
Out of the Ivory Tower:

Tao Xie
Peking University (2011-2012), China

North Carolina State University
Raleigh, NC, USA

In Collaboration with Microsoft Research Redmond/Asia, and Students@NCSU ASE Group

Source© Carlo Ghezzi

OSDI 2008 26% vs. xSE ?%
Developers, Programmers, Architects Among
All Attendees

ICSM 2011 Keynote ICSE 2009 Keynote

 Vendors tend to consider that research
impact is restricted to…
 algorithms (e.g., differencing)
 pieces of reusable code (e.g., RCS)

 and not…
 concepts (e.g., hierarchical workspaces)
 architectures (e.g., peer-to-peer repositories)

 which are often seen as “engineering
common sense”

Source©A. Wolf http://www.sigsoft.org/impact/docs/ImpactWolfBCS2008.pdf

 Researchers tend to consider that…
 precedence
 concepts
 prototypes

 are sufficient as impact and ignore…
 efficiency
 usability
 reliability

 dismissing them as “engineering common
sense” Source©A. Wolf http://www.sigsoft.org/impact/docs/ImpactWolfBCS2008.pdf

 A good idea is had more than once

 Vendors have disincentives for distributing
credit for ideas

 Researchers have incentives for claiming
credit for ideas

 Research and productization both require
engineering creativity

Source©A. Wolf http://www.sigsoft.org/impact/docs/ImpactWolfBCS2008.pdf

 Scalability
 Complexity
 Applicability
 Usability (human in the loop)
 Cost-Benefit Analysis

 Academia
 Rarely ask “When scale is up, will my solution still work?”
 Tend to focus on small or toy scale problems

 Real-world (e.g., search engine, code analysis, …)
 Often demand a scalable solution

 Ideal: sophisticated and scalable solution
 But in practice, simple solution tends to be scalable

(performance, maintenance, …)
 Academia tend to value sophistication > simplicity

 Ex: Test prioritization@Microsoft [ISSTA 2002],
Klee [OSDI 2008]

 Academia
 Tend to make assumptions to simplify problems, or one

at a time (indeed relaxing assumptions over time)
 May not be able to assess the relevance/feasibility of

assumptions in practice; not consult/work w/ industry
 Real-world
 Often has high complexity, violating these assumptions

 Example: OO Unit Test Generation
 Isolated simple classes  Isolated complex data

structures  Real world classes as focused by our recent
work [ESEC/FSE 2009, OOPSLA 2011]

 Academia
 Tend to focus on a solution optimized for one of many situations

(likely worse for others) vs. comprehensive solution
 May not enable to tell ahead of time whether a given case would

fall into applicable scope of the solution

 Real-world
 Need a comprehensive solution that would work generally (at

least not compromising too much other situations)
 Examples
 Integration of our Fitnex in Pex [DSN 2009]
 Coverity [CACM 2010] vs. MSRA XIAO/PatternInsight
 Industry adoption of open source tools

 Academia
 Tend to leave human out of loop (involving human makes

evaluations difficult to conduct or write)
 Tend not to spend effort on improving tool usability

▪ tool usability would be valued more in HCI than in SE
▪ too much to include both the approach/tool itself and usability/its evaluation

in a single paper

 Real-world
 Often has human in the loop (familiar IDE integration, social

effect, lack of expertise/willingness to write specs,…)
 Examples
 Agitar [ISSTA 2006] vs. Daikon [TSE 2001]
 Debugging user study [ISSTA 2011]

 50 years of automated debugging research
 N papers  only 5 evaluated with actual programmers

“

” [ISSTA11 Parnin&Orso]

 Academia
 Tend to focus on one or a few dimensions of measurement (e.g.,

analysis cost, precision and/or recall)

 Real-world
 Consider many dimensions of measurement

▪ Cost, e.g., human cost
▪ Benefit, e.g., bug severity

 Example
 FindBugs experience at Google [ISSTA 2009]

 “Since the 90s, a considerable percentage of new
languages that ended up being very popular were
designed by lone programmers, some of them kids with
no research inclination, some as a side hobby, and without
any grand goal other than either making some routine
activities easier or for plain hacking fun.” – PHP,
JavaScript, Python, Ruby

 “one striking commonality in all modern programming
languages, especially the popular ones, is how little
innovation there is in them!”

