiatibcontainers
(the functions that contain changed lines), we consider that the localizatmurately locates the
deviation root. For those changed lines that are in global data de nitiotioporwe consider the
deviation-root containers to be those functions that contain the execuathereferencing the

variables containing the changed data.

7.3.2 Instrumentation

We built a prototype of the spectra-comparison approach to determine dahticpt utility. Our
prototype is based on the Daikon [ECGNO1] front end for C programaikdd is a system for

dynamically detecting likely program invariants. It runs an instrumentedranogcollects and
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examines the values that the program computes, and detects patterniamastEps among those
values. The Daikon front end instruments C program code for collectitaytchces during program
executions. By default, the Daikon front end instruments nested orsigedypes (structs that have
struct members) with the instrumentation depth of three. For example, giv@ntamo the root of

a tree structure, we collect the values of only those tree nodes that ane thighree depth of three.

We have developed several Perl scripts to compute and compare alldhisa®s of value spectra
and output spectra from the collected traces. In the experiment, we halemienged the deviation-
root localization for only value hit spectfa.Given two spectra, our tools report in textual form
whether these two spectra are different. For value hit spectra, ourdanlslisplay spectra dif-
ferences in deviation-propagation call trees in plain text (as is shown urdsgr.3) and report

deviation-root locations also in textual form.

We use seven C programs as subjects in the experiment. ResearchemensSResearch
created these seven programs with faulty versions and a set of tes{ld&§&094]; these programs
are popularly referred as tlsemens programs (we used the programs, faulty versions, and test
cases that were later modi ed by Rothermel and Harrold [RHOH98]). résearchers constructed
the faulty versions by manually seeding faults that were as realistic as jgodséich faulty version
differs from the original program by one to ve lines of code. The srshers kept only the faults
that were detected by at least three and at most 350 test cases in thateesColumns 1-4 of
Table 7.2 show the program names, number of functions, lines of exézutadbe, and number
of tests of these seven subject programs, respectively. Column 5 cotiaimumbers separated
by "/* . The rst number is the number of the faulty versions selected in this expatiara the
second number is the total number of faulty versions. Columns 6 showséehaegavspace cost (in
kilobytes) of storing traces collected for a test's value spectra , regpBctihe last column shows
the description of the subject programs.

We perform the experiment on a Linux machine with a Pentium IV 2.8 GHz peaeeln the ex-
periment, we use the original program as the old version and the faultygonoas the new version.

We use all the test cases in the test suite for each program. To contraktleeo$ the experiment,

2\We have not implemented deviation-root localization for value countloeveace spectra, because their implemen-
tation requires the matching of traces from two versions, which is challgriwjiritself and beyond the scope of this
research.
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Table 7.2: Subject programs used in the experiment

program | funcs| loc | tests| vers | jvs.trcj(kb/test)| program description
printtok 18 | 402 | 4130 717 36 | lexical analyzer
printtok2 19 | 483 | 4115 10/10 50 | lexical analyzer
replace 21| 516 | 5542 | 12/32 71 | pattern replacement
schedule 18 | 299 | 2650 9/9 982 | priority scheduler
schedule2 16 | 297 | 2710 | 10/10 272 | priority scheduler
tcas 9| 138 | 1608 | 9/41 8 | altitude separation
totinfo 7| 346 | 1052 | 6/23 27 | information measure

for those programs with more than 10 faulty versions, we select only tlaosty fversions in an
order from the rst version to make each selected version have atdeadulty function that has

not yet occurred in previously selected versions.

7.3.3 Results

Figures 7.4 and 7.5 use boxplots to present the experimental results.oX e & boxplot shows
the median value as the central line, and the rst and third quartiles as the émdeupper edges
of the box. The whiskers shown above and below the boxes technicpigsent the largest and
smallest observations that are less than 1.5 box lengths from the end afxthintpractice, these
observations are the lowest and highest values that are likely to beveds&mall circles beyond
the whiskers are outliers, which are anomalous values in the data.

Figure 7.4 shows the experimental results of deviation exposure ratioarthabmputed over
all subjects. The vertical axis lists deviation exposure ratios and the htalzxis lists four spectra
types: output, value hit, value count, and value trace spectra. FigureshéWss the experimental
results of deviation-root localization ratios for value hit spectra. Thitoaaxis lists deviation-root
localization ratios and the horizontal axis lists subject names.

