
1

Tool-Assisted Unit Test
Selection Based on Operational

Violations

Tao Xie David Notkin

Department of Computer Science & Engineering
University of Washington, Seattle, WA

Oct. 8th, 2003
ASE 2003, Montreal, Canada

2

• Goal:
• From generated tests, select best candidates for manual
inspection to add oracles

Synopsis
• Context: Automatic white-box test generation has many
benefits

+ Lots of tests generated for coverage and robustness

• Problems:
– Oracles not generated for correctness checking
– Lots of tests generated impractical for inspection to
add oracles

3

Synopsis (cont.)

• Solution: Use dynamic invariant detector to
generate properties (a.k.a operational abstractions)
observed from existing test executions

• Guide test selection for inspection
• Guide better test generation

Benefits of specification-based testing can be obtained
without the pain of writing the specifications!

4

Outline

• Motivation
• Operational Violation Approach
• Experiment
• Related Work
• Conclusion

5

?

Program
Automatically
generated test
inputs

White-box gen

• White-box test generation
+ Cover structural entities, e.g. statement, branch
– Test oracle problem

Automatic Unit Test Generation

Jtest

http://www.parasoft.com/

• Black-box test generation
+ Guide test generation
+ Produce test oracles
– Require a priori specs

Specs
Oracles

Black-box gen

6

Specification-Based Testing

• Goal: generate test inputs and test oracles from
specifications

• Tool: ParaSoft Jtest
• Approach:

1. Annotate Design by Contract (DbC) [Meyer 97]
• Preconditions/Postconditions/Class invariants

2. Generate test inputs that
• Satisfy preconditions

3. Check if test executions
• Satisfy postconditions/invariants

Jtest

Up to range(1…3)
method calls in a test

7

Operational Abstraction Generation
[Ernst et al. 01]

• Goal: determine properties true at runtime
(e.g. in the form of Design by Contract)

• Tool: Daikon (dynamic invariant detector)

• Approach
1. Run test suites on a program
2. Observe computed values
3. Generalize

http://pag.lcs.mit.edu/daikon

8

Automatic Unit Test Generation

• White-box test generation
+ Cover structural entities, e.g. statement, branch
– Test oracle problem

• Black-box test generation
+ Guide test generation
+ Produce test oracles
– Require a priori specs

Jtest

Test Selection
for Inspection

Operational
Abstractions

Based on

9

Outline

• Motivation
• Operational Violation Approach
• Experiment
• Related Work
• Conclusion

10

Basic Technique

Insert as
DbC comments

Annotated
program

Run Data trace

Run &
Check

Violating
tests

Automatically
generated test
inputs

Violated OA

Selected
tests

Select

Detect
invariants

All OA

OA: Operational Abstractions

The existing
test suite
(manual tests)

Program

11

Precondition Removal Technique

@Pre
@Post
@Inv

The existing
test suite

Run Data trace Detect
invariants

Insert as
DbC comments

program

• Overconstrained preconditions may leave
(important) legal inputs unexercised

Program Annotated

@Pre

• Solution: precondition removal technique

12

Motivating Example [Stotts et al. 02]

public class uniqueBoundedStack {
private int[] elems;
private int numberOfElements;
private int max;

public uniqueBoundedStack() {
numberOfElements = 0;
max = 2;
elems = new int[max];

}

public int getNumberOfElements() {
return numberOfElements;

}
……

};

A manual test suite (15 tests)

13

Operational Violation Example
public int top(){

if (numberOfElements < 1) {
System.out.println("Empty Stack");
return -1;

} else {
return elems[numberOfElements-1];

}
}

- Precondition Removal Technique

@pre { for (int i = 0 ; i <= this.elems.length-1; i++)

$assert ((this.elems[i] >= 0)); }

@post: [($result == -1) (this.numberOfElements == 0)]

Daikon generates from manual test executions:

uniqueBoundedStack THIS = new uniqueBoundedStack ();
THIS.push (-1);
int RETVAL = THIS.top ();

Jtest generates a violating test input:

14

Iterations

The existing
test suite

Run Data trace Detect
invariants

Insert as
DbC comments

Run &
Check

Violating
tests

Annotated
program

Automatically
generated test
inputs

Violated OA

Select

OA

Selected
tests

• Iterates until
• No operational violations
• User-specified max number of iteration

