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Abstract

Improving Effectiveness of Automated Software Testing

in the Absence of Specifications
Tao Xie

Chair of Supervisory Committee:

Professor David Notkin
Computer Science and Engineering

This dissertation presents techniques for improving effectivenesstafated software testing in
the absence of specifications, evaluates the efficacy of these techragdeproposes directions for
future research.

Software testing is currently the most widely used method for detecting seffaitures. When
testing a program, developers need to generate test inputs for the progratimese test inputs on
the program, and check the test execution for correctness. It hasvediegecognized that software
testing is quite expensive, and automated software testing is important taimgdhe laborious
human effort in testing. There are at least two major technical challengegaomated testing: the
generation of sufficient test inputs and the checking of the test exedotiaorrectness. Program
specifications can be valuable in addressing these two challengestuatety, specifications are
often absent from programs in practice.

This dissertation presents a framework for improving effectivenesstohzated testing in the
absence of specifications. The framework supports a set of relatetiqaes. First, it includes
a redundant-test detector for detecting redundant tests among automaferahated test inputs.
These redundant tests increase testing time without increasing the ability cbfdetes or increas-
ing our confidence in the program. Second, the framework includes-aegomdant-test generator

that employs state-exploration techniques to generate non-redundarin tiee first place and uses






symbolic execution techniques to further improve the effectiveness ofjéesration. Third, be-

cause it is infeasible for developers to inspect the execution of a lambaruof generated test
inputs, the framework includes a test selector that selects a small subssttioputs for inspection;

these selected test inputs exercise new program behavior that hasemogxXercised by manually
created tests. Fourth, the framework includes a test abstractor thatpsosliccinct state transition
diagrams for inspection; these diagrams abstract and summarize the bekxavaised by the gen-

erated test inputs. Finally, the framework includes a program-spectraactatopthat compares the
internal program behavior exercised by regression tests execute @nogram versions, exposing
behavioral differences beyond different program outputs.

The framework has been implemented and empirical results have showretbdat/tioped tech-
niques within the framework improve the effectiveness of automated testidgtbygting high per-
centage of redundant tests among test inputs generated by existing es@sting non-redundant
test inputs to achieve high structural coverage, reducing inspectiansefibr detecting problems in

the program, and exposing more behavioral differences duringssgretesting.
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Chapter 1

INTRODUCTION

Software permeates many aspects of our life; thus, improving softwarbiligliégs becoming
critical to society. A recent report by National Institute of Standards Beahnology found that
software errors cost the U.S. economy about $60 billion each yea®jlI8lthough much progress
has been made in software verification and validation, software testing is stiidbewidely used
method for improving software reliability. However, software testing is labomsite, typically

accounting for about half of the software development effort [Bei90]

To reduce the laborious human effort in testing, developers can cbadtmmated software
testing by using tools to automate some activities in software testing. Software tastivies
typically include generating test inputs, creating expected outputs, runsirigpets, and verifying
actual outputs. Developers can use some existing frameworks or todisasube JUnit testing
framework [GBO3] to write unit-test inputs and their expected outputs. TihedUnit framework
can automate running test inputs and verifying actual outputs against pleete’ outputs. To
reduce the burden of manually creating test inputs, developers caronmeexisting test-input
generation tools [Par03,CS04,Agi04] to generate test inputs automatistidly developers modify
a program, they can conduegression testinfy rerunning the existing test inputs in order to assure
that no regression faults are introduced. Even when expected outputstareated for the existing
test inputs, the actual outputs produced by the new version can be audipatienpared with the

ones produced by the old version in order to detect behavioral diffese

However, the existing test-generation tools often cannot effectivelgrgemsufficient test inputs
to expose program faults or increase code coverage. In additiom thlese tools are used to
generate test inputs automatically, expected outputs for these test inpatil anéssing, and it is

infeasible for developers to create expected outputs for this large nwhbgenerated test inputs.



Although specifications can be used to improve the effectiveness ofagemgetest inputs and check
program correctness when running test inputs without expected ouspetsfications often do not
exist in practice. In regression testing, the existing approach of congpabiservable outputs is
limited in exposing behavioral differences inside program executiongttégerences could be
symptoms of potential regression faults.

Our research focuses on developing a framework for improvingteféeress of automated test-
ing in the absence of specifications. The framework includes techniegudetals for improving
the effectiveness of generating test inputs and inspecting their exexdiororrectness, two major
challenges in automated testing.

This chapter discusses activities and challenges of automated softwimg {&ection 1.1),
lists the contributions of the dissertation: a framework for improving effentgs of automated
testing (Section 1.2), defines the scope of the research in the disserBdiio( 1.3), and gives an

organization of the remainder of the dissertation (Section 1.4).

1.1 Activities and Challenges of Automated Software Testing

Software testing activities consist of four main steps in testing a prograneratérg test inputs,
generating expected outputs for test inputs, run test inputs, and vetifglautputs. To reduce
the laborious human effort in these testing activities, developers can detdinege activities to
some extent by using testing tools. Our research focuses on developimigiees and tools for
addressing challenges of automating three major testing activities: gendeatingputs, generating
expected outputs, and verifying actual outputs, particularly in the absdrspecifications, because
specifications often do not exist in practice. The activities and challeofgastomated software

testing are described below.

Generate Gufficient) test inputs. Test-input generation (in short, test generation) often occurs when
an implementation of the program under test is available. However, befomgeam imple-
mentation is available, test inputs can also be generated automatically durintbasdé
test generation [DF93, GGSV02] or manually during test-driven dewedop [Bec03], a key
practice of Extreme Programming [Bec00]. Because generating test impmntsally is often

labor intensive, developers can use test-generation tools [Par08,8804] to generate test



inputs automatically or use measurement tools [Qui03, JCo03, Hor02] to éedboghers de-
termine where to focus their efforts. Test inputs can be constructed basthe program’s
specifications, code structure, or both. For an object-oriented progmah as a Java class, a

test input typically consists of a sequence of method calls on the objectsdatse

Although the research on automated test generation is more than threeslethfHua75,
Kin76,Cla76,RHC76], automatically generating sufficient test inputs stilbias a challeng-
ing task. Early work as well as some recent work [Kor90, DO91, KAYGKIS98, GBR9IS,
BCMO04] primarily focuses on procedural programs such as C progravtte recent re-
search [KSGH94, BOPO0O0, Ton04, MK01, BKM02, KPV03, VPK04]afecuses on gener-
ating test inputs for object-oriented programs, which are increasinghagiee. Generat-
ing test inputs for object-oriented programs adds additional challengeause inputs for
method calls consist of not only method arguments but also receivertaltgges, which
are sometimestructurally complexnputs, such as linked data structures that must satisfy
complex properties. Directly constructing receiver-object states esxjgither dedicated al-
gorithms [BHR"00] or class invariants [LBR98, LG00] for specifying properties satikfy
valid object states; however, these dedicated algorithms or class invaiarggen not read-
ily available in part because they are difficult to write. Alternatively, methegliences can
be generated to construct desired object states indirectly [BOPOXTdvvever, it is gen-
erally expensive to enumerate all possible method sequences everagivaal number of

argument values and a small bound on the maximum sequence length.

Generate expected outputs (for darge number of test inputs). Expected outputs are generated
to help determine whether the program behaves correctly on a particélent@dn during
testing. Developers can generate an expected output for each spetifigput to form pre-
computed input/output pair [Pan78,Ham77]. For example, the JUnit testimgWwork [GBO3]
allows developers to write assertions in test code for specifying expectpdts. Devel-
opers can also write checkable specifications [Bei90, BGM91, DFORMEL02, BKM02,
GGSV02] for the program and these specifications offer expecteditsufmore precisely,

expected properties) for any test input executed on the program.



Itis tedious for developers to generate expected outputs for a largesnoifitest inputs. Even
if developers are willing to invest initial effort in generating expected atstgdtiis expensive
to maintain these expected outputs when the program is changed and soesedatphected

outputs need to be updated [KBP02, MSO03].

Run test inputs (continuouslyand efficiently). Some testing framewaorks such as the JUnit testing
framework [GBO3] allow developers to structure sevéeat casegeach of which comprises
a test input and its expected output) intdest suite and provide tools to run a test suite
automatically. For graphical user interface (GUI) applications, runnisigin@uts especially

requires dedicated testing frameworks [OAFG98, MemO01, Rob03, Abb04

In software maintenance, it is important to run regression tests frequentlglér to make
sure that new program changes do not break the program. Develmgemanually start the
execution of regression tests after having changed the program figuwento continuously
run regression tests in the background while changing the progran8]S&E0metimes run-
ning regression tests is expensive; then developers can use moctsgh|EC01, SE04] to
avoid rerunning the parts of the program that are slow and expensiua.t@evelopers can
also use regression test selection [RH97, GI9K, HIL"01] to select a subset of regression
tests to rerun or regression test prioritization [WHLB97,RUCHO1, EMR®20rt regression
tests to rerun. Although some techniques proposed in our researcte ageth to address
some challenges in running test inputs, our research primarily addibssesallenges in the

other three steps.

Verify actual outputs (in the absenceof expected outputs).A test oraclds a mechanism for check-
ing whether the actual outputs of the program under test is equivaleng texfiected out-
puts [RAO92, Ric94, Hof98, MPS00, BY01]. When expected outpgsiaspecified or spec-
ified but in a way that does not allow automated checking, the oracle oftes wn de-
velopers’ eyeball inspection. If expected outputs are directly writtenxasugable asser-
tions [And79,R0s92] or translated into runtime checking code [GMH8¢38gMK01,CL02,
BKMO02, GGSV02], verifying actual outputs can be automated. When peard outputs

are available, developers often rely on program crashes [MFSS98{br uncaught excep-



tions [CS04] as symptoms for unexpected behavior. When no expedjgat®are specified
explicitly, in regression testing, developers can compare the actual ooffpaitsew version

of the program with the actual outputs of a previous version [Cha82].

As has been discussed in the second step, it is challenging to genertéeeixputputs for a
large number of test inputs. In practice, expected outputs often do isbf@xautomatically
generated test inputs. Without expected outputs, it is often expengiverane to error for
developers to manually verify the actual outputs and it is limited in exploiting thesergted
testinputs by verifying only whether the program crashes [MFS9®EP& throws uncaught
exceptions [CS04]. In regression testing, the actual outputs of a newwre&an be compared
with the actual outputs of its previous version. However, behaviora¢ndiffices between
versions often cannot be propagated to the observable outputs thedrapared between

versions.

A test adequacy criteriois a condition that an adequate test suite must satisfy in exercising a
program’s properties [GG75]. Common criteria [Bei90] include structtwaérage: code coverage
(such as statement, branch, or path coverage) and specificatiomgeJy&R99]. Coverage mea-
surement tools can be used to evaluate a test suite against a test adggadoy automatically.
A test adequacy criterion provides a stopping rule for testing (a rule tondiete whether sufficient
testing has been performed and it can be stopped) and a measuremstisaiteequality (a degree
of adequacy associated with a test suite) [ZHM97]. A test adequacyianitean be used to guide
the above four testing activities. For example, it can be used to help detenhaidest inputs are
to be generated and which generated test inputs are to be selected svéiapers can invest ef-
forts in equipping the selected inputs with expected outputs, run these iapdtserify their actual
outputs. After conducting these four activities, a test adequacy criteaiofe used to determine if
the program has been adequately tested and to further identify whichop#resprogram have not

been adequately tested.
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Figure 1.1: Framework for improving effectiveness of automated testing.