From Figure 7.4, we observed that checking value spectra diffesénceeases the deviation
exposure ratio about a factor of three compared to checking progugatalifferences. This indi-

cates that a relatively large portion of deviations could not be propag@afdgram outputs. There
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Figure 7.4: Experimental results of deviation exposure ratios

are no signi cant differences of the deviation exposure ratios amontihtke value spectra, except
that the third quartile of the value trace spectra is slightly higher than the otine afalue hit or
value count spectra. We found that there were three versions waleietvace spectra have higher
deviation exposure ratios than value hit and value count spectra. Uilg ifathese three versions
sometimes cause some deviation followers to be produced in value tracespatthese deviation
followers are equivalent to some function executions produced by thprofitam version; there-
fore, although the value trace spectra are different, their value hitrap@cvalue count spectra are

the same.

In Figure 7.5, the deviation-root localization ratios for value hit spectanaar 1.0 for all sub-
jects except for thachedule2 program; therefore, their boxes are collapsed to almost a straight
line near the top of the gure. The results show that our heuristics forevhluspectra can ac-
curately locate deviation roots for all subjects except fordttedule2 program. We inspected

schedule2 's traces carefully to nd out the reasons. We found that the Daikontfemd did



131

1.0

0.6

0.4

0.2

Deviation-root localization ratios for value hit spectra

-

o - o
T T T T T T T
printtok  printtok2  replace  schedule schedule2 tcas totinfo

Figure 7.5: Experimental results of deviation-root localization ratios flrevhit spectra

not collect complete program state information in a key linked-list strusthedule2 using the
instrumentation depth of three (the default con guration of the Daikontfeard). In some of
schedule2 's faulty versions, deviations occur on the key linked-list struct beyihreddepth of
three. Therefore we could not detect the deviations at the exits of deviatts. We expect that

we could increase the deviation-root localization ratios after increasingstrementation depth.

The experiment simulates the scenario of introducing regression faults rogoapns during
program modi cations. When programmers perform a modi cation that isaxpiected to change
a program's semantic behavior, such as program refactoring [Fow@8kpectra comparison ap-
proach can show the occurrences of unintended deviations and viatiale-root localization ac-
curately locates the regression faults. Moreover, we can reversethi®w order by treating the
faulty version as the old version and the correct version as the newneiidien we can conduct a
similar experiment on them. This simulates the scenario of xing program Ibigse our spectra

comparison is symmetric, we expect to get the same experimental results.hdhis that when
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programmers perform a bug- xing modi cation, our approach can slioam the occurrences of

the intended deviations.

7.3.4 Analysis Cost

The space cost of our spectra-comparison approach is primarily tlve $pastoring collected
traces. Columns 6 of Table 7.2 shows the average space in kilobytes é§Biyed for storing
trace of a test's value spectra. The average required space forrartges from 8 to 71 KB except
for the value spectra of thechedule andschedule2 programs (with the space of 982 and 272
KB, respectively), because these two programs contain global linkestiigts, whose collected
values require considerably larger space.

The time cost of our approach is primarily the time of running instrumented amdiedting
and storing traces) as well as computing and comparing spectra (deviatibfocalization is a
part of spectra comparison). The slowdown ratio of instrumentation is the fimeoing a test
on instrumented code divided by the time of running the same test on uninstadrmde. We
observed that the average slowdown ratio of instrumentation range2fro, except for the value
spectra okchedule andschedule2 programs (with the ratios of 48 and 31, respectively). The
average elapsed real time for running a test on instrumented code femmgesto 30 milliseconds
(ms), except for the value spectraswhedule andschedule2 programs (with the time of 218
and 137 ms, respectively). The elapsed real time for computing and cimgpao spectra of a test
ranges from 24 to 170 ms, except for the value spectrscioddule andschedule2 programs
(with the time of 3783 and 1366 ms, respectively).

We speculate that applying our approach on larger programs couldradigtter improvement
of deviation exposure over program output checking, becausetibagare probably less likely to
be propagated to the outputs of larger programs. We speculate that deviitdocalization ratios
based on value spectra might be less affected by the scale of progranthéhigpe of variables
used by programs (e.g., simple versus complex data structures).

