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• Goal:
• From generated tests, select best candidates for manual 
inspection to add oracles

Synopsis 
• Context: Automatic white-box test generation has many 
benefits

+ Lots of tests generated for coverage and robustness

• Problems: 
– Oracles not generated for correctness checking
– Lots of tests generated impractical for inspection to 
add oracles
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Synopsis (cont.)

• Solution:  Use dynamic invariant detector to 
generate properties (a.k.a operational abstractions) 
observed from existing test executions

• Guide test selection for inspection
• Guide better test generation

Benefits of specification-based testing can be obtained 
without the pain of writing the specifications!
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Outline

• Motivation
• Operational Violation Approach
• Experiment
• Related Work
• Conclusion
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?

Program
Automatically 
generated test 
inputs

White-box gen

• White-box test generation
+ Cover structural entities, e.g. statement, branch
– Test oracle problem

Automatic Unit Test Generation

Jtest

http://www.parasoft.com/

• Black-box test generation
+ Guide test generation
+ Produce test oracles
– Require a priori specs

Specs
Oracles

Black-box gen
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Specification-Based Testing

• Goal: generate test inputs and test oracles from 
specifications

• Tool: ParaSoft Jtest
• Approach:

1. Annotate Design by Contract (DbC) [Meyer 97]
• Preconditions/Postconditions/Class invariants

2. Generate test inputs that
• Satisfy preconditions

3. Check if test executions
• Satisfy postconditions/invariants

Jtest

Up to range(1…3) 
method calls in a test
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Operational Abstraction Generation 
[Ernst et al. 01]

• Goal:  determine properties true at runtime 
(e.g. in the form of Design by Contract)

• Tool: Daikon (dynamic invariant detector)

• Approach
1. Run test suites on a program
2. Observe computed values
3. Generalize

http://pag.lcs.mit.edu/daikon
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Automatic Unit Test Generation

• White-box test generation
+ Cover structural entities, e.g. statement, branch
– Test oracle problem

• Black-box test generation
+ Guide test generation
+ Produce test oracles
– Require a priori specs

Jtest

Test Selection 
for Inspection

Operational 
Abstractions

Based on
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Outline

• Motivation
• Operational Violation Approach
• Experiment
• Related Work
• Conclusion
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Basic Technique

Insert as
DbC comments

Annotated
program

Run Data trace

Run & 
Check

Violating 
tests

Automatically 
generated test 
inputs

Violated OA

Selected
tests

Select

Detect
invariants

All OA

OA: Operational Abstractions

The existing 
test suite 
(manual tests)

Program
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Precondition Removal Technique

@Pre
@Post
@Inv

The existing 
test suite

Run Data trace Detect
invariants

Insert as
DbC comments

program

• Overconstrained preconditions may leave 
(important) legal inputs unexercised

Program Annotated

@Pre

• Solution: precondition removal technique



12

Motivating Example [Stotts et al. 02]

public class uniqueBoundedStack {
private int[] elems;
private int numberOfElements; 
private int max;

public uniqueBoundedStack() {
numberOfElements = 0;
max = 2;
elems = new int[max];

}

public int getNumberOfElements() {
return numberOfElements;

}
……

};

A manual test suite (15 tests)
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Operational Violation Example
public int top(){

if (numberOfElements < 1) {
System.out.println("Empty Stack");
return -1;

} else {
return elems[numberOfElements-1];

}
}

- Precondition Removal Technique

@pre { for (int i = 0 ; i <= this.elems.length-1; i++)    

$assert ((this.elems[i] >= 0));   }

@post: [($result == -1) (this.numberOfElements == 0)] 

Daikon generates from manual test executions:

uniqueBoundedStack THIS = new uniqueBoundedStack (); 
THIS.push (-1); 
int RETVAL = THIS.top ();  

Jtest generates a violating test input:
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Iterations

The existing 
test suite

Run Data trace Detect
invariants

Insert as
DbC comments

Run & 
Check

Violating 
tests

Annotated
program

Automatically 
generated test 
inputs

Violated OA

Select

OA

Selected
tests

• Iterates until 
• No operational violations
• User-specified max number of iteration