1.2 Contributions

This dissertation presents a framework for improving effectivenessitoh@ted testing, address-

ing the challenges discussed in the preceding section. As is shown in Bigyriée framework

consists of two groups of components. The first group of components rettundant-test detector

and non-redundant-test generator— address the issues in gentgatimputs. The second group

of components (the test selector, test abstractor, and program-spectparator) infer program

behavior dynamically in order to address the issues in checking the tw@ssmf test executions.

The second group of components further send feedback informatioe foghgroup to guide test

generation.

Redundant-test detector. Existing test generation tools generate a large number of test infuts

short, tests) to exercise different sequences of method calls in the cateffthe class under

test. Different combinations of method calls on the class under test resutbimiinatorial

explosion of tests. Because of resource constraints, existing tesafjendools often gener-

ate different sequences of method calls whose lengths range fror@80d]to three [Par03].

1In the rest of the dissertation, we usststo denotetest inputsfor the sake of simplicity.



However, sequences of up-to-three method calls are often insufffoiedétecting faults or
satisfying test adequacy criteria. In fact, a large portion of these @iffsequences of method
calls exercise no new method behavior; in other words, the tests formedshsrtie portion
of sequences anedundant tests We have defined redundant tests by using method-input
values (including both argument values and receiver-object statasg¢n\We method-input
values of each method call in a test have been exercised by the existinghegest is con-
sidered as a redundant test even if the sequence of method calls in feeliffstent from the
one of any existing test. We have developed a redundant-test detetiin,a@n post-process
a test suite generated by existing test generation tools and output a réelsicgdte contain-
ing no redundant tests. Our approach not only presents a foundati@xiting tools that
generate non-redundant tests [MK01,BKM02,KPV03,VPKO04] et @anables any other test
generation tools [Par03,CS04,Agi04] to avoid generating redundgatiig incorporating the
redundant-test detection in their test generation process. We prapeningental results that
show the effectiveness of the redundant-test detection tool: aboub®@%% tests generated

by a commercial testing tool [Par03] are detected and reduced by owrtoetiundant tests.

Non-redundant-test generator. Based on the notion of avoiding generating redundant-tests, we
have developed a non-redundant-test generator, which exploreotizeete or symbolic
receiver-object state space by using method calls (through normabpn@xecution or sym-
bolic execution). Like some other software model checking tools basetatsfd explo-
ration [DIS99, VHBPOO, CDFi00, MPCr02, RDHO03], the test generator based on concrete-
state exploration faces the state explosion problem. Symbolic represeniatigyrabolic
model checking [McM93] alleviate the problem by describing not only sistdées but sets
of states; however, existing software model checking tools [BRO1, HiB}IBased on sym-
bolic representations are limited for handling complex data structures. Rewmbolic
execution [Kin76, Cla76] has been used to directly construct symbolicsdtateeceiver ob-
jects [KPV03, VPKO04]; however, the application of symbolic executiorues the user to
provide specially constructed class invariants [LGO0O], which effelstidescribe an over-
approximation of the set of reachable object graphs. Without requinypglass invariant, our

test generator can also use symbolic execution of method sequencetote &xp symbolic



receiver-object states and prune this exploration based on novetstafgrisons (compar-
ing both heap representations and symbolic representations). Ouriertand application
of symbolic execution in state exploration not only alleviate the state explosododepn but
also generate relevant method arguments for method sequences autontatioallyg a con-
straint solver [SR02]. We present experimental results that showfinetieéness of the test
generation based on symbolic-state exploration: it can achieve highrexhbcaverage faster

than the test generation based on concrete-state exploration.

Test selector. Because it is infeasible for developers to inspect the actual outputs ajexiam-
ber of generated tests, we have developed a test selector to select aaduadlle subset of
generated tests for inspection. These selected tests exercise newob#iatvhas not been
exercised by the existing test suite. In particular, we use Daikon [EtoQ6fer program be-
havior dynamically from the execution of the existing (manually) constructgdstate. We
next feed inferred behavior in the form of specifications to an existirgipation-based test
generation tool [Par03]. The tool generates tests to violate the infeeteal/tor. These vio-
lating tests are selected for inspection, because these violating tests exhbitdy different
from the behavior exhibited by the existing tests. Developers can inspgse tolating tests
together with the violated properties, equip these tests with expected outpditagde them
to the existing test suite. We present experimental results to show that tbeeddbsts have
a high probability of exposing anomalous program behavior (either faufalares) in the

program.

Test abstractor. Instead of selecting a subset of generated tests for inspection, a $éstcidy
summarizes and abstracts the receiver-object-state transition behasioised by all the
generated tests. Because the concrete-state transition diagram fegrebgects is too com-
plicated for developers to inspect, the test abstractor uses a state tirstexchnique based
on the observers in a class interface; these observers are the publmds@those return
types are not void. An abstract state for a concrete state is represgrteglconcrete state’s
observable behavior, consisting of the return values of observemohetils on the concrete

state. The abstract states and transitions among them are used to causiriradt state tran-



sition diagrams for developers to inspect. We present an evaluation totishbthe abstract-
state transition diagrams can help discover anomalous behavior, delejgierethrowing

behavior, and understand normal behavior in the class interface.

Program-spectra comparator. In regression testing, comparing the actual outputs of two program
versions is limited in exposing the internal behavioral differences duriagpotbgram ex-
ecution, because internal behavioral differences often cannotdpagated to observable
outputs. A program spectrum is used to characterize a program’sibefRBDL97]. We
propose a new class of program spectra, callaldie spectrato enrich the existing pro-
gram spectra family, which primarily include structural spectra (such tsgpeectra [BL96,
RBDL97,HRS"00]). Value spectra capture internal program states during a testtexecA
deviationis the difference between the value of a variable in a new program veasibthe
corresponding one in an old version. We have developed a progracirggomparator that
compares the value spectra from an old version and a new versionsesithe spectra differ-
ences to detect behavior deviations in the new version. Furthermore,sfdatra differences
can be used to locate deviation roots, which are program locations tharttigg behavior
deviations. Inspecting value spectra differences can allow develapéetermine whether
program changes introduce intended behavioral differences mrssgn faults. We present
experimental results to show that comparing value spectra can effeaivebse behavioral
differences between versions even when their actual outputs arentiee aad value spectra

differences can be used to locate deviation roots with high accuracy.

Dynamic behavior inference requires a good-quality test suite to infeaviimhthat is close
to what shall be described by a specification (if it is manually construct@a)the other hand,
specification-based test generation can help produce a good-qudlispitesbut requires specifi-
cations, which often do not exist in practice. There seems to be a circgpendency between
dynamic behavior inference and (specification-based) test generdiioaxploit the circular de-
pendency and alleviate the problem, we propose a feedback loop bebekavior inference and
test generation. The feedback loop starts with an existing test suite {octestmanually or au-
tomatically) or some existing program runs. By using one of the behavierdn€e components

(the test selector, test abstractor, or program-spectra comparagofiysivinfer behavior based on
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the existing test suite or program runs. We then feed inferred behaviospecification-based test
generation tool or a test generation tool that can exploit the inferreavimhto improve its test
generation. The new generated tests can be used to infer new befidnaanew behavior can be
further used to guide test generation in the subsequent iteration. Itarégioninate until a user-
defined maximum iteration number has been reached or no new behavibedrasnferred from
new tests. We show several instances of the feedback loop in diftgpes of behavior inference.
This feedback loop provides a means to producing better tests and bettexiapated specifica-
tions automatically and incrementally. In addition, the by-products of the fe&dbap are a set of
selected tests for inspection; these selected tests exhibit new behaviaghmdt been exercised by

the existing tests.

1.3 Scope

The approaches presented in this dissertation focus on automated sdftatimg. The activities
of automated software testing are not limited to automating the execution of siegréssts, for
example, by writing them in the JUnit testing framework [GBO03] or test scriptP3, Abb04], or
by capturing and replaying them with tools [SCFPO0O0]. Our focused actwfiautomated software
testing have been described in Section 1.1.

The approaches presented in this dissertation focus on testing seqpesdiams but not con-
current programs. Most approaches presented in this dissertatios doctesting a program unit
(such as a class) written in modern object-oriented languages (suckads Bat the regression
testing approach focuses on testing a system written in procedural esy(guch as C). All the
approaches assume that the unit or system under test is a closed wsiteon aind there is a well-
defined interface between the unit or system and its environment. Theaaps focus on testing
functional correctness or program robustness but not other qudlifyudes such as performance
and security. Chapter 8 discusses future directions of extending theazies to test new types of

programs and new types of quality attributes.

1.4 Outline

The remainder of this dissertation is organized as follows.
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Chapter 2 introduces the background information of automated softwdiegtesid surveys
related work. Chapter 3 describes the techniques for detecting reduagsramong automatically
generated tests. Chapter 4 further presents the techniques fortgenammredundant tests in the
first place. Chapter 5 describes the techniques for selecting a smadit @ftigenerated tests for
inspection. Chapter 6 introduces the techniques that abstract the bebftést executions for
inspection. Chapter 7 describes the techniques for comparing valuesspeegression testing in
order to expose behavioral differences between versions. Clé&aptesents suggestions for future

work. Finally, Chapter 9 concludes with a summary of the contributions asdredearned.
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Chapter 2

BACKGROUND AND RELATED WORK

This chapter presents background information and discusses howsmarch relates to other
projects in software testing. Section 2.1 discusses test adequacy critbitd, usually specify
the objectives of testing. Section 2.2 presents existing automated testtgentzehniques. Sec-
tion 2.3 describes existing test selection techniques. Section 2.4 reviewsgregression testing
techniques. Section 2.5 presents existing techniques in behavior irdeegntSection 2.6 discusses

existing feedback loops in program analysis.

2.1 Test Adequacy Criteria

A test adequacy criterion provides a stopping rule for testing and a nesasaot of test-suite
quality [ZHM97]. (A test adequacy criterion can be used to guide testtiefe which shall be
discussed in Section 2.3.) Based on the source of information used toysfestihg require-
ments, Zhu et al. [ZHM97] classified test adequacy criteria into fourggoprogram-based crite-
ria, specification-based criteria, combined specification- and progeasedicriteria, and interface-
based criteriaProgram-based criterigpecify testing requirements based on whether all the iden-
tified features in a program have been fully exercised. Identified fesitur a program can be
statements, branches, paths, or definition-use p&hscification-based criterispecify testing re-
quirements based on whether all the identified features in a specificatierbban fully exercised.
Combined specification- and program-based critegjzecify testing requirements based on both
specification-based criteria and program-based critémiarface-based criterigpecify testing re-
guirements based on only the interface information (such as type andabmgegram inputs) with-
out referring to any internal features of a specification or progRamdom testing often based on
interface-based criteria. Specification-based criteria and interfaeedicriteria are types bfack-

box testingwhereas program-based criteria and combined specification- an@prdzpsed criteria
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are types ofvhite-box testing

Our testing research in this dissertation mostly relies on method inputs (boiterealject
states and argument values in an object-oriented program) and methots@btyh receiver-object
states and return values in an object-oriented program). This is relatedrfaéetdased criteria.
But our research on test selection and abstraction is performed hageémwed behavior, which is
often in the form of specifications; therefore, the research is alsoda@specification-based crite-
ria (but without requiring specifications). Our research on test gd¢ineradditionally uses symbolic
execution to explore paths within a method; therefore, the research isbdsedrto program-based
criteria.