Larger programs require higher space and time costs. The time or spstcef @ur value-

spectra-comparison approach can be approximately characterized as

V Cost= O(jvarsj £] userfuncsj £  testsuite|)
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wherejvarsj is the number of variables (including the pointer references reachaietfre vari-
ables in scope) at the entry and exit of a user funciieserfuncsj is the number of executed and
instrumented user functions, ajtdstsuite j is the size of the test suite.

To address scalability, we can redytestsuite j by applying our approach on only those tests
selected by regression test selection techniques [RH97]. In additiamgmedso reduciiserfuncs j
by instrumenting only those modi ed functions and their (statically determinedduplevel callers
or those functions enclosed by identi ed rewalls [LW90,WL92]. Thelteed scope of instrumen-

tation trades a global view of deviation propagation for ef ciency.

7.3.5 Threats to Validity

The threats to external validity primarily include the degree to which the supjegrams, faults

or program changes, and test cases are representative of tatiegaralhesiemens programs

are small and most of the faulty versions involve simple, one- or two-line niigraeeded faults.

Moreover, the new versions in our experiment do not incorporate tdllrfree changes since all
the changes made on faulty versions deliberately introduce regressits) fhese threats could
be reduced by more experiments on wider types of subjects in future Whekthreats to internal
validity are instrumentation effects that can bias our results. Faults in otatype and the Daikon
front end might cause such effects. To reduce these threats, we liganapected the spectra
differences on a dozen of traces for each program subject. Orag threonstruct validity is that our
experiment makes use of the data traces collected during executionsjragsioat these precisely
capture the internal program states for each execution point. Howeyegctice the Daikon front

end explores nested structures up to the depth of only three by default.

7.4 Conclusion

After developers made changes on their program, they can rerun theprs regression tests to
assure the changes take effect as intended: refactoring code to ingmdeeauality, enhancing
some functionality, xing a bug in the code, etc. To help developers to gaigleehcon dence on

their changes, we have proposed a new approach that checkmrbghavior inside the black box

over program versions besides checking the black-box programtsutp
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We have developed a new class of semantic spectra, called value sigetiieracterize program
behavior. We exploit value spectra differences between a progragngosion and new version in
regression testing. We use these value spectra differences to exfgealibehavioral deviations
inside the black box. We also investigate deviation propagation and deveddgetwistics to locate
deviation roots. If there are regression faults, our deviation-rootiad¢en additionally addresses
the regression fault localization problem. We have conducted an expérimeseven C program
subjects. The experimental results show that value-spectra compapizaaeh can effectively de-
tect behavioral deviations even before deviations are (or even if teayod) propagated to outputs.
The results also show that our deviation-root localization based on vpkadra can accurately
locate the deviation roots for most subjects.

Our approach has not constructed a feedback loop between beimdgience and test genera-
tion by using inferred value spectra to guide test generation. Howeseaukse generating tests to
exhibit program-output deviations in a new version is an undecidablégumolthe existing test gen-
eration techniques [DO91, KAY98, WEOQ3] for this problem can try to gateetests to propagate the
deviation from an outermost deviated function execution to its caller. Thraagations, gradually
the value spectra differences can guide the test generation tools tgpateplae deviations as close

as possible to the program locations for I/O outputs.
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Chapter 8

FUTURE WORK

This research has demonstrated that the effectiveness of automated testibe improved
through a framework that reduces the cost of both computer and huifoatn €here are still many
opportunities for extending this work, and this chapter discusses some fftthre directions that

can be conducted by extending the research in this dissertation.

8.1 Scaling

The experiments that we have conducted in this research primarily foausitolesting of individ-
ual structurally complex data structures. The redundant-test detecpooea is evaluated against
existing test generation tools, which generate a large number of testsghattieaty small number of
non-redundant tests. The non-redundant-test generation andb$ésicion approaches are evalu-
ated against a relatively low bound of exhaustive testing. The test selegmoach and regression
testing approach are evaluated on a set of relatively small programs, lbeited in fact by the
scalability of the underlying test generation tool or dynamic invariant detettiol (the existing
implementation of the regression testing approach uses Daikon's fronberudlect value spectra
information).

Scaling redundant-test detection deals primarily with reducing the oveudfezallecting and
storing nonequivalent method executions in memory. For a large progranest with long method
sequences, the size of a single state's representation can be largelaFge test suite, the number
of nonequivalent states or method executions can be large. Our implemergatjgoys some
state compression techniques such as using a Trie [Fre60] data struéterean further reduce
state-storage requirement by employing some state compression techiigl8s [V01] used in
explicit state model checking [CGP99].

