
Towards Regression Test Selection for AspectJ Programs

Jianjun Zhao
Department of Computer
Science and Engineering

Shanghai Jiao Tong University
800 Dongchuan Road,

Shanghai 200240, China

zhao-jj@cs.sjtu.edu.cn

Tao Xie
Department of Computer

Science
North Carolina State

University
Raleigh, NC 27695

xie@csc.ncsu.edu

Nan Li
School of Software

Shanghai Jiao Tong University
800 Dongchuan Road,

Shanghai 200240, China

arctic@sjtu.edu.cn

ABSTRACT
Regression testing aims at showing that code has not been
adversely affected by modification activities during mainte-
nance. Regression test selection techniques reuse tests from
an existing test suite to test a modified program. By reusing
such a test suite to retest modified programs, maintainers
or testers can reduce the required testing effort. This pa-
per presents a regression test selection technique for AspectJ
programs. The technique is based on various types of con-
trol flow graphs that can be used to select from the original
test suite test cases that execute changed code for the new
version of the AspectJ program. The code-base technique
operates on the control flow graphs of AspectJ programs.
The technique can be applied to modified individual aspects
or classes as well as the whole program that uses modified
aspects or classes.

1. INTRODUCTION
Aspect-oriented software development (AOSD) is a new

approach to support separation of concerns in software de-
velopment [5, 8, 12, 20]. The techniques in AOSD allow to
modularize crosscutting aspects of a system. Like objects
in object-oriented software development, aspects in AOSD
may arise at any stage of the software life cycle, includ-
ing requirements specification, design, implementation, etc.
Some examples of crosscutting aspects are exception han-
dling, synchronization, and resource sharing.

Most existing research in AOSD is focused on problem
analysis, software design, and implementation techniques.
Although software testing is important, it has received little
attention in the aspect-oriented paradigm. Although it has
been claimed that applying an AOSD technique will even-
tually lead to quality software, aspect-orientation does not
provide correctness by itself. An aspect-oriented design can
lead to a better system architecture and an aspect-oriented
programming language enforces a disciplined coding style,
but they are by no means shields against programmer’s mis-
takes or a lack of understanding of the specification. As a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WTAOP’06 Portland, Maine USA
Copyright 2006 ACM 1-59593-415-4/06/0007 ...$5.00.

result, software testing remains an important task in AOSD.
Regression testing is a necessary and important activity

at both testing and maintenance phases. It aims at showing
that code has not been adversely affected by modification
activities during maintenance. The selection techniques of
regression test reuse tests from an existing test suite to test
a modified program which can reduce the required testing
effort of programs’ maintainers or testers.

Aspect-oriented programming languages such as AspectJ
introduce some new language constructs, such as join points,
advice, introduction, and aspects, that differ from those in
procedural and object-oriented programs. These specific
constructs in aspect-oriented programs require special test-
ing support and provide opportunities for being exploited
by a testing strategy. However, although many regression
test selection techniques have been proposed for procedural
programs [4, 6, 14] and object-oriented programs [10, 11,
15, 7], there exists no regression test selection technique for
aspect-oriented programs. In addition, the existing regres-
sion test selection techniques can not be directly applied to
aspect-oriented programs, which have some unique features
that must be considered specially during regression testing.
Therefore, there is a need for new regression test selection
techniques and tools that are appropriate for aspect-oriented
programs.

This paper presents a regression test selection technique
for AspectJ programs. The technique is based on various
types of control flow graphs that can be used to select from
the original test suite test cases that execute changed code
for the new version of an AspectJ program. The code-based
technique operates on the control flow graphs of AspectJ
programs. The technique can be applied to modified indi-
vidual aspects or classes as well as the whole program that
uses modified aspects or classes.

The rest of the paper is organized as follows. Section
2 briefly introduces AspectJ. Section 3 briefly introduces
the regression test selection techniques for Java programs.
Section 4 presents our regression test selection technique for
AspectJ programs. Section 5 briefly discusses related work
and Section 6 concludes.