In particular, our testing research is related to program-based testamjegyiteria proposed to
operate in the semantic domain of program properties rather than the sydtao@in of program
text, which is the traditional focus of most program-based criteria. Hamleilsable correctness
theory [Ham87] suggestata-coverage testing uniformly sample the possible values of all in-
ternal variables at each control point in a program. However, it is d@ificult or undecidable to
determine the possible values for variables in a program; therefore,metceompute the goal of
100 percent coverage (denominator) for data coverage criteria likefle coverage criteria (such
as statement or branch coverage) but use the data coverage af éegiveuite as a baseline for com-
parison. Harder et al. [HMEOQ3] use operational abstractions [ECKEMBerred from a test suite
to reduce the samples needed to cover the data values for variables granpr@all [Bal04] pro-
poses predicate-complete coverage with the goal of covering all feleablaservable states defined
by program predicates (either specified by programmers or generabedtihautomatic predication
abstractions [GS97,VPP00,BMMROL1]). These program predicttegpartition the data values for
variables in a program.

Recently a specification-based test adequacy criterion dadledded exhaustive testifigK01,
BKMO02, SYC"04, Khu03, Mar05] has been proposed to test a program, especiallihanbas
structurally complex inputs. Bounded exhaustive testing tests a prograih walid inputs up to
a given bound; the numeric bound, called the scope, is defined for theosinput structures.
Experiments [MAD 03,Khu03,SYC 04, Mar05] have shown that exhaustive testing within a small
bound can produce a high-quality test suite in terms of fault detection ipahd code coverage.

Test generation techniques for bounded exhaustive testing ofteinere@uelopers to specify a class
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invariant [LBR98, LG0O0], which describes the properties of a valid irgitucture, and a range of
(sampled) data values for non-reference-type variables in an inpatigte. In bounded exhaustive
testing, developers can specify a scope so that testing stops whenrarmprisgested on all valid
inputs up to the scope. Alternatively, without requiring a predefinedesomghaustive testing can
test a program on all valid inputs by starting from the smallest ones andvtdyaiticreasing the
input size until time runs out. Our research on test generation is a type@onéflbd exhaustive testing

but does not require specifications.

2.2 Test Generation

Generating test inputs for an object-oriented program involves two téskslirectly constructing
relevant receiver-object states or indirectly constructing them througthod sequences, and (2)
generating relevant method arguments. For the first task, some speaifibatied approaches rely
on a user-defined class invariant [LBR98, LG00] to know whether ectlf-constructed receiver-
object state is valid, and to directly construct all valid receiver-objetéstap to a given bound.
TestEra [MKO01, Khu03] relies on a class invariant written in the Alloy largup]lSS01] and sys-
tematically generates tests by using Alloy Analyzer [JSS00], which doesdedbexhaustive, SAT-
based checking. Korat [BKM02, Mar05] relies on an imperative pagdican implementation for
checking class invariants. Korat monitors field accesses within the exeaiftém imperative pred-
icate and uses this information to prune the search for all valid object statiesaugiven bound.
Inspired by Korat, the AsmLT model-based testing tool [GGSV02, Fou] ialclades a solver for
generating bounded-exhaustive inputs based on imperative prediSate® other test generation
approaches rely on an application-specific state generator to consifigcteceiver-object states.
Ball et al. [BHR"00] present a combinatorial algorithm for generating states based aticatdel
generator for complex data structures. Different from these pregippioaches, our test generation
approach does not require class invariants or dedicated state geméetause our approach does
not directly construct receiver-object states but indirectly constmectsiver-object states through
bounded-exhaustive method sequences.

Some test generation tools also generate different method sequenarfgect-oriented pro-

gram. Tools based on (smart) random generation include Jtest [Par@®|nm{mercial tool for
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Java) and Eclat [PEO5] (a research prototype for Java). TonedlaOHBl] uses a genetic algo-
rithm to evolve a randomly generated method sequence in order to achidwer bhiginch cov-
erage. Buy et al. [BOPO0OQ] use data flow analysis, symbolic executiah,aatomated deduc-
tion to generate method sequences exercising definition-use pairs of fibljgs. Our test gen-
eration approach generates bounded-exhaustive tests, which luameaboth high code cover-
age and good fault-detection capability, whereas these previous appsoeannot guarantee the
bounded-exhaustiveness of the generated tests. Like our appbmdiciiava Pathfinder input gen-
erator [VPKO4] and the AsmLT model-based testing tool [GGSV02, Foeibteste exploration tech-
niques [CGP99] to generate bounded-exhaustive method sequendbede two tools require de-
velopers to carefully choose sufficiently large concrete domains for mettguments and AsmLT
additionally requires developers to choose the right abstraction funttansrantee the bounded-
exhaustiveness. Our approach uses symbolic execution to automatically rdéevant arguments
and explore the symbolic-state space, whose size is much smaller than thetemtate space
explored by Java Pathfinder input generator and AsmLT.

Existing test generation tools use different techniques to achieve thadségsk in object-
oriented test generation: generating relevant method arguments. BtEnalpdK01, Khu03] and
Korat [BKMO02, Mar05] use a range of user-defined values foregating primitive-type arguments
(as well as primitive-type fields in receiver-object states) and use tobeinded-exhaustive test-
ing techniques to generate reference-type arguments if their class imtgaaia provided. In order
to generate primitive-type arguments, some tools such as JCrasher [@8D&clat [PEO5] use
predefined default values or random values for specific primitive types a non-primitive-type
argument, these tools use random method sequences where the last nadithodtarn is of the
non-primitive type. Jtest [Par03] uses symbolic execution [Kin76, Claifljconstraint solving to
generate arguments of primitive types. Java Pathfinder input gengk&wOB, VPKO04] can gen-
erate both method arguments and receiver-object states by using symieclitier and constraint
solving; its test generation feature is implemented upon its explicit-state modddecjg HBPOQ].

Symbolic execution is also the foundation of static code analysis tools. Thaseypically do
not generate test data, but automatically verify simple properties of pnsgrdecently, tools such
as SLAM [BMMRO01, Bal04] and Blast [HIMS03, BCMO04] were adapted denerating inputs to

test C programs. However, neither of them can deal with complex datawtsacwhich are the
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focus of our test generation approach. Our test generation afpatsx uses symbolic execution;
however, in contrast to the existing testing tools that use symbolic executiotest generation
approach uses symbolic execution to achieve both tasks (generatioceofereobject states and

method arguments) systematically without requiring class invariants.

2.3 Test Selection

There are different definitions of test selection. One definition of tdetsen is related to test
generation (discussed in Section 2.2): selecting which test inputs to tergoane other definitions
of test selection focus on selecting tests among tests that have beenegbe@ause it is costly
to run, rerun, inspect, or maintain all the generated tests. Our test selappooach focuses on
selecting tests for inspection.

Test adequacy criteria (discussed in Section 2.1) can be directly uselidi® tgst selection:
a test is selected if the test can enhance the existing test suite toward sgtesfigst adequacy
criterion. In partition testing [Mye79], a test input domain is divided into subdins based on
some criteria (such as those test adequacy criteria discussed in Sectj@nd.then we can select
one or more representative tests from each subdomain. If a subdomaircs/ered by the existing
test suite, we can select a generated test from that subdomain.

Pavlopoulou and Young [PY99] proposed residual structural @geeto describe the structural
coverage that has not been achieved by the existing test suite. If thetiexeof a later gener-
ated test exercises residual structural coverage, the test is selectadpection and inclusion in
the existing test suite. If we use residual statement coverage or brametage in test selection,
we may select only a few tests among generated tests although many unselsisteday provide
new value like exposing new faults or increasing our confidence on thgramn. But if we use
residual path coverage, we may select too many tests among generatedthesigh only some
of the selected tests may provide new value. Instead of selecting evetlyaesbvers new paths,
Dickinson et al. [DLPOla, DLPOQ1b] use clustering analysis to partitiomuti@ns based on path
profiles, and use sampling techniques to select executions from clusterisservations. Regres-
sion test prioritization techniques [WHLB97,RUCO01, ST02], such a#iaddl structural coverage

techniques, can produce a list of sorted tests for regression testirsgtieeidea can also be applied
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to prioritize tests for inspection. Our test selection approach complemengsekisting structural-
coverage-based test selection approaches because our apppeaates in the semantic domain
of program properties rather than the syntactic domain of program teidhwdhused by previous
program-based test selection approaches.

Goodenough and Gerhart [GG75] discussed the importance of sp#offibased test selec-
tion in detecting errors of omission. Chang and Richardson use speciiicat@rage criteria for
selecting tests that exercise new aspects of a unit’s specifications [OR96h algebraic specifica-
tions [GH78] a priori, several testing tools [GMH81, BGM91, DF94, HI9BCC98] generate and
select a set of tests to exercise these specifications. Unlike these spiecifltased approaches, our
test selection approach does not require specifications a priori esitRaikon [ECGNO1] to infer
operational abstractions, which are used to guide test selection.

Harder et al. [HMEOQ3] present a testing technique based on operaiosteactions [ECGNO1].
Their operational difference technique starts with an operational abetrtayenerated from an ex-
isting test suite. Then it generates a new operational abstraction fromstreutee augmented by
a candidate test case. If the new operational abstraction differs freqrévious one, it adds the
candidate test case to the suite. This process is repeated until some muoflEandidate cases
have been consecutively considered and rejected. Both the opeldiiter@nce approach and our
approach use the operational abstractions generated from testiexecuOur approach exploits
operational abstractions’ guidance to test generation, whereas tregiopal difference approach
operates on a fixed set of given tests. In addition, their operationatelifte approach selects tests
mainly for regression testing, whereas our approach selects tests maiinlgdoction.

Hangal and Lam’s DIDUCE tool [HLOZ2] detects bugs and tracks dowir thet causes. The
DIDUCE tool can continuously check a program’s behavior against ttremmentally inferred op-
erational abstractions during the run(s), and produce a report opethtional violations detected
along the way. A usage model of DIDUCE is proposed, which is similar to thtetest selection
problem addressed by our test selection approach. Both DIDUCE amapproach make use of
violations of the inferred operational abstractions. The inferred att&trs used by our approach
are produced by Daikon [ECGNO1] at method entry and exit points,easddIDUCE infers a lim-
ited set of simpler abstractions from procedure call sites and object/statiblesaccess sites. Also

DIDUCE does not investigate the effects of operational abstractionsbgdeeration.
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Our redundant-test detection can be seen as a type of test selectiartinget®n-redundant
tests out of automatically generated tests. Our test selection approach mirgeniezated tests by
selecting a small number of most useful tests for inspection, whereasdumdant-test detection
approach tries to conservatively minimize generated tests from the otheeemalving useless tests.
Our redundant-test detection detects no redundant tests among testgegebg some tools, such
as TestEra [MKO01], Korat [BKMO02], and Java Pathfinder input gatar [VPKO04], because these
tools intentionally avoid generating redundant tests in their test generatioags. Different from
the redundant-test avoidance mechanisms built in these tools, the mechanmsme=idundant-test
detection are more general and can be embedded in any test generasoastagart of the test

generation process or a post-processing step after the test genpratiess.