Scaling non-redundant-test generation needs to address the sanme &slig redundant-test
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detection: reducing the overhead of keeping track of nonequivaldtiomsexecutions. We can use
those preceding techniques to scale test generation. In addition, wedtarethe state space for ex-
ploration in different ways. Instead of exhaustively exploring methodseces (state space) within
a small bound, we can explore the state space with longer method sequéthdesuristics-guided
search [GV02, TAC 04] or evolutionary search [RN95, GK02, Ton04] for achieving dertaver-
age criteria discussed in Section 2.1. Developers can also specifyciibstfanctions to reduce the
state space (the Rostra technigues based asgtids method provide mechanisms for developers
to de ne abstraction functions). Because it may not be feasible to expltagge state space of a
single class or multiple classes in a single machine, we can distribute the testtgemiasks among
multiple machines [MPY 04] and collectively generate tests for a large class or multiple classes in
a system. If we use test generation techniques based on concrete alisystdie exploration, we
need to address the communication and coordination issues among multiple rmactaaeiding
exploring states that have been explored by other machines. If we tuggetesation techniques
based on exploring method sequences without tracking actual concr&imbolic states, we can
get around the communication and coordination issues but with the pricelofieg a larger space.
In addition, when we test multiple classes in a system (either in a single machineltqzle ma-
chines), we need to carefully select the test generation order of multigieesldbecause we prefer
to explore a clasA's state space earlier Xis an argument type of another class method and we

want to use the explored statesfodis the arguments &s method when exploring's state space.

Scaling the test selection approach needs to scale both the underlyingatmebased test
generation tool and dynamic invariant tool. Some techniques for scalirgy cgt@®n-based test
generation are similar to those preceding ones for scaling non-reduiedamgeneration. In ad-
dition, we can use some test generation techniques [BKMO02] tailored aidingd for exploit-
ing speci cations. Some techniques for scaling a dynamic invariant toobkas discussed by
Ernst [Ern00] and developed by Perkins and Ernst [PEO4]. Scalingegression testing approach
primarily deals with the collection of program state information from test exewsit@md compu-
tation of value spectra from program state information. Some techniquessdting a dynamic
invariant tool discussed by Ernst [Ern00] are applicable in addrgdkim scalability of collecting

program state information, such as selectively instrumenting program points



137

8.2 New types of behaviors to exploit

Research in this dissertation exploits the inferred behaviors in the foriofatic speci ca-
tions [Hoa69, Gri87] or nite state machines [LY96]. Program behavaas be described in other
forms such as algebraic speci cations [GH78] and protocol speci cati@RBY00, BR0O1, DFO1,
DLS02], and symmetry properties [Got03]. We can infer these typestaiiers from test execu-
tions and use these behaviors to guide test generation by borrowingoeesifrom speci cation-
based test generation. In addition, we can apply the operational violgifmoach by selecting
any generated tests that violate the behaviors inferred from the existisg té@wever, inferring
behaviors in the form of algebraic speci cations or symmetry propertiggires speci cally con-
structed method sequences, which may not already exist in the existingdliyarunstructed) tests.
Therefore, we may need to generate extra new tests to help infer behfwiorthe existing tests;
the situation is the same in the test abstraction approach: we need to gerteatests in order to
infer observer abstractions from the existing tests.

The operational violation approach selects tests based on a common ratssiafging a test
if the test exercises a certain program behavior that is not exhibiteddwopsly executed tests.
We can select tests based on a different new rationale: selecting a sespasial test if the test
exercises a certain program behavior that is not exhibited by most oty selecting a test as a
common test if the test exercises a certain program behavior that is extigigtor most other
tests. Inferred behaviors in the form of algebraic speci cations haemtfound to be promising for

test selection based on this new rationale [Xie04, XN04b].

8.3 New types of quality attributes to test

Our research focuses on testing a program's functional correctmesbustness. We can extend
our research to test other quality attributes of a program. For exampte/asefperformance test-
ing [AW96, VW98, WVO00] creates representative workloads (includingrage, heavy, or stress
workloads) to exercise the program and observe its throughput pones time. In performance
testing, generally generating non-redundant tests is still useful to eelyangram states to reach
heavy-loaded states; however, invoking redundant tests sometimes nuaggfaein performance

testing, for example, when a program's performance can be degrbdeduse of garbage collec-



138

tion behavior) by running redundant tests that create extensive temmuijects. In performance
testing, we can also apply the operational violation approach by infergimggram's performance
behavior. Then we can select those generated tests that causeanptogrerform worse than the
observed performance exercised by the existing tests. We can alseh@felnaracteristics of the
bad-performance-inducing tests to help diagnosis the performanbieprooots.

