
Automated Test Generation
for AspectJ Programs

Tao Xie, Jianjun Zhao , Darko Marinov, and David Notkin

University of Washington
Fukuoka Institute of Technology

University of Illinois at Urbana-Champaign

1 2 3 1

1

2

3

Motivation
AspectJ’s specific constructs require adapting the existing
testing concepts, e.g. test-input generation

Generate tests for AspectJ programs by developing
completely new tools

Duplicate a large part of the existing Java test-generation tools’
functionality.

Can we reuse existing tools for Java programs to
automatically generate tests for AspectJ programs?

What research issues to be addressed during the reuse
of the existing tools?

Motivation
AspectJ’s specific constructs require adapting the existing
testing concepts, e.g. test-input generation

Generate tests for AspectJ programs by developing
completely new tools

Duplicate a large part of the existing Java test-generation tools’
functionality.

Can we reuse existing tools for Java programs to
automatically generate tests for AspectJ programs?

What research issues to be addressed during the reuse
of the existing tools?

Wrasp is proposed to address both questions with wrapper classes,
complement Aspectra for detecting AspectJ redundant tests [Xie et al. 04]

Straightforward Tool Reuse

Existing Java test-generation tools (based on bytecode)
Parasoft Jtest, NASA Java Pathfinder [Visser et al. ISSTA 04]

JCrasher [Csallner &Smaragdakis SPE 04], Rostra [Xie et al. ASE 04],
Symstra [Xie et al. TACAS 05]

AspectJ unit testing: testing aspects in isolation
Treat a compiled aspect class as the class under test for existing
tools
Issues: JionPoint and AroundClosure arguments

AspectJ integration testing: interaction between base
classes and aspects

Treat a woven class as the class under test for existing tools

Testing Aspect in Isolation
public void testNonNegative1() {

Stack t0 = new Stack ();
NonNegative THIS = new NonNegative();

THIS.ajc$before$NonNegative1d9be608f(t0);
}

public void testPushCount1() {
Stack t0 = new Stack();
PushCount.ajc$interMethod$PushCount$Stack$
incrementCount(t0);

}

Issues of Integration Testing

Advice of “call” join points is woven at call sites
Dynamic-test-generation tools cannot execute the
advice during test generation
Indeed, we can weave generated tests together with
base classes and aspects (after the tests have been
generated)

Test-weaving compilation may fail when the
interfaces of woven classes contain intertype
methods

Intertype methods don’t appear in base classes’
source

Wrapper Class As Class under Test

public class StackWrapper {
Stack s;
public StackWrapper(){

s = new Stack();
}
public boolean push(int i) {

return s.push(i);
}
public int pop() {return s.pop();}
public void increaseCount() {
Class cls = Class.forName("Stack");
Method meth =
cls.getMethod("increaseCount",null);
meth.invoke(s, null);
}
}

public class Stack {
public Stack() {…}
public boolean push(int i){…}
public int pop() {…}
}

aspect PushCount {
int Stack.count = 0;
public void Stack.increaseCount(){

count++;
}}

Advice of “call” join points
is woven at call sites

Test-weaving compilation
may fail when the
interfaces of woven
classes contain intertype
methods

Wrapper Mechanism

1 Weave

4 Generate
tests

Automatically
generated test
inputs

2 Synthesize
wrappers

Wrapper
classes

Base classes &
aspect classes

Woven
classes

Woven
wrapper
classes

3 Weave

5 Weave

Compiled test
inputs

Discussion
What AOP features make existing test generation tools
difficult?

Interaction (implementation-based testing fails for missing path)

What AOP features make existing test generation tools
easy?

Observable units:
generate integration tests detect non-redundant tests for
aspects inspect non-redundant tests [Xie et al. 04]

What new tools/infrastructures shall the community build?
More subjects (beyond http://www.sable.mcgill.ca/benchmarks/)
Mutation tools (OO: http://www.ise.gmu.edu/~ofut/mujava/)
Coverage measurement tools
Typical-fault repository (Non-AOP: U. Nebraska Lincoln)
Testing tools specific for AOP features that are not addressed by
OO testing tools