2.4 Regression Testing

Regression testing validates a modified program by retesting it. Regresstiog e used to ensure
that no new errors are introduced to a previously tested program weeprdigram is modified.
Because it is often expensive to rerun all tests after program modifisatiore major research
effort in regression testing is to reduce the cost of regression testinguighcrificing the benefit
or sacrificing as little benefit as possible. For example, when some parfgofam are changed,
regression test selection techniques [CRV94, RH97, GBI select a subset of the existing tests
to retest the new version of the programséferegression test selection technique [RH97] ensures
that the selected subset of tests contain all the tests that execute the ¢odesthwmodified from the
old version to the new version. Sometimes the available resource might moakew rerunning
the subset of regression tests selected by regression test selectimiquesh Recently regression
test prioritization techniques [WHLB97, RUCHO01, EMR02] have beeppsed to order regression
tests such that their execution provides benefits such as earlier detddtoits

Regression-test quality is not always sufficient in exhibiting output iiffees caused by newly
introduced errors in a program. Some previous test-generation appsogenerate new tests to
exhibit behavior deviations caused by program changes. For exaigidi|lo and Offutt [DO91]
developed a constraint-based approach to generate unit tests thathdaih grogram-state devi-

ations caused by the execution of a slightly changed program line (in a nprshiced during
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mutation testing [DLS78, How82]). Korel and Al-Yami [KAY98] createdwer code that compares
the outputs of two program versions, and then leveraged the existing nteest-generation ap-
proaches to generate tests for which the two versions will produceatiffeutputs. However, this
type of test-generation problem is rather challenging and it is in fact aecish@ble problem. Our
regression testing research tries to tackle the problem by exploiting the gxisgiression tests and
checking more-detailed program behavior exercised inside the program.

Regression testing checks whether the behaviors of two programneesi®the same given the
same test input. Reps et al. [RBDL97] proposgut@gram spectrurhto characterize a program’s
behavior. One of the earliest proposed program specti@aginespectrdBL96,RBDL97,HRS 00],
which are represented by the executed paths in a program. Harrold¢R&T00] later proposed
several other types of program spectra and investigated their potgopilatadions in regression
testing. Most of these proposed spectra are defined by using the sdtusntities exercised by
program execution. We refer to these types of program spectsgraactic spectra Harrold et
al. [HRS™00] empirically investigated the relationship between syntactic spectra diffeseand
output differences of two program versions in regression testingir €kperimental results show
that when a test input causes program output differences betwesiaong the test input is likely
to cause syntactic spectra differences. However their results shothéhedverse is not true. Our
regression testing research takes advantage of this phenomenon se expe behavioral devia-
tions by comparing program spectra instead of just comparing progrgnateun regression testing.
To better characterize program behavior in regression testing, aarpksproposes a new class of
program spectra, value spectra, that enriches the existing progeatnasfamily. Value spectra are
defined by using program states (variable values) and we refer to tlasofyprogram spectra as
semantic spectraErnst [Ern00, ECGNO1] developed the Daikon tool to infer operatiahatrac-
tions from program execution and these dynamically inferred abstractzmalso be considered as
a type of semantic spectra.

Memon et al. [MBNO3] model a GUI state in terms of the widgets that the GUI amttheir
properties, and the values of the properties. A GUI state correspoadsnction-entry or function-

exit state in our approach. Their experimental results show that compaang-detailed GUI

The name oBpectrumcomes fronpath spectruniBL96, RBDL97], which is a distribution of paths derived from a
run of the program.
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states (e.g., GUI states associated with all or visible windows) from two versian detect faults
more effectively than comparing less-detailed GUI states (e.g., GUI stateca®d with the active
window or widget). Our approach also shows that checking more-detslealvior inside the black
box can more effectively expose behavioral deviations than checkaigha black-box output.
Our approach differs from their approach in two main aspects: ouoappris not limited to GUI

applications and our approach additionally investigates deviation propagati deviation-root
localization.

Abramson et al. [AFMS96] developed the relative debugging technigquefies a series of user-
defined assertions between a reference program and a suspgetnprol hese assertions specify
key data structures that must be equivalent at specific locations in twoamns. Then a relative
debugger automatically compares the data structures and reports argndiéfe while both versions
are executed concurrently. Our approach does not require afieed assertions but compares
states at the entries and exits of user functions. The relative debuggmggee mainly aims at
those data-centric scientific programs that are ported to, or rewrittegmrfothier computer platform,
e.g., a sequential language program being ported to a parallel langdagapproach can be applied
in the evolution of a broader scope of programs.

Jaramillo et al. [JGS02] developed the comparison checking approacimipace the outputs
and values computed by source level statements in the unoptimized and optiraisexhs of a
source program. Their approach requires the optimizer writer to speeifméppings between the
unoptimized and optimized versions in the optimization implementation. Their appamaths the
earliest point where the unoptimized and optimized programs differ duringaimparison check-
ing. Our approach operates at the granularity of user-function égeswand uses two heuristics to
locate deviation roots instead of using the earliest deviation points. Maremweapproach does
not require any extra user inputs and targets at testing general applgcedtber than optimizers in

particular.

2.5 Behavior Inference

Ernst et al. [ECGNO1] developed the Daikon tool to dynamically infer aj@nal abstractions

from test executions. Operational abstractions are reported in the dbaxriomatic specifica-
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tions [Hoa69, Gri87]. Our test selection approach uses these opaladiastractions to guide test
generation and selection. These abstractions describe the obsdatehships among the values
of object fields, arguments, and returns of a single method in a class o&evfdereas the ob-
server abstractions inferred in our test abstraction approach desbetnbserved state-transition
relationships among multiple methods in a class interface and use the retura ehigservers
to represent object states, without explicitly referring to object fieldsakidleand Diwan [HDO3]
discover algebraic abstractions (in the form of algebraic specificat@r&8]) from the execu-
tion of automatically generated unit tests. Their discovered algebraic etistiausually present
a local view of relationships between two methods, whereas observeactlzns present a global
view of relationships among multiple methods. Observer abstractions aréubfose of behavior
inference, complementing operational or algebraic abstractions.

Whaley et al. [WMLO02] extract Java component interfaces from sydemmexecutions. The
extracted interfaces are in the form of multiple finite state machines, eachici wbntains the
methods that modify or read the same object field. The observer abstraittferred by our test
abstraction approach are also in the form of multiple finite state machinespeagtich is with
respect to a set of observers (containing one observer by defBltly. approach maps all concrete
states that are at the same state-modifying method’s exits to the same abdtraGuatéest abstrac-
tion approach maps all concrete states on which observers’ returrs\ae¢he same to the same
abstract state. Although their approach is applicable to system-test exeglitis not applicable
to the executions of automatically generated unit tests, because their refinitmgtate machine
would be a complete graph of methods that modify the same object field. AmmahgA4BL02]
mine protocol specifications in the form of a finite state machine from systeraxesutions. Yang
and Evans [YEO04] also infer temporal properties in the form of the sttiptsern any two meth-
ods can have in execution traces. These two approaches face therséheenpas Whaley et al.’s
approach when being applied on the executions of automatically generateelsts. In summary,
the general approach developed by Whaley et al. [WML02], Ammonk BtBL02], or Yang and
Evans [YEO04] does not capture object states as accurately as goeap@mnd none of them can be
applied to the executions of automatically generated unit tests.

Given a set of predicates, predicate abstraction [GS97, BMMRO1] ma&pscrete state to an

abstract state that is defined by the boolean values of these predicéltescomcrete state. Given a
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set of observers, observer abstraction maps a concrete state tdractadtate that is defined by the

return values (not limited to boolean values) of these observers on theetestate. Concrete states
considered by predicate abstractions are usually those program stesb program statements,

whereas concrete states considered by observer abstractionssarelfect states between method
calls. Predicate abstraction is mainly used in software model checkingeashebserver abstraction

in our approach is mainly used in helping inspection of test executions.

Kung et al. [KSGH94] statically extract object state models from classeaade and use them
to guide test generation. An object state model is in the form of a finite stateimeadhe states
are defined by value intervals over object fields, which are derivad frath conditions of method
source; the transitions are derived by symbolically executing methodsapgpuoach dynamically
extracts finite state machines based on observers during test executions.

Grieskamp et al. [GGSV02] generate finite state machines from executattadclstate ma-
chines. Manually specified predicates are used to group states in aksteanachines to hyper-
states during the execution of abstract state machine. Finite state machitrest alate machines,
and manually specified predicates in their approach correspond tovebs#stractions, concrete
object state machines, and observers in our approach, respedtiealgver, our approach is totally

automatic and does not require programmers to specify any specificatipredgcates.

2.6 Feedback Loop in Program Analysis

There have been several lines of static analysis research that dbadkdoops to get better pro-
gram abstractions and verification results. Ball and Rajamani constfeetdadack loop between
program abstraction and model checking to validate user-specified telhspéety properties of in-

terfaces [BMMRO1]. Flanagan and Leino use a feedback loop betaseotation guessing and
theorem proving to infer specifications statically [FLO1]. Guesses oftations are automatically
generated based on heuristics before the first iteration. Human intenveiatie needed to insert
manual annotations in subsequent iterations. Giannakopoulou et atrumrezsfeedback loop be-
tween assumption generation and model checking to infer assumptionsder-specified property
in compositional verification [CGP03, GPB02]. Given crude prograstrabtions or properties,

these feedback loops in static analysis use model checkers or theaeensgio find counterexam-
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ples or refutations. Then these counterexamples or refutations aréousdithe the abstractions or
properties iteratively. Our work is to construct a feedback loop in dynamidysis, correspond-
ing to the ones in static analysis. Our work does not require users to\speafferties, which are
inferred from test executions instead.

Naumovich and Frankl propose to construct a feedback loop betwatn gtate verification
and testing to dynamically confirm statically detected faults [NF00]. When a Stdte verifier
detects a property violation, a testing tool uses the violation to guide test dattis® execution,
and checking. The tool hopes to find test data that shows the violation teabeBased on the
test information, human intervention is used to refine the model and restastrifier. This is an
example of a feedback loop between static analysis and dynamic analysithefiexample of a
feedback loop between static analysis and dynamic analysis is profiledgypdienization [PH90].
Our work focuses instead on the feedback loop on dynamic analysis.