Software security testing [WT03, HM04, PM04] tests a program to make ther program be-
have correctly in the presence of a malicious attack. Security risks casduketo guide security
testing. For example, for a database application, one potential securitis IBRL injection at-
tacks [HHLT03,HOO05]. We can extend our test generation approdtartdle complex string oper-
ations during symbolic execution. Then we can use symbolic execution toagenest inputs that
get through input validators but produce SQL injection attacks. In additi@operational violation
approach has a good potential for security testing, because secutiitg tesends to test the pro-
gram under malicious inputs, which exercise program behaviors diffén@m the ones exercised

by normal inputs in manually created tests.

8.4 Broader types of programs to test

We can detect redundant tests among tests generated for GUI applidMie889, MemO01] or
directly generate non-redundant tests for GUI applications. In testingapplications, event se-
guences correspond to method sequences in testing object-orientednpsoglhe program state
before or after an event can be abstracted by considering only thekthgassociated GUI, which
is modeled in terms of the widgets that the GUI contains, their properties, analines of the
properties. Then the techniques of detecting redundant tests or tleger@n-redundant tests can
be similarly applied to GUI tests.

We can detect redundant tests among tests generated for databasaiappl[iKS03, CDF 04]
and directly generate non-redundant tests for database applicatidastihg database applications,
the program state before or after a method call additionally includes theedatatate. After includ-
ing database states in the program state representation, we can thenedietedant tests for testing
database applications. Because a database state can be large, we statiaianalysis techniques

to determine which parts of the database state are relevant to affect theaiemeof a method and
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consider only these relevant parts when collecting the program state leefafter the method call.

We can extend our testing techniques to test programs written in aspededr@ngramming
languages such as Aspect] [KELM7, Tea03]. We can treat an aspect as the unit under test (like
a class in an object-oriented program) and advice as the method unddikeeat gublic method
in a class). Then we can detect redundant tests for testing an asp&diNDR4]. In addition,
we can adapt our test generation technigues to generate tests foiestljcexercising an as-
pect [XZMNO5].

Our research focuses on testing a sequential program. When detedtimglant tests for test-
ing a concurrent program, we can no longer operate on the granuléiitdigidual method calls
because thread interactions can occur within a method execution causémgrdimethod behaviors
given the same method inputs. One possible extension to our redundadettztion techniques is
to monitor and collect the inputs to each code segment separated by tha@skitheeaction points
within a method. However, this ner granularity can suffer from the staf@asion problem more

seriously.

8.5 New types of software artifacts to use

This research uses the program under test and sometimes its manuallg tesete\We can also use
other types of software artifacts if they exist in the software developnreceps. For example, if
grammars have been written for de ning test inputs, we can use these granomdfectively gen-
erate test inputs [SB99, Zay04]. If a method for checking class invasiaa method for validating
inputs has been written, we can also use the method to generate test inpctisedjf [BKMO02].
If requirements are written for the program under test, we can use th@eaeeents to generate
tests [WGS94, EFM97, ABM98, GH99]. We can also improve our testingiigales with the infor-
mation collected from the program's actual usage, such as operatianiagf\Woi93, Woi94], or
other in- eld data [OLHL02, OAHO3, MPY 04].

When a model (speci cation) for a program is speci ed, model-baseihtgfDIK* 99,GGSV02,
Fou, Par04] can be performed. In model-based testing, the underlyidglmsed for test genera-
tion is often an abstract one, being derived after abstracting the pragkeshavior. Two method

sequences may produce the same abstract state in the model but we manhtd weep only
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one method sequence and discard the other one, because the cdatestérsthe code) produced
by two method sequences may be different and two method sequences veagifferent fault-

detection capabilities. Although we may not apply redundant-test detectitmeayenerated tests
based on abstract states of the model, we can apply redundant-tetibddtesed on the concrete

states exercised by tests generated based on the model.