2. ASPECTJ
We present our regression test selection technique in the

context of AspectJ, the most widely used aspect-oriented
programming language [9]. Our basic techniques, however,
deal with the basic concepts of aspect-oriented programming
and therefore apply to the general class of aspect-oriented
languages.

 ce0 public class Point {
 s1 protected int x, y;
 me2 public Point(int _x, int _y) {
 s3 x = _x;
 s4 y = _y;
 }
 me5 public int getX() {
 s6 return x;
 }
 me7 public int getY() {
 s8 return y;
 }
 me9 public void setX(int _x) {
 s10 x = _x;
 }
me11 public void setY(int _y) {
 s12 y = _y;
 }
me13 public void printPosition() {
 s14 System.out.println("Point at("+x+","+y+")");
 }
me15 public static void main(String[] args) {
 s16 Point p = new Point(1,1);
 s17 p.setX(2);
 s18 p.setY(2);
 }
 }

ase27 aspect PointShadowProtocol {
 s28 private int shadowCount = 0;
 me29 public static int getShadowCount() {
 s30 return PointShadowProtocol.
 aspectOf().shadowCount;
 }
 s31 private Shadow Point.shadow;
 me32 public static void associate(Point p, Shadow s){
 s33 p.shadow = s;
 }
 me34 public static Shadow getShadow(Point p) {
 s35 return p.shadow;
 }

 pe36 pointcut setting(int x, int y, Point p):
 args(x,y) && call(Point.new(int,int));
 pe37 pointcut settingX(Point p):
 target(p) && call(void Point.setX(int));
 pe38 pointcut settingY(Point p):
 target(p) && call(void Point.setY(int));

 ae39 after(int x, int y, Point p) returning :
 setting(x, y, p) {
 s40 Shadow s = new Shadow(x,y);
 s41 associate(p,s);
 s42 shadowCount++;
 }
 ae43 after(Point p): settingX(p) {
 s44 Shadow s = new getShadow(p);
 s45 s.x = p.getX() + Shadow.offset;
 s46 p.printPosition();
 s47 s.printPosition();
 }
 ae48 after(Point p): settingY(p) {
 s49 Shadow s = new getShadow(p);
 s50 s.y = p.getY() + Shadow.offset;
 s51 p.printPosition();
 s52 s.printPosition();
 }
 }

ce19 class Shadow {
 s20 public static final int offset = 10;
 s21 public int x, y;

me22 Shadow(int x, int y) {
 s23 this.x = x;
 s24 this.y = y;
me25 public void printPosition() {
 s26 System.outprintln("Shadow at
 ("+x+","+y+")");
 }
 }

Figure 1: A sample AspectJ program.

AspectJ [9] is a seamless aspect-oriented extension to Java;
AspectJ adds some new concepts and associated constructs
to Java. These concepts and associated constructs are called
join point, pointcut, advice, introduction, and aspect. We
briefly introduce each of these constructs as follows.

An aspect is a modular unit of crosscutting implemen-
tation in AspectJ. Each aspect encapsulates functionality
that crosscuts other classes in a program. Like a class, an
aspect can be instantiated, can contain state and methods,
and also may be specialized with sub-aspects. An aspect
is combined with the classes that it crosscuts according to
specifications given within the aspect. Moreover, an aspect
can use an introduction construct to introduce methods,
attributes, and interface implementation declarations into
classes. Introduced members may be made visible to all
classes and aspects (public introduction) or only within the
aspect (private introduction), allowing one to avoid name
conflicts with pre-existing elements. For example, the as-
pect PointShadowProtocol shown in Figure 1 privately in-
troduces a field shadow to the class Point at s31.

A central concept in the composition of an aspect with
other classes is called a join point. A join point is a well-
defined point in the execution of a program, such as a call to
a method, an access to an attribute, an object initialization,
and an exception handler. Sets of join points may be rep-
resented by pointcuts, implying that such sets may crosscut
the system. Pointcuts can be composed and new pointcut
designators can be defined according to these combinations.
AspectJ provides various pointcut designators that may be
combined through logical operators to build up complete de-
scriptions of pointcuts of interest. For example, the aspect
PointShadowProtocol in Figure 1 declares three pointcuts
named setting, settingX, and settingY at pe36, pe37, and
pe38.

An aspect can specify advice, which is used to define
code that executes when a pointcut is reached. Advice is a

method-like mechanism that consists of instructions that ex-
ecute before, after, or around a pointcut. around advice exe-
cutes in place of the indicated pointcut, allowing a method to
be replaced. For example, the aspect PointShadowProtocol
in Figure 1 declares three pieces of after advice at ae39,
ae43, and ae48, which are attached to the corresponding
pointcut setting, settingX, and settingY, respectively.

