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Synopsis

e Context: Automatic white-box test generation has many
benefits

+ Lots of tests generated for coverage and robustness

* Problems:
— Oracles not generated for correctness checking

— Lots of tests generated impractical for inspection to
add oracles

e Goal:

* From generated tests, select best candidates for manual
inspection to add oracles



Synopsis (cont.)

 Solution: Use dynamic invariant detector to
generate properties (a.k.a operational abstractions)
observed from existing test executions

* Guide test selection for mspection
* Guide better test generation

Benefits of specification-based testing can be obtained
without the pain of writing the specifications!
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Automatic Unit Test Generation

* White-box test generation

+ Cover structural entities, e.g. statement, branch
— Test oracle problem

Pro gram

White-box gen Automatically
» generated test

 Black-box test generation Black_box sen inputs

+ Guide test generation m
+ Produce test oracles

— Require a priori specs
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Specification-Based Testing

Goal: generate test inputs and test oracles from
specifications

Tool: ParaSoft Jtest

Approach:

1. Annotate Design by Contract (DbC) [Meyer 97]
* Preconditions/Postconditions/Class invariants

2. Generate test inputs that
 Satisfy preconditions
3. Check 1f test executions

 Satisfy postconditions/invariants
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Operational Abstraction Generation
[Ernst et al. 01]

* Goal: determine properties true at runtime
(e.g. 1n the form of Design by Contract)

* Tool: Daikon (dynamic invariant detector)
* Approach
1. Run test suites on a program

2. Observe computed values

3. Generalize

"R CASNLI
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Automatic Unit Test Generation

* White-box test generation

+ Cover structural entities, e.g. statement, branch

— Test oracle probleme i

« Black-box test generation

+ Guide test generation

Based on

+ Produce test oracles Operational

— Require a priori specs = = @ Abstractions
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Basic Technique
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Precondition Removal Technique

* Overconstrained preconditions may leave

(important) legal inputs unexercised

* Solution: precondition removal technique
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MOtivating Example [Stotts et al. 02]

public class uniqueBoundedStack {
private int[] elems;
private int numberOfElements;
private int max;

public uniqueBoundedStack () {
numberOfElements = 0;
max = 2;
elems = new int[max];

}

public int getNumberOfElements () ({
return numberOfElements;

A manual test suite (15 tests)
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Operational Violation Example

- Precondition Removal Technique

public int top() {
if (numberOfElements < 1) {
System.out.println ("Empty Stack");
return -1;
} else {
return elems[numberOfElements-1];

@pre { for (int i = 0 ; i <= this.elems.length-1; i++)
Sassert ((this.elems[i] >= 0)); }

Daikon generates from manual test executions:
@post: [(Sresult == -1) <& (this.numberOfElements == 0)]

Jtest generates a violating test input:

uniqueBoundedStack THIS = new uniqueBoundedStack ()
THIS.push (-1);
int RETVAL = THIS.top ()
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Iterations

» The existing tests augmented by selected tests are
run to generate operational abstractions

* [terates until
* No operational violations

» User-specified max number of iteration Atomatically
generated test
inputs
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Subject Programs Studied

* 12 programs from assignments and texts
(standard data structures)

e Total 775 executable LOC 1n 127 methods

* Accompanying manual test suites

* ~94% branch coverage
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Questions to Be Answered

* Is the number of automatically generated tests
large enough?

* 1f yes, need test selection

* [s the number of tests selected by our approach
small enough?

* 1f yes, affordable imnspection effort



Questions to Be Answered (cont.)

* Do the selected tests by our approach have a high
probability of exposing faults?

* 1f yes, select a good subset of generated tests

* How does our approach compare with structural
test selection approach?

 Structural approach: select tests that exercise new
branch
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Measurements

* The number of generated tests without
operational abstractions

* The number of selected tests by our
approach/structural approach

* The percentage of fault-revealing selected
tests by our approach/structural approach

* Human 1nspection to determine

* Also counting illegal inputs that exhibit abnormal
behavior, €.g. pop on empty stack leading to invalid
object state

19



Experiment Results
* The number of generated tests without
operational abstraction
* Range(24...227) Median(124)

[test containing up to 2 method calls]

 Thousands [test containing up to 3 method calls]

» Relatively large for inspection

 Need test selection
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Experiment Results (cont.)

* The number of selected tests
* Our approach:
* Range(0...25) Median(3)
 Structural approach:
* Range(0...5) Median(1)

» Relatively small for inspection
* Require affordable inspection effort

* Our approach selects more tests than
structural approach



Experiment Results (cont.)

* The percentage of fault-revealing tests among
selected tests (median)

* Our approach:
e Tteration 1: 20% (Basic) 68% (Pre Removal)
o Tteration 2: 0% (Basic) 17% (Pre Removal)

e Structural approach: 0%
 But increase confidence on the new exercised branches

« Relatively high (our approach)
* Select good subset of generated tests
* Our approach complements structural approach
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Experiment Results (cont.)

 Jtest’s running time on test generation and
execution dominates

* Most programs ~5 mins
* But 3 programs 10~20 mins

— Running Jtest several times within each 1teration
+ Class- and method-centric
+ Automatic except for human inspection in the end
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Experiment Results (cont.)

* Many fault-revealing tests not generated by
Jtest without operational abstractions

* Operational abstractions guide the tool to
better generate tests



Threats to Validity

* Representative of true practice

* Subject programs, faults, and tests

e Instrumentation effects that bias the results

» Faults on tools (integration scripts, Daikon,
Jtest)
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Related Work

» Use of operational abstractions
* Operational Difference [Harder et al. 03] — regression testing
 DIDUCE [Hangal & Lam 02] — detect the sources of errors

* Specification-based test selection [Chang & Richardson 99]

 Structural test selection/prioritization

* Residual/additional structural coverage techniques [Pavlopoulou
& Young 99][Rothermel et al. 01][Srivastava & Thiagarajan 02]

« Execution profile clustering/sampling [Dicknson et al. 01]
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Conclusion

Operational Abstractions guide Test Generation and
Selection for human inspection

 Basic technique, Precondition removal technique, Iterations
« Experiment demonstrates its usefulness

In future work:

Investigate sources of variations affecting cost-
effectiveness

Feedback loop between specification inference and test
generation

Protocol specifications and algebraic specifications
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Questions?
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Iterations
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