8.6 Testing in the face of program changes

Program changes are inevitable. When a program is changed, irgonly the tests generated
for the old version may not be suf cient to cover the changed or addelé,cor to expose bugs
introduced by the program changes. Although our regression testimgigees intend to exploit the
existing tests to expose behavior deviations, generating new tests to extbecishanged or added
code is sometimes necessary. Because exploring the whole recgwetsibtes from the ground
for the new version is not economical, we can incorporate incremental utatign to re-explore
only the parts of the state space that are affected by the program shange

In general, as has been suggested by longitudinal program analygB32[Nwe can plan and
apply test generation across the multitude of program versions. We eanfasmation retained
from an earlier test generation to reduce the scope of the test geneyatinewer version or to
better test a newer version. The way of strategically allocating testing nasmight enable us
to apply otherwise infeasible test generation over multiple versions of agimgs opposed to a

Speci ¢ version.
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Chapter 9

ASSESSMENT AND CONCLUSION

This dissertation proposes a framewaork for improving effectivenessitoimated testing in the
absence of speci cations. A set of techniques and tools have beetoged within the framework.
First, we have de ned redundant tests based on method input valugeeeidped a tool for detect-
ing redundant tests among automatically generated tests; these identi adlaeduests increase
testing time without increasing the ability to detect faults or increasing develogar dence on
the program under test. Experimental results show that about 90% ofdtsegenerated by the
commercial Parasoft Jtest 4.5 [Par03] are redundant tests. Sewverdve developed a tool that
generates only non-redundant tests by executing method calls symbolicatyltwe the symbolic-
state space. Symbolic execution not only allows us to reduce the state spagplbration but also
generates relevant method arguments automatically. Experimental reswltshstidhe tool can
achieve higher branch coverage faster than the test generationdrasedcrete-state exploration.
Third, we have used Daikon [Ern00] to infer behavior exercised byekiging tests and feed the
inferred behavior in the form of speci cations to a speci cation-based generation tool [Par03].
Developers can inspect those generated tests that violate these ibieheedor, instead of inspect-
ing a large number of all generated tests. Experimental results show theelénted tests have a
high probability of exposing anomalous program behavior (either faukailares) in the program.
Fourth, we have used the returns of observer methods to group tmstaites into abstract states,
from which we construct succint observer abstractions for inspechinrevaluation shows that the
abstract-state transition diagrams can help discover anomalous behatiay, ekception-throwing
behavior, and understand normal behavior in the class interface. Wdthave de ned value spec-
tra to characterize program behavior, compared the value spectraafratd version and a new
version, and used the spectra differences to detect behavior desiatitire new version. We have
further used value spectra differences to locate deviation roots. iEx@al results show that com-

paring value spectra can effectively expose behavior differenetgelen versions even when their
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actual outputs are the same, and value spectra differences can lie lgszde deviation roots with
high accuracy. Finally, putting behavior inference and test generatg@itter, we can construct
a feedback loop between these two types of dynamic analysis, starting wetkisdimg test suite
(constructed manually or automatically) or some existing program runs. Wedtown several
instances of the feedback loop in different types of behavior infexefile feedback loop produces

better tests and better approximated speci cations automatically and incrementally

9.1 Lessons learned

Software testing research has been conducted for more than threesiedawever, when we look
at industry, we can nd that only a few commercial automated testing tools\aitahble in the

market and better tool support is needed in order to meet the demand licsdftgvare reliability.

The research in this dissertation has developed new techniques and togisdee the effectiveness
of automated software testing. Our work does not assume that the progdentest is equipped
with speci cations, because speci cations often do not exist in practig. research is motivated
to investigate whether bene ts of speci cation-based testing can be amhteva great extent in the
absence speci cations and then bring these bene ts to a massive gfalgvelopers in industry.
Our research has shed light on this promising direction and pointed ouk futork along this

direction. In this section, we summarize some lessons that we learned froregbarch and we

hope these lessons may be helpful to other researchers (includingpus¥uing future research.