 “reverse the trend of placing software research under the
auspices of science and engineering [alone]”
http://tagide.com/blog/2012/03/research-in-programming-languages/ Source©C. Lopes

http://tagide.com/blog/2012/03/research-in-programming-languages/

 Part of the problem is that language designers don’t
always have practical objectives. There’s a tendency in
academics of trying to solve a problem when no one
actually ever had that problem.

 Academics are so often determined to build a language
that stands out from the crowd, without thinking about
what’s needed to actually make it useful.
 Sometimes designers fail with the simplest of things, like

documentation for their language.
 Sometimes designers keep adding new features to a language

and effectively overload the engineers who are trying to use it.

http://www.wired.com/wiredenterprise/2012/06/berkeley-programming-languages/

Wired.com

 Value engineering creativity
 Find killer apps, e.g.,
 MSR SLAM: Device driver verification
 MSR Sage: Security testing of binaries
 PatternInsight/MSRA Xiao: Known-bug detection

 Engage practitioners
 Get research problems from real practice
 Get feedback from real practice
 Collaborate across disciplines
 Collaborate with industry

 Academia (research recognitions, e.g.,
papers) vs. Industry (company revenues)

 Academia (research innovations) vs. Industry
(likely involving engineering efforts)

 Academia (long-term/fundamental research)
vs. Industry (short-term research or work)

 …
 Industry: problems, infrastructures, data,

evaluation testbeds, …
 Academia: educating students, …

 Play Around Industrial Tool
 Parasoft Jtest + Daikon [ASE 03] concurrently with Agitar
 Parasoft Jtest  Rostra [ASE 04]

 Play Within Industrial Tool
 Microsoft Research Pex  Fitnex [DSN 09]

 Advise Industrial Tool Developers
 Microsoft Research Pex For Fun  [CSEE&T 11 Tut]

 Engage Practitioners (indirectly)
 Microsoft Research Asia Software Analytics Group, e.g.,

StackMine [ICSE 12]
 Collaborate with Government Agencies
 FDA, NIST Access Control Policy Tool (ACPT)

18

Jtest was recognized with
numerous awards, adopted by
thousands of development
teams worldwide

― businesswire.com

The contributed Rostra
approach [ASE 2004] identified
90% tests generated by Parasoft
Jtest 4.5 to be redundant.
Parasoft fixed issue in later
versions after seeing our results

Download counts (20 months)
(Feb. 2008 - Oct. 2009)

 Academic: 17,366
 Devlabs: 13,022
 Total: 30,388

The contributed Fitnex search
strategy [DSN 2009] included in
Pex releases since Sept. 2008

19 http://research.microsoft.com/projects/pex/

 930,875 clicked 'Ask Pex!'

www.pexforfun.com

The contributed concept of
Coding Duel games as major
game type of Pex for Fun since
Summer 2010

20

Recent and ongoing work
(e.g., StackMine [ICSE 12b])
with successful technology
transfer in collaboration with
Microsoft Research Asia

21 http://research.microsoft.com/groups/sa/

Jointly-developed ACPT
(Access Control Policy Tool)
beta release being beta-tested
in several dozens of
organizations

Test a point-of-care assistant
medical device [ASE 10] and
mine FDA incident reports

22

http://csrc.nist.gov/groups/SNS/acpt/

 Status of SE research community (e.g., ICSE)
 SIGSOFT Impact project findings
 Challenges for technology transfer
 Suggestions for technology transfer

Questions ?

https://sites.google.com/site/asergrp/

	Challenges and Opportunities in Technology Transfer
	ICSE Papers: Industry vs. Academia�
	The Role of Creativity: Vendor’s View �-SCM Impact Study Findings
	The Role of Creativity: Researcher’s View �-SCM Impact Study Findings
	Both are Right and Both are Wrong �-SCM Impact Study Findings
	What Make Tech Transfer Difficult?
	Scalability
	Complexity
	Applicability
	Usability
	"Are Automated Debugging [Research] Techniques Actually Helping Programmers?"
	Cost-Benefit Analysis
	Evaluation of Design/PL�“Research in Programming Languages” -Lopes
	Why Do Some Programming Languages Live and Others Die?
	 Suggestions
	 Industry Academia Collaboration
	Personal Interactions with Industry
	Parasoft Jtest� Jolt Awards for Excellence �
	Microsoft Research Pex �Incubation Project for Visual Studio
	Microsoft Research Pex for Fun�Teaching and Learning CS via Social Gaming
	Microsoft Research Asia�Software Analytics
	Government Agencies �NIST & FDA
	Summary
	Thank you!