An AspectJ program can be divided into two parts: base
code, which includes classes, interfaces, and other standard
Java constructs, and aspect code, which implements the cross-
cutting concerns in the program. For example, Figure 1
shows an AspectJ program that associates shadow points
with every Point object. The program can be divided into
the base code, containing the classes Point and Shadow, and
the aspect code, containing the aspect PointShadowProtocol,
which stores a shadow object in every Point. Moreover, the
AspectJ implementation ensures that the aspect and base
code run together in a properly coordinated fashion. A key
related component is an aspect weaver, which ensures that
applicable advice runs at appropriate join points. More in-
formation about AspectJ can be found elsewhere [3].

3. SAFE REGRESSION TEST SELECTION
FOR JAVA PROGRAMS

We next briefly introduce the safe regression test selection
technique developed by Harrold et al. [7] for Java programs;
we develop our technique for AspectJ programs based on
their technique. The key notion of their technique for java
software to perform safe regression test selection are a con-
trol flow based representation called Java Interclass Graph
(JIG) and a technique to detect dangerous arcs on the JIG.
Basically, the technique takes the following steps:

• Run the test suites with the original program and ob-
tain coverage information.

• Construct the Java Interclass Graph (JIG) for the orig-
inal and modified programs.

• Compare the JIGs and detect dangerous arcs in the
graphs.

• Compare the coverage information and dangerous arcs,
and select test cases.

We next describe JIG and a technique to detect dangerous
arcs on the JIG.

3.1 Java Interclass Graph
The Java Interclass Graph (JIG) [7] for a Java program

is a collection of method control flow graphs each of which
represents a main() method or a method in a class of the pro-
gram. Additional arcs represent specific Java features, for
example, method calls from the internal and external code,
and exception handling. A Control Flow Graph (CFG) for a
method m is a directed graph whose vertices represent state-
ments or predicate expressions in m; arcs represent control
flow information.

A representation of method calls from internal code is sim-
ilar to most of traditional techniques such as those presented
in [14]. To model interprocedural interactions between in-
ternal and external methods, these techniques use a special
vertex called external code vertex to represent external code
that may call an internal method or be called by an internal
method. To do so, these techniques create arcs from the
external code vertex to the entry vertices of some internal
classes if these classes are accessible from external code. In
addition, they create call arcs to connect the class entry ver-
tex to the corresponding internal method because internal
classes accessible from external code are considered to have
internal methods that can be used to override external meth-
ods. These techniques also use a special vertex called default
vertex to represent those methods that are not overridden
by the internal methods. Special call arcs labeled with “*”
are created from the class entry vertex to the default vertex.

To model exception handling in Java, these techniques use
a similar way as the one proposed by Sinha and Harrold [16].
Their JIG can explicitly represents the try, catch, and finally
blocks in each try statement.

3.2 Dangerous-Arc Detection
In the JIG of the original program, dangerous arcs are

those arcs that represent control flows corresponding to the
changed parts. Given the JIGs for the original and modified
Java programs, Harrold et al. [7] use a depth-first algorithm,
which is based on algorithms proposed by Rothermel et al.
[14, 15], to detect dangerous arcs in the JIG of the origi-
nal Java program by traversing in parallel the JIGs of the
original and modified programs. The arc is regarded as a
dangerous arc if the targets of the CFG arcs in the original
and modified programs differ. Any test cases that cover the
dangerous arcs must be rerun, and these test cases should be
selected safely for regression testing because their behavior
may be changed during maintenance and evolution phases.
On the other hand, according to the algorithm developed by
Harrold et al. [7], if an arc that is labeled as ‘*’becomes a
dangerous arc, all test cases that create the instance of that
corresponding class must be rerun as well.

4. SAFE REGRESSION TEST SELECTION
FOR ASPECTJ PROGRAMS

We next present our safe regression test selection tech-
nique for AspectJ programs. Our technique is based on a
similar technique developed by Harrold et al. [7] to select
regression tests for Java programs (described in Section 3).
The basic notion of the technique is to detect the dangerous
arcs based on the control flow graphs of an original AspectJ
programs and its modified version in order to safely select
regression tests that must be rerun during the regression
testing. However, existing control flow based representa-
tions such as JIG can not accommodate some specific fea-
tures in AspectJ programs; therefore, we need to construct
new control flow graphs for AspectJ. As a result, to facilitate
selecting regression tests for AspectJ programs, we present
a control flow model that captures the control flow infor-
mation of an aspect and also a complete AspectJ program.
Based on this model, we can perform regression test selec-
tion for AspectJ Programs.