Dynamic analysis tools can be integrated tooRecently researchers [NEO1, Ern03, You03, CS05]
have proposed approaches that integrate dynamic and static analysisusBehe results
of dynamic analysis based on observed executions may not generaliseri® éxecutions,
static analysis can be used to verify the results of dynamic analysis [NEBXdause the
results of static analysis may be less precise (more conservative) thanamhraally occur at
runtime, dynamic analysis can be used to select the results of static analysiartlztually
occur at runtime [CS05]. Our research shows that dynamic analysialsare integrated:

a dynamic behavior inference tool produces likely properties, whicheguadtest generation
tool to generate tests to violate these properties, and new generatedddsisher used to

infer new likely properties. A feedback loop on dynamic analysis then earobstructed.
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“Both measuring and managing redundancy are important.” Our redundant-test detection ap-
proach allows us not only to measure test redundancy but also to manage [frecisely,
avoid) test redundancy. Although previous research [MK01, KhBB®102, Mar05, VPK04]
proposed new techniques for directly generating nonequivalent métipods (therefore,
there is no redundancy among the generated tests), other existing &Esttgemntools may not
easily adopt these previously proposed new techniques, partly lesttease techniques may
require speci cations or these techniques may not be integrated well wih thels' existing
test generation mechanisms. We found it important to measure how well @&tesiatjon tool
performs in terms of redundancy among its generated tests, and equallyanigomguide the
tool to improve its performance. Our proposed approach can measuestiredancy of tests
generated bynytest generation tool and compare the performance of different toasl logis
the measurement results. Indeed, existing test adequacy criteria ssigliessent coverage
can also be used to compare the performance of different tools in ternagisf/gmg these
criteria; however, our proposed measurement offers an operati@yabf managing (more
precisely, avoiding) the test redundancy during or after the tools' egistist generation pro-

cess.

Breaking into pieces helps.Traditional test-generation techniques consider two tests are different
(therefore, both are needed) if these two tests consist of differenbtheguences; however,
it is often expensive to exercise all possible method sequences withiraeraall sequence-
length bound. In fact, we care about the program behavior exerbisedch method call
individually. After we break a method sequence into pieces of method callseitan
check whether at least one of these individual method calls exercisbetevior that has not
been exercised before. Breaking the whole into pieces and focusipgposs instead of the

whole can offer opportunities for reducing the space for exploration.

Grouping pieces helps.After the generated tests exercise the concrete state space, the state trans
tion diagram constructed from the whole concrete state is often too complicabeduseful
for inspection. After we use an observer method to group together tltwsmete states

whose immediately observable behaviors are the same, we can produngretsdiagram
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for inspection, reducing the human effort in test inspection. In testrgéor based on state
exploration, it is often too expensive to explore the whole concrete state spur test gener-
ation approach then uses symbolic execution to group together thoseteosiates that can

be instantiated from the same symbolic state, reducing the space for exploratio

Looking inside helps. Traditional regression testing techniques look at the observable outiputs o
two program versions and check whether they are different; howigvemnften dif cult for
existing tests to propagate behavior deviations inside the program execiotibie observable
outputs. Checking inside the program executions can help expose titeséady deviations
even if these deviations are not propagated to the observable outpws.aWbbject-oriented
program is tested, the state of a receiver object can affect the belwdvive method call
invoked on the receiver object. As was pointed out by Binder [Bin94hile limiting scope
of effect, encapsulation is an obstacle to controllability and observability demgntation
state.” Consequently, existing test generation tools consider a reobijt as a black box
and invoke different sequences of method calls on the receiver objeatever, our research
on redundant-test detection and test generation shows that testing toaslidaok inside

receiver object states at testing time in order to generate tests more efiectiv

Exploit the most out of artifacts that already exist in practice. We found that it is a good start-
ing point for tools to rst take full advantage of those artifacts that alyeaxist in practice
before requiring developers to invest effort in writing extra artifactslgdor the tools. The
relatively popular adoption of Parasoft Jtest [Par03] and Agitar Agi{#giO4] in industry
is partly due to their “push button” feature in test automation. At the same timeder t
improve tools' effectiveness, we should exploit the most out of the atsithat already exist.
For example, if arquals method exists for a class, our research on redundant-test detection
and test generation uses it as an abstraction function to reduce the atada@pexploration.
Our research on test generation can use the arguments exercisedigntingly constructed
tests to explore the state space. Our research on test abstraction alsthseseer meth-
ods of a class as abstraction functions to reduce the state space fatimsp®ur research

on test selection uses the behavior exercised by the manually constrigttetbtguide test
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generation and selection.