• The existing tests augmented by selected tests are
run to generate operational abstractions

Program

15

Outline

• Motivation
• Operational Violation Approach
• Experiment
• Related Work
• Conclusion

16

Subject Programs Studied

• 12 programs from assignments and texts
(standard data structures)
• Total 775 executable LOC in 127 methods

• Accompanying manual test suites
• ~94% branch coverage

17

Questions to Be Answered

• Is the number of automatically generated tests
large enough?
• if yes, need test selection

• Is the number of tests selected by our approach
small enough?
• if yes, affordable inspection effort

18

Questions to Be Answered (cont.)

• Do the selected tests by our approach have a high
probability of exposing faults?
• if yes, select a good subset of generated tests

• How does our approach compare with structural
test selection approach?
• Structural approach: select tests that exercise new

branch

19

Measurements

• The number of generated tests without
operational abstractions

• The number of selected tests by our
approach/structural approach

• The percentage of fault-revealing selected
tests by our approach/structural approach

• Human inspection to determine
• Also counting illegal inputs that exhibit abnormal

behavior, e.g. pop on empty stack leading to invalid
object state

20

Experiment Results
• The number of generated tests without

operational abstraction
• Range(24…227) Median(124)

[test containing up to 2 method calls]

• Thousands [test containing up to 3 method calls]

• Relatively large for inspection
• Need test selection

21

Experiment Results (cont.)

• The number of selected tests
• Our approach:

• Range(0…25) Median(3)
• Structural approach:

• Range(0…5) Median(1)

• Relatively small for inspection
• Require affordable inspection effort
• Our approach selects more tests than

structural approach

22

Experiment Results (cont.)

• The percentage of fault-revealing tests among
selected tests (median)
• Our approach:

• Iteration 1: 20% (Basic) 68% (Pre_Removal)

• Iteration 2: 0% (Basic) 17% (Pre_Removal)

• Structural approach: 0%
• But increase confidence on the new exercised branches

• Relatively high (our approach)
• Select good subset of generated tests
• Our approach complements structural approach

23

Experiment Results (cont.)

• Jtest’s running time on test generation and
execution dominates
• Most programs ~5 mins
• But 3 programs 10~20 mins

– Running Jtest several times within each iteration
+ Class- and method-centric
+ Automatic except for human inspection in the end

24

Experiment Results (cont.)

• Many fault-revealing tests not generated by
Jtest without operational abstractions

• Operational abstractions guide the tool to
better generate tests

25

Threats to Validity

• Representative of true practice
• Subject programs, faults, and tests

• Instrumentation effects that bias the results
• Faults on tools (integration scripts, Daikon,

Jtest)

26

Outline

• Motivation
• Operational Violation Approach
• Experiment
• Related Work
• Conclusion

27

Related Work

• Use of operational abstractions
• Operational Difference [Harder et al. 03] – regression testing
• DIDUCE [Hangal & Lam 02] – detect the sources of errors

• Specification-based test selection [Chang & Richardson 99]

• Structural test selection/prioritization
• Residual/additional structural coverage techniques [Pavlopoulou

& Young 99][Rothermel et al. 01][Srivastava & Thiagarajan 02]

• Execution profile clustering/sampling [Dicknson et al. 01]

28

Outline

• Motivation
• Operational Violation Approach
• Experiment
• Related Work
• Conclusion

29

Conclusion

• Operational Abstractions guide Test Generation and
Selection for human inspection
• Basic technique, Precondition removal technique, Iterations
• Experiment demonstrates its usefulness

In future work:
• Investigate sources of variations affecting cost-

effectiveness
• Feedback loop between specification inference and test

generation
• Protocol specifications and algebraic specifications

30

Questions?

31

Iterations

Program

The existing
test suite

Operational
abstractions

generate
Automatically
generated test
inputs

select

Selected
tests

augment collect

generate

32

Iterations
Program

The existing
test suite

Operational
abstractions

generate
Automatically
generated test
inputs

select

Selected
tests

Add preconditions/defensive programming (illegal inputs)

generate

Fix bugs (faults exposed by legal inputs)

Add oracles/augment