4.1 Control Flow Model for AspectJ
Our control flow model consists of two different types of

control flow graphs in order to capture different levels of con-
trol flow information in an individual aspect and the whole
program. We present each type of the graphs as follows.

4.1.1 Modeling Individual Modules
In AspectJ, in addition to methods, an aspect may contain

other modular units such as advice and inter-type members.
Because advice and inter-type members can be treated as
method-like units, to keep our terminology consistent in the
rest of paper, we use the word “module” to refer to a piece
of advice, an inter-type member, or a method in an aspect,
and also a method in a class.

A control flow graph (CFG) for a module m, denoted by
GCFG, is a directed graph (e, V, A) where e is an entry vertex
to represent the entry into m; V = Vn ∪ Vc such that Vn is
a set of normal vertices and Vc is a set of call vertices. A
is a set of control flow arcs to represent the flow of control
between two vertices.

In GCFG, a vertex is called a normal vertex if it represents
a statement or predicate expression in m without containing
a call or object creation. Otherwise, it is called a call vertex.
GCFG can be used to represent the control flow information
for a module of an AspectJ program.

An aspect may be woven into one or more classes at some
join points declared within pointcuts, which are used in the
definition of advice [3]. Because a piece of before, after, or
around advice a can be treated as a method-like unit, we
can use a CFG to represent a. In this case, the CFG for a
has a unique entry vertex to represent the entry into a.

Aspects can declare members (fields, methods, and con-
structors) that are owned by other types. These are called
inter-type members. Aspects can also declare that other
types implement new interfaces or extend a new class [3].
Because each of these inter-type members (only for a method
or constructor) is similar in nature to a standard method or
constructor, we can use a CFG to represent each of them.
In this case, the CFG for an inter-type member has a unique
entry vertex to represent the entry into the member.

Because a pointcut pc contains no body code, a control
flow graph is not needed to represent pc. In this case, we use
a vertex called join-point vertex to represent pc. The join-
point vertex also represents the entry into pc. As is discussed

later, a join-point vertex can be treated as a “join point”
to help weave the CFGs for advice into the partial system
control flow graph (described in Section 4.1.4 in details) for
base code.

With the CFG as a representation of each individual mod-
ule of an aspect, our technique can identify the changes in a
piece of advice, method, or intertype method in the aspect.

4.1.2 Modeling Individual Aspects
To facilitate the analysis of an individual aspect, we rep-

resent each aspect in an AspectJ program with an aspect
control flow graph. The aspect control flow graph (ACFG)
represents the static control flow relationships that exist
within and among advice, inter-type members, and meth-
ods of an aspect α. An ACFG is a collection of CFGs, each
of which represents a piece of advice, an inter-type member,
or a method in α. The aspect entry vertex represents the en-
try into α. An aspect membership arc represents the mem-
bership relationships between α and its members (advice,
inter-type members, pointcuts, or methods) by connecting
α’s entry vertex to the entry vertex of each member. A join-
point vertex represents a pointcut in α. A call arc represents
the calling relationship1 between two modules m1 and m2

in α by connecting the call vertex in m1 to the entry vertex
of m2’s CFG if there is a call in m1’s body to m2. Weaving
arcs represent advice weaving by connecting the CFG for
a method in some classes to the CFG for its corresponding
advice in α.

For each pointcut pc in α, we connect the aspect entry
vertex to pc’s join-point vertex through an aspect member-
ship arc, and also pc’s join-point vertex to the entry vertex
of its corresponding advice by a pointing arc to represent
the relationship between them.

With the ACFG as the representation of an individual as-
pect, our technique can identify the changes in the aspect by
traversing the ACFGs of the original and modified aspects.

Example 1. Figure 2 shows the control flow graph for
aspect PointShadowProtocol. For example, ase27 is an as-
pect entry vertex; ae39, ae43, and ae48 are advice entry
vertices; me29, me32, and me34 are method entry vertices,
pe36, pe37, and pe38 are join-point vertices. (ase27, me29),
(ase27, me32), and (ase27, me34) are aspect membership
arcs. Each entry vertex is the root of a sub-graph, which is
itself a CFG that represents the control flow information in
a module. (pe36,ae39), (pe37,ae43), and (pe38,ae48) are
pointing arcs that represent interactions between pointcuts
and their corresponding advice.