It is sometimes unavoidable for a tool to ask help from developers (isely). Our research tries to
push up the limit of bene ts that automated testing tools can provide; howeedpund that
we cannot totally leave developers out of the picture, because it is dftenlttfor the tools
to infer the exact intent or expected behavior of the program underQestresearch on test
selection, test abstraction, and regression testing produces resulesvédopers to inspect.
We found that it is important to allow developers to invest their inspectiontsffo an eco-
nomical way; otherwise, developers would simply give up investing theirirtggn efforts
(thus giving up using the tools). For example, instead of inspecting thetooftpach single
test, developers can inspect a small subset of tests selected by owrléetibs approach
(together with their violated abstractions). Instead of inspecting the comphetate-state
transition diagram, developers can inspect the succinct observeaclsis generated by
our test abstraction approach. When presenting information for desrslog inspect, tools
should be carefully designed to include interesting information as much abfeoand at the

same time exclude uninteresting information as much as possible.

Working around industrial tools helps. We started the project on test selection for inspection by
integrating Daikon [Ern00] and Parasoft Jtest 4.5 [Par03], which ésasra few automated
test-generation tool in industry and has a relatively large group of uketer we started a
project on redundant-test detection by detecting a high percentagdurfdant tests among
tests generated by Parasoft Jtest 4.5. We found that this strategykangvaround industrial
tools allows a research project to make an impact on industry more easilyiolegh transfer
or tool adoption in industry is a complex procedure, involving both techaimdinontechnical
issues. By working around industrial tools, our research can catelstiryss attention and
facilitate technology transfer by demonstrating that our new techniquesngaiave existing

industrial tools and can be potentially incorporated by them.

Automatically generating complex arguments is more dif cult than expected. Test generation
techniques based on concrete-state exploration assumes that a setad argilments are

provided and then invokes methods with these arguments to explore theteestate space.
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Our tool implementation dynamically collects the arguments exercised by a JUritass,
which is either manually constructed or automatically generated by existingaestagion
tools. We found that complex arguments generated by existing test gendrals [Par03,
CS04] are often not satisfactory when testing some classes that aratactdictures. This
limitation prevents our test-generation tools from being applied on a signi partion of
classes in practice. Although our test generation techniques basedntiol&y execution
can automatically derive relevant arguments during state exploration, tbe ¢fygenerated
arguments are still limited to primitive types. One future solution is to explore thesgiate
of the argument-type objects using method calls. Another solution is to capidirealay the
arguments invoked on the class under test when running system tests (3&5]. Indeed, if
class invariants for complex-argument classes exist, some speci caedliest-generation

tools [MKO1, BKMO02] can be used to generate valid complex arguments.

Practical lightweight speci cations may help. Although our research has developed testing tech-

niques and tools that do not require speci cations, we found that tleeteféness of auto-
mated testing could be further improved if the tools are given extra guidanites iform

of lightweight speci cations. In order to make writing speci cation practicgeci cations
shall be easy to write and understand. For example, Korat [BKMO2)®ayenerates non-
redundant tests by usingrapOk method, which is an implementation for checking a class
invariant [LBR98, LG00]. Tillmann et al. [TSO5] proposed an apptottat allows devel-
opers to write parameterized unit tests, which embed assertions for chedgebraic spec-

i cations [GH78]. Then their approach uses symbolic execution to autonligtiganerate

relevant arguments for the parameterized unit-test methods.

Model-based testing may be a good way to go when doing integrationm system testing. Our re-

search primarily focuses on unit testing. Although some techniques in seaneh may be
adapted to be applied in integration or system testing, integration or systeny testime
absence of models (speci cations) seems to be more challenging, partlydeeof the scal-
ability issue. We suspect that developers would be more willing to write modeds\idnole

(sub)system, because the return on investment is much higher than wrigicigcaions for
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a class unit. Industrial experiences from Microsoft [GGSV02, Fau] BBM [Par04] have

shown promising results of model-based testing.

Despite the progress we have made in this research, there is much spdoe ¢efr future
work in improving the effectiveness of automated software testing. Oaarels strategy has been
to tackle real but low-end problems where no speci cations are assumddpeus on the units'
sequential, functional behaviors (even if structurally complex). Wheeldping techniques and
tools for tackling these problems, we learned that the success of automstied teepends on
good coordination of effort between computers and developers. ciafigevhen we go beyond
low-end problems and try to focus on integration or system testing, nartidmal testing, and so
on, developers might need to provide signi cantly more guidance to the toolapmve testing

effectiveness.
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