Peled et al. present the black box checking [PVY99] and the adaptideinohecking ap-
proach [GPY02]. Black box checking tests whether an implementation withawrk structure
or model satisfies certain given properties. Adaptive model checkirfigrpes model checking in
the presence of an inaccurate model. In these approaches, a fedmliyacs constructed between
model learning and model checking, which is similar to the preceding fekdbags in static anal-
ysis. Model checking is performed on the learned model against sorea gioperties. When
a counterexample is found for a given property, the counterexamplaripared with the actual
system. If the counterexample is confirmed, a fault is reported. If thetemxample is refuted,
it is fed to the model learning algorithm to improve the learned model. Anotheb#e&doop is
constructed between model learning and conformance testing. If ndecexample is found for
the given property, conformance testing is conducted to test whethetimetemodel and the sys-
tem conform. If they do not conform, the discrepancy-exposing tegtesee is fed to the model
learning algorithm, in order to improve the approximate model. Then the improvdélnsoused
to perform model checking in the subsequent iteration. The dynamic sadicifi inference in our
feedback loop is corresponding to the model learning in their feedbapk &l the specification-
based test generation in our feedback loop is corresponding to theroafce testing in their
feedback loop. Our feedback loop does not require some giveregtieg but their feedback loop

requires user-specified properties in order to perform model chgckin
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2.7 Conclusion

This chapter has laid out the background for the research developied dissertation and discussed
how our research is related to other previous research in softwaregtdstiparticular, our research
does not require specifications; therefore, it is related to prograedlmsnterface-based test ade-
guacy criteria. However, our research operates on the semantic dolhpadgoam properties rather
than the syntactic domain of program text, which is often the focus of pmodpased criteria. From
test executions, our research infers behavior, which is often in thedbspecifications, and further
uses the inferred behavior to aid testing activities. In this perspectiveesearch is also related
to specification-based testing. Our test generation approach is a typeimddd-exhaustive test-
ing; however, unlike previous research on bounded-exhaustitiegesur research does not require
specifications such as class invariants. Our test generation apprqgalofisesymbolic execution
to achieve the generation of both receiver-object states (through msdiqpences) and relevant
method arguments; previous testing research based on symbolic exedigomexjuires specifica-
tions or generates relevant arguments for a single method given a spewdicer object. Different
from previous testing approaches based on structural coveragsy, @ithredundant-test detection
or test selection approach keeps or selects a test if the test exerciségmavior inferred in the
semantic domain of program properties; in addition, the inferred behawseis to guide test gen-
eration. Different from previous regression testing approach, wdoatpares the black-box outputs
between program versions, our regression testing approach carthareemantic spectra inside
the black box. Finally, we have proposed a feedback loop betweendsetajion and behavior
inference by using behavior inferred from generated tests to guide bedftegeneration and then

using new generated tests to achieve better behavior inference.
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Chapter 3

REDUNDANT-TEST DETECTION

Automatic test-generation tools for object-oriented programs, such agR&e88] (a commer-
cial tool for Java) and JCrasher [CS04] (a research prototypéaf), test a class by generating a
test suite for it. A test suite comprises a set of tests, each of which is arsmgoemethod invoca-
tions. When the sequences of two tests are different, these tools catisspjudge that these two
tests are not equivalent and thus both are needed. However, ta@naay situations where different
method sequences exercise the same behavior of the class under teseqliwaces can produce
equivalent stateef objects because some invocations do not modify state or becausertiffeate
modifications produce the same state. Intuitively, invoking the same methods e#artie inputs
(i.e., the equivalent states of receiver objects and arguments) is ettundl test isredundantif
the test includes no new method invocation (i.e., method invocation whose ingiferent from
the input of any method invocation in previous tests). These redundanirtestase the cost of
generating, running, inspecting, maintaining a test suite but do not irceetEst suite’s ability to

detect faults or increase developers’ confidence on the code uster te

This chapter presents our Rostra approach for detecting redundenbésed on state equiva-
lence. In the Rostra approach, we include five techniques for regmegehe incoming program
state of a method invocation. These five state-representation technitjuemfavo types: one is
based on the method sequence that leads to the state, and the other imtamedete states of the
objects in the program state. If the representations of two states are thengathen determine that
two states are equivalent. Based on state equivalence, we have definedant tests and imple-
mented a tool that dynamically detects redundant tests in an existing test saiteavé/evaluated
Rostra on 11 subjects taken from a variety of sources. The experimestdis show that around
90% of the tests generated by Jtest for all subjects and 50% of the testaitgehby JCrasher for
almost half of the subjects are redundant. The results also show thatingntioese redundant tests

does not decrease the branch coverage, exception coveradaytmigtection capability of the test
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suites.

The next section introduces a running example that is used to illustratemasap. Section 3.2
presents the five techniques for representing states. Section 3.3 dafitegquivalence based
on comparing state representation. Section 3.4 defines redundant s=isopastate equivalence.
Section 3.5 describes the experiments that we conducted to assess tdaehod then Section 3.6

concludes.

3.1 Example

We use an integer stack implementation (earlier used by Henkel and Diwad3]{&s a running
example to illustrate our redundant-test detection techniques. Figure 3v& #ie relevant parts
of the code. The arrastore contains the elements of the stack, aiwd is the number of the
elements and the index of the first free location in the stack. The methsid/pop appropri-
ately increases/decreases the size after/before writing/reading the elémeiionally, push /pop
grows/shrinks the array when teze is equal to the whole/half of the array length. The method
isEmpty is an observer that checks if the stack has any elements, and the ragtlated compares
two stacks for equality.

The following is an example test suite (written in the JUnit framework [GBO3) whree tests

for theIntStack class:

public class IntStackTest extends TestCase {
public void testl() {
IntStack sl = new | nt St ack();
sl.isEmpty();
s1.push(3);
sl.push(2);
s1.pop();
s1.push(5);

public void test2() {
IntStack s2 = new | nt St ack();
s2.push(3);
s2.push(5);



public class IntStack {
private int[] store;
private int size;
private static final int INITIAL_CAPACITY = 10;
public IntStack() {

this.store = new int[INITIAL_CAPACITY];
t hi s.size = 0;
}
public void push(int value) {
if (this.size == thi s.store.length) {
int[] store = new i nt[this.store.length * 2J;
Syst emarraycopy( t hi s.store, 0, store, O, t hi s.size);

t hi s.store = store;

}

t hi s.store[ this.size++] = value;
}
public int pop() {

return this.store[-- t hi s.size];
}

public bool ean isEmpty() {
return (this.size == 0);
}
publ i ¢ bool ean equals( Object other) {
if (!(other i nstanceof IntStack)) return false;

IntStack s = (IntStack)other;

if (this.size != s.size) return fal se;
for (int i =0; i< this.size; i++)
i f (this.store[i] != s.store[i]) return fal se;

return true;

Figure 3.1: An integer stack implementation
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public void test3() {
IntStack s3 = new | nt St ack();
s3.push(3);
s3.push(2);
s3.pop();
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Table 3.1: State representation and comparison

type technique representation comparison

method sequencedVholeSeq the entire method sequence| equality

ModifyingSeq | a part of the method sequencequality

concrete states | WholeState | the entire concrete state isomorphism

MonitorEquals| a part of the concrete state | isomorphism

PairwiseEquals the entire concrete state equals

A test suiteconsists of a set of tests, each of which is written as a public method.t&sttias
a sequence of method invocations on the objects of the class as well aguheeat objects of the
class’s methods. For examptest2 creates a staci and invokes tweush methods onit. Some
existing test-generation tools such as Jtest [Par03] and JCrashel] [@&®@rate tests in such a form
as specified by the JUnit framework [GB03]. For these generated thstsprrectness checking
often relies on the code’s design-by-contract annotations [Mey9R98B which are translated
into run-time checking assertions [Par03, CLO2]. If there are no atioo$ain the code, the tools
only check the robustness of the code: whether the test execution ondbeehlrows uncaught

exceptions [CS04].

3.2 State Representation

To define a redundant test (described in Section 3.4), we need tatdréza a method invocation’s
incoming program state, which is calledethod-entry state A method-entry state describes the
receiver object and arguments before a method invocation. Table 3us she techniques that we
use to represent and compare states. Different techniques usertiffepresentations for method-
entry states and different comparisons of state representations. Edase five techniques uses
one of the two types of information in representing states: 1) method sespiand 2) concrete

states of the objects. We next explain the details of these two types and adidhrgéques.
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3.2.1 Method Sequences

Each execution of a test creates several objects and invokes methdussenobjects. The rep-
resentation based on method sequences represents states usingeseqtiemethod invocations,
following Henkel and Diwan'’s representation [HD03]. The state raprzgion uses symbolic ex-

pressions with the concrete grammar shown below:

exp ::=prim| invoc “.state " | invoc “.retval
args::= | exp|args ‘" exp

invoc ::=method { " args ) ”

prim ::=“null “true “false “0" |1 | -1

Each object or value is represented with an expression. Argumentsni@ttaod invocation
are represented as sequences of zero or more expressiong@e tyr commas); the receiver of
a non-static, non-constructor method invocation is treated as the first matipochent. A static
method invocation or constructor invocation does not have a receiber.sthte  and.retval
expressions denote the state of the receiver after the invocation anetdine of the invocation,
respectively. For brevity, the grammar shown above does not spepi#g tut the expressions are
well-typed according to the Java typing rules [AGHOQ0]. A method is reptegeuniquely by its
defining class, name, and the entire signature. For brevity, we do netsshethod’s defining class
or signature in the state-representation examples below.

For example, the state o2 at the end ofest2 is represented as

push(push(<init>().state, 3).state, 5).state ,
where<init> represents the constructor that takes no receiveraritc().state represents
the object created by the constructor invocation. This object becomesdbiwar of the method
invocationpush(3) , and so on.

A method-entry state is represented by using tuples of expressions (twe &plequivalent if
and only if their expressions are component-wise identical). For examplend¢ithod-entry state
of the last method invocation ¢dst2 is represented bypush(<init>().state, 3).state,
5>, where the first expressigsush(<init>().state, 3).state denotes the receiver-object
state and the second expresstodenotes the argument value. When collecting method sequences

for state representation, if a later-encountered expression (orxgubssion) is aliased with an
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earlier-encountered expression (or sub-expression) in a methigdstate’s representation, we
can replace the representation of the later-encountered expressiothevittentifier of the first-
encountered aliased expression in the representation. Under this siteattimon-primitive-type
expression in the representation needs to be associated with a uniqueadertifiexample, con-

sider the following two testiest4 andtests

public void test4() {
IntStack s4 = new | nt St ack();
IntStack s = new I nt Stack();

s4.equals(s);

public void test5() {
IntStack s5 = new | nt St ack();
s5.equals(sb);

If we do not consider aliasing relationships among expressions in stagsespation, the method-
entry states of the last method invocati@guals ) of the both tests are represented by the same
expression:<<init>().state, <init>().state> . However, these twequals method in-
vocations may exhibit different program behaviors if object identitiescamapared during the
equals method executions. After aliasing relationships are considered, the metiigdstate
representation ofquals in test4 is different from the one inest5 , which is then represented
by <<init>().state@1, @1> , Wwhere@1denotes the identifier ab .

The state representation based on method sequences allows tests to copwimithmetic,
aliasing, and/or polymorphism. Consider the following manually written test6 andtest7

public void test6)  {

IntStack t = new I nt Stack();
IntStack s6 =t

for (int i =0;i<=1; i++)

s6.push(i);

public void test7() {
IntStack s7 = new | nt St ack();
int i =0;
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s7.push(i);
s7.push(i + 1);

Our implementation dynamically monitors the invocations of the methods on the abjaelo
created in the tests and collects the actual argument values for thesdiimvetadt represents each
object using a method sequence; for example, it representsba@hds7 at the end ofest6 and
test7 aspush(push(<init>().state, 0).state, 1).state

We next describe two techniques that include different methods in the me#tpetnces for

state representation: WholeSeq and ModifyingSeq.

WholeSeq

This WholeSeq technigue represents the state of an object with an eéaprisd includesll meth-
ods invoked on the object since it has been created, including the atinstr@ur implementation
obtains this representation by executing the tests and keeping a mappingljects to their cor-
responding expressions.

Recall that each method-entry state is represented as a tuple of expsessibrepresent the
receiver object and the arguments. Two state representations avalequif and only if the tuples
are identical. For example, WholeSeq represents the states pegb(@) intest3 andtestl as
<push(<init>().state, 3).state, 2> and<push(isEmpty(<init>().state).state,
3).state, 2> , respectively, and these two state representations are not equivalent.

