Automated Test Generation
for AspectJ Programs

Tao Xie? Jianjun Zhao 2, Darko Marinovj3 and David Notkin'

1 University of Washington
2 Fukuoka Institute of Technology
° University of lllinois at Urbana-Champaign

Motivation

e Aspectd’s specific constructs require adapting the existing
testing concepts, e.g. test-input generation

e Generate tests for AspectJ programs by developing
completely new tools

Duplicate a large part of the existing Java test-generation tools’
functionality.

e Can we reuse existing tools for Java programs to
automatically generate tests for Aspectd programs?

e \What research issues to be addressed during the reuse
of the existing tools?

Motivation

e Aspectd’s specific constructs require adapting the existing
testing concepts, e.g. test-input generation

e Generate tests for AspectJ programs by developing
completely new tools

Duplicate a large part of the existing Java test-generation tools’
functionality.

e Can we reuse existing tools for Java programs to
automatically generate tests for Aspectd programs?

e \What research issues to be addressed during the reuse
of the existing tools?

Wrasp is proposed to address both questions with wrapper classes,
complement Aspectra for detecting AspectJ redundant tests [Xie et al. 04]

Straightforward Tool Reuse

e EXxisting Java test-generation tools (based on bytecode)
Parasoft Jtest, NASA Java Pathfinder [Visser et al. ISSTA 04]

JCrasher [Csallner &S maragdakis SPE 04], Rostra [Xie et al. ASE 04],
Symestra [Xie et al. TACAS 05]

e Aspectd unit testing: testing aspects in isolation

Treat a compiled aspect class as the class under test for existing
tools

Issues: JionPoint and AroundClosure arguments

e Aspectd integration testing: interaction between base
classes and aspects
Treat a woven class as the class under test for existing tools

Testing Aspect in Isolation

public void testNonNegativel () {
Stack t0O = new Stack ()
NonNegative THIS = new NonNegative () ;
THIS.ajcSbeforeSNonNegative$15d9be608f (t0) ;

J

public void testPushCountl () {

Stack t0 = new Stack();
PushCount.ajc$interMethodSPushCountS$SStacks
incrementCount (t0) ;

Issues of Integration Testing

e Advice of “call” join points is woven at call sites

Dynamic-test-generation tools cannot execute the
advice during test generation

Indeed, we can weave generated tests together with
base classes and aspects (after the tests have been
generated)

e Test-weaving compilation may fail when the
interfaces of woven classes contain intertype
methods

Intertype methods don’t appear in base classes’
source

Wrapper Class As Class under Test

___|

' public class Stack {
public Stack() {..}

public int pop() {..}

|

i

I
public boolean push(int i) {..} i

"

|

|

I

I

iaspect PushCount {

int Stack.count = 0; .
public void Stack.increaseCount () {
count++;

__

public class StackWrapper ({
Stack s;
public StackWrapper () {
s new Stack() ;

}
public boolean push(int i) {

return s.push(i);
}
public int pop() {return s.pop()
public void increaseCount() {
Class cls
Method meth =

meth.invoke (s, null);

}

7}
Class.forName ("Stack") ;

cls.getMethod ("increaseCount" , null) ;

e Advice of “call” join points
is woven at call sites

Test-weaving compilation
may fail when the
interfaces of woven
classes contain intertype
methods

Wrapper Mechanism

__

Base classes & Wrapper
| aspect classes classes

1 Weave

2 Synthesize
wrappers

4

A

Woven
classes

3 Weave

Woven
wrapper
classes

\f

5 Weave

y

4 Generate
tests

[
[

Automatically
generated test
inputs

[

Compiled test
inputs

\

Discussion

e What AOP features make existing test generation tools
difficult?

Interaction (implementation-based testing fails for missing path)

e \What AOP features make existing test generation tools
easy?

Observable units:
generate integration tests - detect non-redundant tests for

aspects > inspect non-redundant tests [Xie et al. 04]

e \What new tools/infrastructures shall the community build?

More subjects (beyond)
Mutation tools (OO:)
Coverage measurement tools

Typical-fault repository (Non-AOP: U. Nebraska Lincoln)

Testing tools specific for AOP features that are not addressed by
OO testing tools