4.1.3 Modeling Aspect-Class Interactions
In AspectJ, an aspect can interact with a class in several

ways, i.e., by object creation, method call, and advice weav-
ing. Our control flow model for an AspectJ program can
represent these interactions between aspects and classes.

Method Calls and Object Creations. In AspectJ, A call may
occur between two modules m1 and m2, each of which can
be a piece of advice, an inter-type member, or a method of
aspects and classes. In such a case, a call arc is added to
connect the call vertex of m1’s CFG to the entry vertex of

1
Because advice in AspectJ is automatically woven into some

method(s) by a compiler (such as ajc) during the aspect weaving
process, there exists no call to the advice. As a result, there exists
no call from an inter-type member (or method) to advice.

m2’s CFG. On the other hand, a piece of advice, an inter-
type member, or a method m in an aspect α may create
an object of a class C through a declaration or by using
an operator such as new. At this time, there is an implicit
call from m to C’s constructor. To represent this implicit
constructor call, we add a call arc to connect the call vertex
in α at the site of object creation to the entry vertex e of the
CFG of C’s constructor. This representation forms a partial
CFG of an complete AspectJ program.

Example 2. In Figure 1, statement s40 represents an
object creation of class Shadow in the PointShadowProtocol

aspect. To represent this object creation, in the SCFG of
Figure 3, we create a call vertex for s40; the call vertex
is connected to the entry vertex me22 of the Point’s con-
structor by a call arc. On the other hand, statement s45

represents a call to method getX() of class Point in aspect
PointShadowProtocol. To represent this method call, in the
SCFG of Figure 3, we create a call vertex for s45; the call
vertex is connected to the entry vertex me5 of method setX()

by a call arc.

Advice Weaving. In AspectJ, the join point model is a key
element for providing the frame of reference that coordinates
properly the execution of a program’s aspect and non-aspect
code. We recognized that the join point model is also a cru-
cial point to perform interprocedural control flow analysis
for AspectJ programs because control flow analysis of as-
pect and non-aspect code of the program is not independent.
Rather, aspect and non-aspect code must be coordinated
through the join points (declared by pointcut designators)
in the program. As a result, properly handling join points
in the aspect code is a key for performing interprocedural
control flow analysis of an AspectJ program.

To build a complete control flow graph for n AspectJ pro-
gram, we need to know some “join points” in the CFGs for
some methods into which the CFGs for their corresponding
advice can be woven. By performing a static analysis for a
pointcut declaration, we can determine in some classes those
methods that a piece of advice (being attached to this point-
cut) may advise. This information can be used to connect
the partial SCFG for base code to the CFGs for the aspect
code; just as an aspect weaves itself into the base program
at some join points, we weave the CFGs for advice into the
partial SCFG at join-point vertices.

The basic notion of our approach is that we treat a piece
of advice as a method-like unit when constructing the CFG
for an AspectJ program and treat each pointcut as a join
point for weaving the CFGs of advice and the partial CFG
for base code. For a piece of before or after advice a in an
aspect that may advise a method m in a class, we connect
the entry vertex of m (advised method) to the join point
vertex attached by a using a weaving arc. This weaving
case is similar to the case that m contains a method call,
i.e., we treat a together with its pointcut(s) as a method
that may be called from m. The weaving arc here is similar
to a call arc, but with a different meaning. For a piece of
around advice a in an aspect that may advise a method m
in a class, because a may replace m, we add a weaving arc
that connects the start vertex of the original call arc to m
to the join-point vertex attached by a.

With this partial CFG generated, our technique can iden-
tify the weaving arcs (caused by advice weaving) that may
be affected by a code change by traversing the partial CFGs

aspect membership arc

intraprocedural control-flow arc

interprocedural control-flow
or call arc

class module
vertex

aspect module
vertex

me32 ae43ae39me34me29 ae48

me2 me9 me11

s45

me32

ase27

ae43s33

s44c

s46

ae39

s41c

me34

s35

me29

s30

s47

s50

ae48

s49c

s51

s52

s40

s42

me2 me9 me11

s3

s4

s10 s12

ase27

s41r

s44r s49r

pointing arc weaving arc

pe38pe38

pe38

Figure 2: The ACG and ACFG corresponding to aspect PointShadowProtocol.

of the original and modified programs.

