Exploiting Synergy Between Testing and Inferred Partial Specifications

Tao Xie David Notkin

Department of Computer Science & Engineering
University of Washington
May 9, 2003
Workshop on Dynamic Analysis (WODA 2003)
Outline

- Background
- Synergy issues
- Application
- Why it will fail
- Why it will succeed
Background

- Test case generation, e.g. Korat [BKM 02], Jtest [ParaSoft], AsmL [MSR]
- Test oracle generation, e.g. Korat, Jtest, JML+JUnit [CL 01]
- Test selection/coverage criteria, e.g. ADLscope [CR 99], UMLTest [OA 99]
- Likely spec Inference based on test executions, e.g. Daikon operational abstraction [ECGN 01], Strauss [ABL 02], Hastings [WML 02]
Synergy Issue: Chicken-and-Egg I

- Win-win feedback loop: better spec \leftrightarrow better tests?
- Chicken and egg problem?
Synergy Issue: Chicken-and-Egg II

Spec-based test generation

Dynamic likely spec inference

- Initial tests T (manually written tests, automatically generated tests w/o specs, etc.)
- Likely specs S inferred from T
- Tests T' generated based on S

Executions of T' → select a subset of T'

[Test augmentation: $T = T \cup$ the subset of T'] Better tests

Better specs

Likely specs S inferred from T
Executions of Tests Generated From Likely Specifications - I

Input domain

- Legal inputs
- Inferred precondition constrained domain

Output domain

- Legal outputs
- Inferred postcondition constrained domain
 - Postcondition violation (exercise a new feature)
 - Postcondition violation (expose a fault)

Method Execution

- Universal

- Stronger inferred pre
- Stronger inferred post
Executions of Tests Generated From Likely Specifications -II

- **Input domain**: Legal inputs
 - Weaker inferred precondition
 - Stronger inferred postcondition

- **Output domain**: Legal outputs
 - Inferred postcondition
 - Constrained domain
 - Postcondition violation
 - (exercise a new feature)
 - (expose a fault)
 - (narrow down precondition)
Executions of Tests Generated From Likely Specifications -III

Input domain
- Legal inputs
- Stronger inferred pre
- Weaker inferred post
- Inferred precondition constrained domain

Output domain
- Legal outputs
- Inferred postcondition constrained domain
- Postcondition violation (expose a fault)
Executions of Tests Generated From Likely Specifications -IV

Method
Execution

Input domain

Legal inputs

Postcondition violation
(narrow down precondition)

Weaker inferred pre

Inferred precondition constrained domain

Output domain

Legal outputs

Postcondition violation
(expose a fault)

Weaker inferred post

Inferred postcondition constrained domain

Inferred precondition constrained domain
Handling Synergy Issues

- **Precondition guard removal**
 - Too restrictive preconditions may leave (maybe important) legal unit inputs untested

- **Iterations until reaching a fixed point**
 - Add new violating tests (legal inputs) to the existing test suite for spec inference in next cycle
 - Add stronger preconditions manually
Application: Spec-Violation Approach to Unit Test Data Selection

- Problem
 - Insufficiency of the manually maintained unit test suite A (small number)
 - Oracle unavailability of the automatically generated unit test suite B (large number)
- Goal: Selectively augment A with a small (most valuable) subset of B
- Related work: Operational Difference [HME 03], DIDUCE [HL 02]
Why it will fail

- Not enough inferred postconditions to violate
 - Improved inference techniques can help
- Precondition guard removal might induce false positives
 - Precondition guard relaxation can help
- Postcondition violations are due to limited test data value range uninteresting to testers
- Manually commenting out violated specs is tedious
 - Improved Jtest to support it can help
Why it will succeed

- Without a priori specification, there are few effective black box unit test data selection approaches.
- Violating tests can guarantee to exercise a new program feature
- The violated specs for the corresponding violating tests can help developers to make selection decision easily.
- The approach can be largely automated