The WholeSeq technique maintains a table that maps each object to a methedceetiat
represents that object. At the end of each method call, the sequencephedents the receiver

object is extended with the appropriate information that represents the call.

ModifyingSeq

The ModifyingSeq technigue represents the state of an object with aessipn that includesnly

those methods that modified the state of the object since it has been crecltedingnthe construc-

Although our implementation needs to run the tests to detect redundantrtdgtsescost of running redundant tests
is not saved, Section 3.4 presents the practical applications of owatpr
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tor. Our implementation monitors the method executions to determine at run time wtietjier
modify the state.

Similar to the WholeSeq technique, the ModifyingSeq technique also maintainseathiab
maps each object to a method sequence that represents that objectqiérecsds extended with
the appropriate information that represents the call only when the methodtexehas modified
the receiver. ModifyingSeq dynamically monitors the execution and detesntlira the receiver
is modified if there is a write to a field that is reachable from the receiver. itVindSeq builds
and compares method-entry states in the same way as WholeSeq; howeaesdModifyingSeq
uses a coarser representation for objects than WholeSeq, Modifgjrog8dind the representations
of more method-entry states to be equivalent. For exanigitegpty does not modify the state
of the stack, so ModifyingSeq represents the states befai®2) in bothtest3 andtestl as

<push(<init>().state, 3).state, 2> and thus finds their representations to be equivalent.

3.2.2 Concrete States

The execution of a method operates on the program state that includegrarproeap. The repre-
sentation based on concrete states considers only parts of the heaje tteéwant for affecting a
method’s execution; we also call each part a “heap” and view it as dngreqgles represent objects
and edges represent fields. Li2be the set consisting of all primitive values, includingl , inte-
gers, etc. LeO be a set of objects whose fields form a BetEach object has a field that represents

its class, and array elements are considered index-labeled object fields.)

Definition 1. A heapis an edge-labelled graptO, E), whereE = {{o, f,d')|o € O, f € F,o' €
O U P}.

Heap isomorphism is defined as graph isomorphism based on node bij&HiBIOR].

Definition 2. Two heapsOs, E1) and(O2, E») areisomorphidiff there is a bijectiorp : O; — O»

such that:

Ey = {{p(o), f,p(d)l{o, f,0) € E1,0o' € O1} U

{<p(0)7f> O/>‘<0> f7 0,> S El,O/ c P}
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Map ids; // maps nodes into their unique ids
int[] linearize( Node root, Heap <O,E>) {
ids = new Map();
return lin(root, <O,E>);
}
int[] lin( Node root, Heap <O,E>) {
i f (ids.containsKey(root))
return singletonSequence(ids.get(root));
int id = ids.size() + 1;
ids.put(root, id);
int[] seq = singletonSequence(id);
Edge[] fields = sortByField( { <root, f, o> inE});
foreach (<root, f, 0> i n fields) {
i f (isPrimitive(o))
seg.add(uniqueRepresentation(0));
el se
seg.append(lin(o, <O,E>));
}

return seq;

Figure 3.2: Pseudo-code of linearization

The definition allows only object identities to vary: two isomorphic heaps havedme fields
for all objects and the same values for all primitive fields.

Because only parts of the program heap before a method invocaticgiarant for affecting the
method’s execution, a method-entry state of a method invocation is reprsétiteooted heaps,

instead of the whole program heap.

Definition 3. A rooted heap is a paitr, h) of a root objectr and a heap: whose all nodes are

reachable fronr.

Although no polynomial-time algorithm is known for checking isomorphism ofgaigraphs,
it is possible to efficiently check isomorphism of rooted heaps. Our implementatiearizes
rooted heaps into sequences such that checking heap isomorphisspoaitls to checking sequence
equality. Figure 3.2 shows the pseudo-code of the linearization algorithm; isimiarization

algorithms [VHBPO0O, RDHI03, los02, AQR04] have been used in model checking [CGP99]. The
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linearization algorithm traverses the entire rooted heap in the depth-fitst, starting from the
root. When the algorithm visits a node for the first time, it assigns a uniquéfideto the node,
keeping this mapping ifds to use again for nodes that appear in cycles. We can show that the

linearization normalizes rooted heaps into sequences.
Theorem 1. Two rooted heap&, k1) and(oz, ho) are isomorphiciff i neari ze(o1,hy1) =l i neari ze(oz, ha).

We next describe three techniques that use concrete states in stasemégien: WholeState,

MonitorEquals, and PairwiseEquals.

WholeState

The WholeState technique represents the method-entry state of a methadimvoising the heap
rooted from the receiver object and the arguménfByo state representations are equivalent iff
the sequences obtained from their linearized rooted heaps are identigalm@ementation uses
Java reflection [AGHOO] to recursively collect all the fields that aremable from the receiver and
arguments before a method invocation.

For example, the following left and right columns show the state represemaiiel ands2

beforepush(5) intestl andtest2 ,respectively:

/I s1 before push(5) /I s2 before push(5)
store = @1 store = @1
store.length = 10 store.length = 10
store[0] = 3 store[0] = 3
store[1] = store[1] = 0
store[2] = store[2] = O
store[9] = O store[9] = O

size = 1 size = 1

In both state representations, being of the integer array typatdtee field is considered as a

node (not being a primitive value); therefore, the linearization algoritisigas a unique identifier

2The linearization algorithm in Figure 3.2 assumes only one root; howthemethod-entry state of a method in-
vocation is represented by the heap rooted from multiple nodes includthghmoreceiver object and the arguments,
when some arguments are also object references. To handle multdewe can create a virtual node that points to
the receiver object and the arguments, and then use the algorithm tazéntrer heap rooted from this virtual node.
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@1to store . These two state representations are not equivalent, because the prigiities of the

store[1]  field are different.

MonitorEquals

Like WholeState, MonitorEquals also represents a state with a rooted hedhisbheap is only a
subgraph of the entire rooted heap. The MonitorEquals technique ¢metmser-definedquals
methods to extract only the relevant parts of the rooted heap. MonitokEgbtains the values
(vo,...,vy) Of @ method invocation’s receiver and arguments. It then invekesguals( v;)
for each non-primitiver; and monitors the field accesses that these executions make. Then the
linearization algorithm in Figure 3.2 is revised to linearize only nodes (field#)ale accessed
during theequals executions. The rationale behind MonitorEquals is that these executicessac
only the relevant object fields that define an abstract state.

MonitorEquals represents each method-entry state as a rooted heap edyes consist only
of the accessed fields and the edges from the root. Two state reptiesensése equivalent iff the
sequences obtained from their linearized rooted heaps are identical.

For example, the following left and right columns show the state represamaifsl ands2

beforepush(5) intestl andtest2 ,respectively:

/I sl.equals(sl) /I s2.equals(s2)

/I before sl.push(5) /I before s2.push(5)
store = @1 store = @1
store[0] = 3 store[0] = 3
size = 1 size = 1

The execution okl.equals(sl) or s2.equals(s2) before push(5) accesses only the
fields size , store , and elements oftore whose indices are up to the value site . Then
although WholeState finds the state representations of the method-entnbsfaiepush(s) in
testl andtest2 are not equivalent, MonitorEquals find them to be equivalent.

To collect the representation for the method-entry state of a method invocatioimplemen-
tation inserts at the method entry the code that invakesjuals( v;) for the receiver and each
non-primitive argument; before a method invocation. It then inserts code before field-accéss by

code instructions to monitor their executions so that it can collect all fieldathatccessed within
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theequals executions. The MonitorEquals technique needs to carefully avoid the corapib
mization pattern that compares the receiver and the argument for ideigity= other  within
equals methods; if the pattern appears witleiquals methods, MonitorEquals may collect fewer

fields than desired.

PairwiseEquals

Like MonitorEquals, the PairwiseEquals technique also leverages aeedequals methods

to consider only the relevant parts of the rooted heap. It implicitly uses tie gmogram heap

to represent method-entry states. However, it does not compare @gpestates by isomorphism.
Instead, it runs the test to build the concrete objects that correspondrectieer and arguments,
and then uses thequals method to compare pairs of states. It assigns a unique identifier to
a states; as its state representation if there exists no previously encounteredsstatieh that
si.equals(  ss9) returnstrue ; otherwise;s;’s representation is the unique identifier assignegto
The state representations of two stateandss are equivalent iff the states’ assigned identifiers are

identical (that issy.equals( s92) returnstrue ).

PairwiseEquals can find more object’s representations to be equivaariitnitorEquals. For
example, consider a class that implements a set using an array. PairvateEmorts the represen-
tations of two objects to be equivalent if they have the same set of arrayrdlgmegardless of the
order, whereas MonitorEquals reports the representations of twaehjiéb the same elements but
different order to be nonequivalent. However, when representenmtthod-entry state of a method
invocation, unlike MonitorEquals, PairwiseEquals fails to include aliasingioelships among the
receiver, arguments, and their object fields. For example, the methigdstate representations
of equals in bothtest4 andtest5 are the same, beingel, el> , whereel is the identifier
assigned t@, s4, ands5.

Our implementation collects the objects for the receiver and arguments ancbtig@ares them
by using Java reflection [AGHOO] to invokerjuals methods. Note that subsequent test execu-
tion can modify these objects, so PairwiseEquals needs to reproduce ghédaef comparison.
Our implementation re-executes method sequences to reproduce objegitermative would be to

maintain a copy of the objects.
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3.3 State Equivalence

In the previous section (Section 3.2), we have presented five techriaquepresenting the method-
entry state of a method invocation, and have also described how to deterimétieewtwostate
representationgsre equivalent Our objective is to determine whether twaethod-entry statesre
equivalentsuch that invoking the same method on these two method-entry states exhibase s
program behavior, thus having the same fault-detection capability. $pveveous projects [BGM9I1,
DF94, HDO03] defined state equivalence by using observational @eunive [DF94, LG00]. How-
ever, checking it precisely is expensive: by definition it takes infinite timeclieeck all method
sequences), So we use state-representation equivalence présehéggdrevious section to approx-
imate state equivalence. Observational equivalence, as well as olg apwroach, assumes that
method executions are deterministic. For example, it is assumed that thereasdummness or
multi-threading interaction during method executions; otherwise, differextilgions for the same
method input may produce different results, so model-checking techmj@i&P99] may be more
applicable than testing.

When we use state-representation equivalence to approximate stateleuzey the five tech-

niques have different tradeoffs in the following aspects:

Safety. We want to keep two method executions if their method invocations are on tvemuiva-
lent method-entry states; otherwise, discarding one of them may deer¢éestesuite’s fault-
detection capability. Our approximation safe(or conservative) if the approximation pro-
duces no false negative, where a false negative is defined as a stagentbequivalent to

another one but their state representations are equivalent.

Precision. We want to reduce the testing efforts spent on invoking methods on éeptivaethod-
entry states; therefore, we want to reduce false positives, whelsegfasitive is defined as a

state that is equivalent to another one but their state representatiortt arpiivalent.

Requirements. Different techniques have different requirements in the access ofjteedde un-

der test, time overhead, space overhead, etc.
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3.3.1 Safety

We next discuss under what conditions our techniques are not s&fgrepose extensions for our
techniques to make our techniques safe. Two techniques based on megoedces (WholeSeq
and ModifyingSeq) are not safe: because the grammar shown in Se@idnd®es not capture a
method execution’s side effect on an argument, a method can modify the fstat®n-primitive-
type argument and this argument can be used for another later methoationo&ollowing Henkel
and Diwan’s suggested extension [HDO3], we can enhance the fastngar rule to address this

issue:
exp ::=prim| invoc “.state " | invoc “.retval " | invoc “. arg;”

where the added expression (invoafg;") denotes the state of the modifi¢ith argument after the
method invocation.