Example 3. The after advice (lines ae43-s47) in aspect
PointShadowProtocol may be woven into method setX() of
class Point. To represent this weaving issue, in the SCFG of
Figure 3, we create a weaving arc (me9, pe37) to connect the
entry vertex me9 for method setX() to the join-point vertex
pe37 for pointcut settingX.

4.1.4 Modeling Complete Programs
We use the system control flow graph (SCFG) to repre-

sent the control flow information and calling relationships
in a complete AspectJ program. An SCFG is a collection
of CFGs; each represents a main() method, a method of a
class, a piece of advice, an inter-type member, or a method of
an aspect. The SCFG also contains some additional arcs to
represent aspect weaving and calling relationships between a
call and the called module. The SCFG uses a join-point ver-
tex to represent a pointcut in P. In the SCFG, call arcs rep-
resent the calling and callee relationships between modules.
Weaving arcs connect the CFG for a method to the CFG
for its corresponding advice; these arcs represent the weav-
ing relationships between advice and those methods that the
advice may affect.

Example 4. Figure 3 shows the SCFG for the program
in Figure 1 with aspect PointShadowProtocol.

4.2 Detecting Dangerous Arcs
Having SCFGs for an original AspectJ program and its

modified version, we can use the existing depth-first search
algorithms developed in [7, 15] to detect the dangerous arcs
of the original program by traversing in parallel the SCFGs
of the original and modified programs. The arc is regarded
as a dangerous arc if the targets of the SCFG arcs in the
original and modified programs differ. Any test cases that
cover the dangerous arcs must be rerun, and these test cases
should be selected safely for regression testing of an As-
pectJ program because their behavior may be changed dur-
ing maintenance and evolution phases.

5. RELATED WORK
We discuss related work in testing aspect-oriented pro-

grams and in developing safe regression test selection tech-
niques based on control flow graphs.

Research on testing aspect-oriented programs has been
mainly focused on code-based unit and integration testing,
specification-based testing, automated test case generation,
and fault model used for testing [2, 17, 18, 19, 21, 22]. Al-
though regression testing is important, it is still received lit-
tle attention in the aspect-oriented paradigm. To the best
of our knowledge, our technique proposed in this paper is
the first regression test selection technique for AspectJ pro-
grams.

Various approaches have been proposed to select regres-
sion tests for procedural and object-oriented programs [4,
6, 14, 10, 11, 15, 7]. Among these approach, Harrold et
al. [7] propose a technique for safe regression test selection
for Java programs. Their technique is based on a control
flow based representation called Java Interclass Graph (JIG)
to explicitly represent various specific features in Java pro-
grams. Based on the JIG, they use a depth-first search al-
gorithm to detect dangerous edges for the ordinal programs
and select test cases by comparing the coverage information.
Koju et al. [10] propose a technique for regression test selec-
tion based on the Microsoft Intermediate Language (MSIL).
Their technique is based on the one developed by Harrold et
al. [7] for Java. They present control flow graphs to handle
.Net-specific features such as delegate and present a class
hierarchy analysis technique to support the regression test
selection.

Although these safe regression test selection techniques
can be used for Java programs and intermediate languages
such as Microsoft Intermediate Language (MSIL), they can
not be applied directly to AspectJ programs because of some
specific features such as pointcut, advice, intertype declara-
tions, and aspects. Our technique, which is based on the
one developed by Harrold et al. [7] for Java, can handle
regression-test selection problems that are unique to As-

me15

s17c

s16c

s18c

me9

s10

me11

s12

me2

s3

s4

ae39

s41c

s40

s42

me32

s33

ae43

s45c

s44

s46c

s47

ae48

s50r

s49

s51c

s52

me13

s14

me7

s8

me5

s6

s16r

s17r

s18r

 s

s41r

s45c

s46r

s50c

s51r

t

pe37 pe38

pe36

aspect membership arc

intraprocedural control-flow
arc

interprocedural control-flow
or call arc

pointing arc weaving arc

Figure 3: The SCFG for the program in Figure 1.

pectJ programs.

6. CONCLUSION
We have presented a regression test selection technique

for AspectJ programs. Our technique is based on various
types of control flow graphs that can be used to select from
the original test suite test cases that execute changed code
for the new version of an AspectJ program. Our code-based
technique operates on control flow graphs of AspectJ pro-
grams. Our technique can be applied to modified individual
aspects or classes as well as the whole programs that used
modified aspects or classes. In future work, we plan to de-
velop a regression test selection tool based on the technique
proposed in this paper to support regression test selection
for AspectJ programs.