• The existing tests augmented by selected tests are 
run to generate operational abstractions

Program
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Outline

• Motivation
• Operational Violation Approach
• Experiment
• Related Work
• Conclusion
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Subject Programs Studied

• 12 programs from assignments and texts 
(standard data structures)
• Total 775 executable LOC in 127 methods

• Accompanying manual test suites
• ~94% branch coverage
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Questions to Be Answered

• Is the number of automatically generated tests 
large enough? 
• if yes, need test selection

• Is the number of tests selected by our approach 
small enough?
• if yes, affordable inspection effort
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Questions to Be Answered (cont.)

• Do the selected tests by our approach have a high
probability of exposing faults? 
• if yes, select a good subset of generated tests

• How does our approach compare with structural 
test selection approach?
• Structural approach: select tests that exercise new 

branch
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Measurements

• The number of generated tests without 
operational abstractions

• The number of selected tests by our 
approach/structural approach

• The percentage of fault-revealing selected 
tests by our approach/structural approach

• Human inspection to determine
• Also counting illegal inputs that exhibit abnormal 

behavior, e.g. pop on empty stack leading to invalid 
object state
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Experiment Results
• The number of generated tests without 

operational abstraction
• Range(24…227)   Median(124)

[test containing up to 2 method calls]

• Thousands [test containing up to 3 method calls]

• Relatively large for inspection
• Need test selection



21

Experiment Results (cont.)

• The number of selected tests
• Our approach: 

• Range(0…25)  Median(3)
• Structural approach:

• Range(0…5) Median(1)

• Relatively small for inspection
• Require affordable inspection effort
• Our approach selects more tests than 

structural approach
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Experiment Results (cont.)

• The percentage of fault-revealing tests among 
selected tests (median)
• Our approach:

• Iteration 1: 20% (Basic)     68% (Pre_Removal)

• Iteration 2: 0% (Basic)     17% (Pre_Removal)

• Structural approach: 0%
• But increase confidence on the new exercised branches

• Relatively high (our approach)
• Select good subset of generated tests
• Our approach complements structural approach
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Experiment Results (cont.)

• Jtest’s running time on test generation and 
execution dominates
• Most programs ~5 mins
• But 3 programs 10~20 mins

– Running Jtest several times within each iteration
+  Class- and method-centric
+  Automatic except for human inspection in the end
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Experiment Results (cont.)

• Many fault-revealing tests not generated by 
Jtest without operational abstractions

• Operational abstractions guide the tool to 
better generate tests
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Threats to Validity

• Representative of true practice
• Subject programs, faults, and tests

• Instrumentation effects that bias the results
• Faults on tools (integration scripts, Daikon, 

Jtest)
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Outline

• Motivation
• Operational Violation Approach
• Experiment
• Related Work
• Conclusion



27

Related Work

• Use of operational abstractions
• Operational Difference [Harder et al. 03] – regression testing
• DIDUCE [Hangal & Lam 02] – detect the sources of errors

• Specification-based test selection [Chang & Richardson 99]

• Structural test selection/prioritization
• Residual/additional structural coverage techniques [Pavlopoulou

& Young 99][Rothermel et al. 01][Srivastava & Thiagarajan 02]

• Execution profile clustering/sampling [Dicknson et al. 01]
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Outline
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• Experiment
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Conclusion

• Operational Abstractions guide Test Generation and 
Selection for human inspection
• Basic technique, Precondition removal technique, Iterations
• Experiment demonstrates its usefulness

In future work:
• Investigate sources of variations affecting cost-

effectiveness
• Feedback loop between specification inference and test 

generation
• Protocol specifications and algebraic specifications
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Questions?
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Iterations

Program

The existing 
test suite

Operational 
abstractions

generate
Automatically 
generated test 
inputs

select

Selected
tests

augment collect

generate
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Iterations
Program

The existing 
test suite

Operational 
abstractions

generate
Automatically 
generated test 
inputs

select

Selected
tests

Add preconditions/defensive programming (illegal inputs)

generate

Fix bugs (faults exposed by legal inputs)

Add oracles/augment