Two techniques based on method sequences (WholeSeq and Modify)ray8anot safe if test
code modifies directly some public fields of an object without invoking any ehdthods, because
these side effects on the object are not captured by method sequdincaddress this issue, the
implementation of the techniques can be extended to create a public field-writthgdrfer each
public field of the object, and monitor the static field access in the test coder iinplementation
detects at runtime the execution of a field-write instruction in test code, ittthaerorresponding
field-writing method invocation in the method-sequence representation.

WholeState, MonitorEquals, and PairwiseEquals are not safe whenehatiex of a method
accesses some public static fields that are not reachable from theeresredyguments, or accesses
the content of a database or file uncontrolled through the receivegomants. We can use static
analysis to determine a method execution’s extra inputs besides the remeivarguments, and
then collect the state of these extra inputs as a part of the method-entry state.

Two techniques based on user-defirgdals methods (MonitorEquals and PairwiseEquals)
are not safe if thequals methods are implemented not to respect observation equivalence, such
as not respecting the contract java.lang.Object [SMO03]. The contract requires that each
equals implements an equivalence relation, i.e., it should be reflexive, symmetridramsitive.

In practice, we have found mostuals methods to implement observational equivalence; however,

if equals is weaker (i.e., returngsue for some objects that are not observationally equivalent),
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our techniques based @quals may not be safe. Although the user need to carefully implement
theequals methods in order to guarantee the safety, our implementation can dynamicalkyarhe
approximation of observational equivalencedquals and help the user tune the method.
PairwiseEquals is not safe when aliasing relationships among the reeggements, and their
object fields can affect the observational equivalence, becausadedquals cannot capture alias-

ing relationships in its representation, as we discussed in Section 3.2.

3.3.2 Precision

When all five techniques are safe, determined by the mechanisms ofaefingsstates, their preci-
sionis in increasing order from the lowest to highest: WholeSeq, Modi§aog WholeState, Moni-
torEquals, and PairwiseEquals. We next discuss under what conditiertechnique may generally
achieve higher precision than its preceding technique in the list. Modifyong&s achieve higher
precision than WholeSeq when there are invocations of state-preseneiigpds (e.gisEmpty )
and these invocations appear in method sequences that representstigs WholeState may
achieve higher precision than ModifyingSeq when there are invocatiostaite-modifying meth-
ods (e.g.remove ) that revert an object’s state back to an old state that was reachedysigvio
with a shorter method sequence. MonitorEquals may achieve higher pretlisio WholeState
when some fields of an object are irrelevant for affecting observdteEmavalence. PairwiseE-
guals may achieve higher precision than MonitorEquals when there arédfeaiss; ands, where
si.equals( so) returnstrue but they have different linearized heaps that consist of fields aedess
within sy.equals( s1) orss.equals(  s2) . The precision of MonitorEquals or PairwiseEquals re-
lies on the user-defineghiuals method. Ifequals is stronger (i.e., returrfalse for two objects
that are observationally equivalent), MonitorEquals or PairwiseEquaysnmizachieve 100% pre-

cision.

3.3.3 Requirements

Our implementations of five techniques operate on Java bytecode withautimgglava source
code. Unlike WholeState or MonitorEquals, our implementation of WholeSedgifMiogSeq, or

PairwiseEquals does not require to access the internal states or thedeytdche class under test.
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These three techniques can be applied when the internal states or thedeytéd¢he class under
test are not available, for example, when testing components [HCO1]msergices [ACKMO02].
Although our implementation of WholeSeq or ModifyingSeq uses dynamic dsalye can per-
form a static analysis on the test code to gather the method sequence withautirgy the test code.
Although this static analysis would be conservative and less precise thayribeic analysis, it
would enable the determination of state equivalence and the detection ntleeduests (described

in the next section) without executing them.

Generally WholeSeq and ModifyingSeq require less analysis time than What#desshd Mon-
itorEquals, because WholeSeq and ModifyingSeq do not require thetimtieof object-field val-
ues. ModifyingSeq requires more time than WholeSeq, because our impléioremtaModify-
ingSeq also needs to dynamically determine whether a method execution is macthfygng one.
When there are a relatively large number of nhonequivalent states,ielguals typically requires
more time than MonitorEquals because PairwiseEquals compares the stateansigeration with
those previously encountered nonequivalent objects one by oneeagheur implementation of
MonitorEquals uses efficient hashing and storing to check whether tteewstder consideration
is equivalent to one of those previously encountered states, becaukeow the representation

(sequence).

ModifyingSeq requires less space than WholeSeq. When tests contéiretglshort sequences,
WholeSeq or ModifyingSeq may require less space than WholeState or Meouials for storing
the state representation of a single nonequivalent state; however, theutotaer of nonequivalent
states determined by WholeSeq or ModifyingSeq is larger than the total nwhimemequiva-
lent states determined by WholeState or MonitorEquals. MonitorEquals esdess space than
WholeState. PairwiseEquals may require less space for storing stateamtateons (being just
unique identifiers) than WholeState or MonitorEquals, whose state repatises consist of se-
guences linearized from object fields; however, our implementation of/BaiEquals needs to keep

a copy of each nonequivalent object around for later comparisamagslescribed in Section 3.2.
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3.4 Redundant Tests

We next show how equivalent states give rise to equivalent methodtéxes and define redundant
tests and test-suite minimization.

Each test execution produces several method executions.
Definition 4. A method executiofim, s) is a pair of a methodn and a method-entry state

We denote byj¢] the sequence of method executions produced by & tast we write(m, s) €
[t] when a method executidm, s) is in the sequence far We define equivalent method executions

based on equivalent states.

Definition 5. Two method executiong:, s1) and(mq, s2) are equivalentff m; = my ands; and

s9 are equivalent.
We further consider minimal test suites that contain no redundant tests.

Definition 6. A testt is redundanfor a test suiteS iff for each method execution ff], there exists

an equivalent method execution of some test fsom
Definition 7. A test suiteS is minimaliff there is not € S that is redundant forS\{¢}.

Minimization of a test suites’ finds a minimal test suit® C S’ that exercises the same set of

nonequivalent method executions$igloes.

Definition 8. A test suiteS minimizesa test suiteS’ iff .S is minimal and for each’ € S’ and each

(m/, sy € [t'], there exist € S and(m, s) € [t] such that{m’, s’) and (m, s) are equivalent.

Given a test suiteS’, there can be several test suitg¢s S’ that minimizeS’. Among the test
suites that minimizé’, we could find a test suite that has the smallest possible number of tests or the
smallest possible total number of method executions for the tests. Findingestishites reduces to
optimization problems called “minimum set cover” and “minimum exact coverfyaetvely; these
problems are known to be NP complete, and in practice approximation algoritemasexd [Joh74].

Our implementation runs the tests in a given test suite with its default test-exeoutien(such
as the one controlled by the JUnit framework [GB03]) and then minimizes thsu#e by using

a greedy algorithm. Running the tests in different orders can cause olemmptation to produce
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different minimized test suites; however, these different minimized test suitelsice the same total
number of nonequivalent method executions.

In particular, our implementation collects method-entry states dynamically dush@xecu-
tions. We use the Byte Code Engineering Library [DvZ03] to instrument ttiecbdes of the
classes under test at the class-loading time. The instrumentation adds ¢h@icodllecting state
representations at the entry of each method call in a test. For some techrii@lso adds the code
for monitoring instance-field reads and writes. Our instrumentation collectsétieod signature,
the receiver-object reference, and the arguments at the beginréagtomethod call in the test. The
receiver of these calls is usually an instance object of the class untiertiesnstrumentation does
not collect the method-entry states for calls that are internal to these olpaffesent techniques
also collect and maintain additional information. After finishing running themitest suite, our
implementation outputs a minimized test suite in the form of a JUnit test class [GB03].

Our redundant-test detection techniques can be used in the followingrfaetical applications:
test-suite assessment, test selection, test-suite minimization, and test generation

Assessment:Our techniques provide a novel quantitative comparison of test suifgscialy
those generated by automatic test-generation tools. For each test suiteclmigues can find
nonequivalent object states, nonequivalent method executions,cemcbdundant tests. We can
then use their metrics to compare the quality of different test suites.

Selection: Our techniques can be used to select a subset of automatically genestsetd te
augment an existing (manually or automatically generated) test suite. We &eexisting test suite
and the new tests to our techniques, running the existing test suite first. Timeaiiest suite that
our techniques then produce will contain those new tests that are nondaat with respect to the
existing test suite.

Minimization: Our techniques can be used to minimize an automatically generated test suite
for correctness inspection and regression executions. Without a gpexifications, automatically
generated tests typically do not have test oracles for correctnedaraipeand the tester needs to
manually inspect the correctness of (some) tests. Our techniques helptéraddocus only on the
non-redundant tests, or more precisely the nonequivalent methodtiexer Running redundant
tests is inefficient, and our technigues can remove these tests from ssiegrest suite. However,

we need to be careful because changing the code can make a test ¢ulaindant in the old code
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to be non-redundant in the new code. If two method sequences in thed#docoduce equivalent
object statesandthe code changes do not impact these two method sequences [RTO &) willc

safely determine that the two sequences in the new code produce equalgkt states. Addition-
ally, we can always safely use our techniques to perform regressigprieritization [RUC01,ST02]

instead of test-suite minimization.

Generation: Existing test-generation tools can incorporate our techniques to avoidagiege
and executing redundant tests. Although our implementations of the techr@griasing dynamic
analysis, they can determine whether a method execuiiois equivalent to some other execution
beforerunningme; the method-entry state required for determining equivalence is availafoeebe
the execution. Test-generation tools that execute tests, such as Jt@8t fpaAsmLT [GGSVO02],
can easily integrate our techniques. Jtest executes already genestaethtbobserves their behav-
ior to guide the generation of future tests. Running Jtest is currently sigerit spends over 10
minutes generating the tests for relatively large classes in our experiment®(53.5)—but much
of this time is spent on redundant tests. In the next chapter, we will gresenour techniques can

be incorporated to generate only non-redundant tests.

3.5 Evaluation

This section presents two experiments that assess how well Rostra dethaidant tests: 1) we
investigate the benefit of applying Rostra on tests generated by existing daodl®) we validate
that removing redundant tests identified by Rostra does not decreagedlity of test suites. We
have performed the experiments on a Linux machine with a Pentium 1V 2.8 Git¢egsor using

Sun’s Java 2 SDK 1.4.2 JVM with 512 MB allocated memory.