7. REFERENCES
[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compiler, Principles,

Techniques, and Tools. Addison-Wesley, Boston, MA, 1986.
[2] R. T. Alexander, J. M. Bieman, and A. A. Andrews.

Towards the Systematic Testing of Aspect-Oriented
Programs. Technical Report CS-4-105, Department of
Computer Science, Colorado State University, Fort Collins,
Colorado, 2004.

[3] The AspectJ Team. The AspectJ Programming Guide.
August 2004.

[4] T. Ball. On the Limit of Control Flow Analysis for
Regression Test Selection. Proc. ACM International
Symposium on Software Testing and Analysis, pp.134-142,
March 1998.

[5] L. Bergmans and M. Aksits. Composing crosscutting
Concerns Using Composition Filters. Communications of
the ACM, Vol.44, No.10, pp.51-57, October 2001.

[6] Y. F. Chen, D. S. Rosenblum, and K. V. Vo. TestTube: A
System for Selective Regression Testing. Proc. 16th
International Conference on Software Engineering,
pp.211-222, May 1994.

[7] M. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M.
Pennings, S. Sinha, S. A. Spoon, and A. Gujarathi.
Regression Test Selection for Java Software. Proc. ACM
Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pp.312-326, October 2001.

[8] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J. M. Loingtier, and J. Irwin. Aspect-Oriented
Programming. proc. 11th European Conference on
Object-Oriented Programming, pp.220-242, LNCS, Vol.1241,
Springer-Verlag, June 1997.

[9] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J. M. Loingtier, and J. Irwin. An Overview of
AspectJ. proc. 13th European Conference on
Object-Oriented Programming, pp.220-242, LNCS, Vol.1241,
Springer-Verlag, June 2000.

[10] T. Koju, S. Takada, N. Doi. Regression Test Selection
based on Intermediate Code for Virtual Machines. Proc.
International Conference on Software Maintenance,
pp.420-429, 2003.

[11] D. Kung, J. Gao, P. Hsia, Y. Toyoshima, and C. Chen.
Firewall Regression Testing and Software Maintenance.
Journal of Object-Oriented Programming, 1994.

[12] K. Lieberher, D. Orleans, and J. Ovlinger. Aspect-Oriented
Programming with Adaptive Methods. Communications of
the ACM, Vol.44, No.10, pp.39-41, October 2001.

[13] S. S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann, 1997.

[14] G. Rothermel and M. J. Harrold. A Safe, Efficient
Regression Test Selection Technique. ACM Transactions on
Software Engineering and Methodology, Vol. 6, No. 2,
pp.173-210, April 1997.

[15] G. Rothermel, M. J. Harrold, and J. Dedhia. Regression
Test Selection for C++ Software. Journal of Software
Testing, Verification, and Reliability, Vol. 10, No. 6,
pp.77-109, June 2000.

[16] S. Sinhai and M. J. Harrold. Analysis and Testing of
Programs with Exception-Handling Construct. IEEE
Transactions on Software Engineering, pp.849-871,
September 2000.

[17] D. Sokenou and S. Herrmann. Aspects for Testing Aspects.
Workshop on Testing Aspect-Oriented Programs, AOSD
2005, Chicago, USA, March 2005.

[18] T. Xie and J. Zhao. A Framework and Tool Supports for
Generatiing Test Inputs of AspectJ Programs. Proc.
International Conference on Aspect-Oriented Software
Development, pp.190-201, Bonn, Germany, March 2006.

[19] D. Xu and W. Xu. State-Based Incremental Testing of
Aspect-Oriented Programs. Proc. International Conference
on Aspect-Oriented Software Development, pp.180-189,
Bonn, Germany, March 2006.

[20] P. Tarr, H. Ossher, W. H. Harrison, and S. M. Sutton. N
Degrees of Separation of Concerns: Multi-Dimensional
Separation of Concerns. Proc. 21th International Conference
on Software Engineering, pp.107-119, May 1999.

[21] J. Zhao. Data-Flow-Based Unit Testing of Aspect-Oriented
Programs. Proc. 27th Annual IEEE International Computer
Software and Applications Conference, pp.188-197. Dallas,
Texas, USA, November 2003.

[22] Y. Zhou, D. Richardson, and H. Ziv. Towards a practical
approach to test aspect-oriented software. Proc. 2004
Workshop on Testing Component-based Systems
(TECOS2004), Net.ObjectDays, September 2004.