3.5.1 Experimental Setup

Table 3.2 lists the 11 Java classes that we use in our experimentimt3taek class is our running
example. TheJBStack class is taken from the experimental subjects used by Stotts et al. [SLA02].
The ShoppingCart  class is a popular example for JUnit [Cla00]. TBankAccount class is

an example distributed with Jtest [Par03]. The remaining seven classdatarstructures used to

evaluate Korat [BKM02, MAD 03]. The first four columns show the class name, the number of
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Table 3.2: Experimental subjects

class meths| public | ncnb | Jtest| JCrasher
meths | loc | tests| tests
IntStack 5 5 44 94 6
UBStack 11 11| 106 | 1423 14
ShoppingCart 9 8 70| 470 31
BankAccount 7 7 34| 519 135
BinSearchTree 13 8| 246| 277 56
BinomialHeap 22 17 | 535 6205 438
DisjSet 10 7| 166 | 779 64
FibonacciHeap 24 14 | 468 | 3743 150
HashMap 27 19 | 597 | 5186 47
LinkedList 38 32| 398 3028 86
TreeMap 61 25| 949 | 931 1000

methods, the number of public methods, and the number of non-comment|amknlibes of code

for each subject.

We use two third-party test generation tools, Jtest [Par03] and JC{&@4], to automatically
generate test inputs for program subjects. Jtest allows the user to kaidtieof calling sequences
between one and three; we set it to three, and Jtest first generatedlial sequences of length
one, then those of length two, and finally those of length three. JCrastwnatically constructs
method sequences to generate non-primitive arguments and uses dafawaldies for primitive
arguments. JCrasher generates tests as calling sequences with the femggh dhe last two

columns of Table 3.2 show the number of tests generated by Jtest anti€lCras

Our first experiment uses the five techniques to detect redundant tesigydhose generated
by Jtest and JCrasher. Our second experiment compares the qualitigiofloand minimized
test suites using 1) branch coverage, 2) nonequivalent, uncaxggypteon count, and 3) fault-
detection capability. We adapted Hansel [Han03] to measure branchagevand nonequivalent,

uncaught-exception count. (Two exceptions are equivalent if theg theevsame throwing location
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and type.) To estimate the fault-detection capability, we use two mutation-analytsddo Java:
Jmutation [MKOO02] and Ferastrau [MADD3]. We select the first 300 mutants (i.e., 300 versions
each of which is seeded with a bug) produced by Jmutation and configuastfau to produce
around 300 mutants for each subject. We estimate the fault-detection capahbditesi suite by
using the mutant killing ratio of the test suite, which is the number of the killed mutanited by

the total number of mutants. To determine whether a test kills a mutant, we hava\sp#eifica-
tions and used the JML runtime verifier [CL0O2] to compare the method-exissaatéreturns of the

original and mutated method executions.

3.5.2 Experimental Results

Figures 3.3 and 3.4 show the results of the first experiment—the percesftagdundant tests
generated—for Jtest and JCrasher, respectively. We also medbkarpdrcentages of equivalent
object states and equivalent method executions; they have similar distrbaotihe redundant
tests. We observe that all techniques except WholeSe(q identify ar@36dBJItest-generated tests
to be redundant for all subjects and 50% of JCrasher-generatedadsgsredundant for five out
of 11 subjects. Possible reasons for higher redundancy of Jtestaged tests include: 1) Jtest
generates more tests; and 2) Jtest-generated tests have longer call length

We observe a significant improvement achieved by ModifyingSeq overl&®eq in detecting
redundant tests. In Figure 3.3, this improvementifithtack  is not so large as the one for other
subjects, becaugdetStack has only one state-preserving methatmpty ), whereas other sub-
jects have a higher percentage of state-preserving methods in their ¢tabscies. There are some
improvements achieved by the last three techniques based on concreteogtat®odifyingSeq.
But there is no significant difference in the results for the last three igobs. We hypothesize that
our experimental subjects do not have many irrelevant object fieldeforidg object states and/or
the irrelevant object fields do not significantly affect the redundantiegtection.

Figures 3.5 and 3.6 show the elapsed real time of running our implementaticetoelundant
tests generated by Jtest and JCrasher, respectively. We obsérthetbapsed time is reasonable:
it ranges from a couple of seconds up to several minutes, determinedipriathe class com-

plexity and the number of generated tests. In Figures 3.5, the elapsed timendbNEquals for
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BinomialHeap is relatively expensive, because the number of generated te&imdotialHeap
is relatively large and invoking itsquals is relatively expensive.

To put the analysis time of our techniques into perspective, we need tadeortise whole
test generation: if test-generation tools such as Jtest incorporatedchnigges into generation,
the time savings achieved by avoiding redundant tests would significanteéxhe extra cost of
running our techniques. The next chapter will show how we can avaidrgéng redundant tests
based on our techniques.

Table 3.3 shows the results of the second experiment: nonequivaleatigitieexception counts
(columns 2 and 3), branch-coverage percentages (columns 4 aillirtg,ratios for Ferastrau mu-
tants (columns 6 and 7), and killing ratios for Jmutation mutants (columns 8 arich®)columns
marked “jte” and “jcr” correspond to Jtest and JCrasher, respéctiVle original Jtest-generated
and JCrasher-generated test suites have the same measures asdsgionding Rostra-minimized
test suites in all cases except for the four cases whose entries aredwatk “*”. The differences
are due only to the MonitorEquals and PairwiseEquals techniques. The mididtiest-generated
test suites fomtStack andTreeMap cannot kill three Ferastrau-generated mutants that the origi-
nal test suites can kill. This shows that minimization baseelqpials can reduce the fault-detection
capability of a test suite, but the probability is very low. The minimized Jtestrgeetbtest suites
for HashMap and TreeMap cannot cover two branches that the original test suites can cover. We
have reviewed the code and found that two fields of these classesearéousaching; these fields
do not affect object equivalence (defined diyuals ) but do affect branch coverage. These four
cases suggest a further investigation on the usejodls methods in detecting redundant tests as

future work.

3.5.3 Threats to Validity

The threats to external validity primarily include the degree to which the supjegrams and
third-party test generation tools are representative of true practicesudjects are from various
sources and the Korat data structures have nontrivial size for utsit @&the two third-party tools,
one—Jtest—is popular and used in industry. These threats could be fiztlueed by experiments

on various types of subjects and third-party tools. The main threats to ihtexiidity include
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Table 3.3: Quality of Jtest-generated, JCrasher-generated, and mintestadites

class excptn| branch | Ferastrau Jmutation
count | cov[%] | kill[%] | Kkill [%]
jte |jer| jte| jer| jte| jer| jte| jer
IntStack 1| 1| 67| 50|*45| 40| 24| 23
UBStack 2| 0| 94| 56| 57| 25| 78| 37
ShoppingCart| 2| 1| 93| 71| 57| 51| 80| 20
BankAccount | 3| 3|100|100| 98| 98| 89| 89
BinSearchTree 3| 0| 67| 14| 33| 5| 57| 11
BinomialHeap| 3| 3| 90| 66| 89| 34| 64| 48
DisjSet 0] O] 61| 51| 26| 18| 40| 29
FibonacciHeap 2| 2| 86| 58| 73| 21| 68| 35
HashMap 1| 1|*72| 43| 52| 23| 48| 24
LinkedList 19110| 79| 48| 24| 7| 25 9
TreeMap 4| 3|*33| 11|*16| 4| 16 7

instrumentation effects that can bias our results. Faults in our implementatist), J@gasher,
or other measurement tools might cause such effects. To reduce thests, thve have manually

inspected the collected execution traces for several program subjects.

3.6 Conclusion

Object-oriented unit tests consist of sequences of method invocatioimaviBe of an invocation
depends on the state of the receiver object and method arguments aitivérigeof the invocation.
Existing tools for automatic generation of object-oriented test suites, sultestsand JCrasher for
Java, typically ignore this state and thus generate redundant tests thasexke same method
behavior, which increases the testing time without increasing the ability to detstst

We have developed five fully automatic techniques for detecting redundett-oriented unit
tests. We have proposed four practical applications of the framewoekhade conducted exper-

iments that evaluate the effectiveness of our techniques on detectingdeeduests in test suites
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generated by two third-party test-generation tools. The results showuh&ahniques can sub-
stantially reduce the size of these test suites without decreasing their qlibkse results strongly
suggest that tools and techniques for generation of object-orientesdiitest must consider avoiding

redundant tests.



51

Chapter 4

NON-REDUNDANT-TEST GENERATION

Unit tests are becoming an important component of software developmeatExthreme Pro-
gramming discipline [Bec00, Bec03], for example, leverages unit testsriitpeontinuous and
controlled code changes. Although manually created unit tests are valtrayl®ften do not cover
sufficient behavior of the class under test, partly because manuaktestagion is time consuming
and developers often forget to create some important test inputs. Whigniemng the impor-
tance of unit tests, many companies have provided tools, frameworksseawides around unit
tests, ranging from specialized test frameworks, such as JUnit [GB0Akual Studio’s hew team
server [Mic04], to automatic unit-test generation tools, such as Para#efs[Par03] and Aigtar's
Agitator [AgiO4]. However, within constrained resources, existing testegation tools often do
not generate sufficient unit tests to fully exercise the behavior of the clader test, for exam-
ple, by satisfying the branch-coverage test criterion [Bei90], let atos&onger criterion, such as
the bounded intra-method path coverage [BLOO] of the class under testvefave discussed in
Chapeter 3, wasting time on generating and running redundant tests is oneason for existing
tools not to generate sufficient unit tests given constrained resources

In order not to be redundant, a test needs to exercise at least omeaibad execution (one that
is not equivalent to any of those exercised by earlier executed tessyn#e that we have a fixed set
of values for method arguments, then in order to generate a non-retuadia we need to exercise
at least one new receiver-object state. In other words, we neegltirexnew) receiver-object states
in order to generate non-redundant tests. In this chapter, we fisstnira test-generation approach
that explores concrete states with method invocations (the approachwedsya by us [XMNO04a]
and Visser et al. [VPKO04] independently). Roughly this approach géee non-redundant tests
only. However, this approach has two issues. First, this approacmasshbat a fixed set of relevant
values for method arguments are provided beforehand; supplyingrilesant argument values is

often a challenging task for either developers or a third-party testing teadorf8i, this approach
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faces a similar state exploration problem as in explicit-state model checking9giG

To tackle these two issues, we have developed a test-generation dpmaléexd Symstra, that
uses symbolic execution [Kin76] of methods to explore symbolic states. Synstalés, symbolic
representations of states, describe not only single concrete stategtdualf concrete states, and
when applicable, symbolic representations can yield large improvementpraildously withessed
for example by symbolic model checking [McM93]. We use symbolic executiqggroduce sym-
bolic states by invoking a method with symbolic variables for primitive-type argsnéstead of
requiring argument values to be provided beforehand. Each symbglimant represents a set of
all possible concrete values for the argument. We present novel teesior comparing symbolic
states of object-oriented programs. These techniques allow our Symgtcaelp to prune the ex-
ploration of object states and thus generate tests faster, without compmthisiexhaustiveness of
the exploration. In particular, the pruning preserves the intra-methodpaénage of the generated
test suites. We have evaluated our Symstra approach on 11 subjectsfmbéth are complex
data structures taken from a variety of sources. The experimentdisrehow that our Symstra
approach generates tests faster than the existing concrete-statecappidd K04, XMN04b]. Fur-
ther, given the same time for generation, our new approach can getesitehat achieve better
branch coverage than the existing approaches.

The remainder of this chapter is structured as follows: Section 4.1 presemisiing example.
Section 4.2 describes the concrete-state approach that generatey tegikoling concrete states.
Section 4.3 introduces the representation of symbolic states producedhbyplgyexecution. Sec-
tion 4.4 presents the subsumption relationship among symbolic states and Sestiomotiuces
the Symstra approach that uses state subsumption relationship to prundisyataite exploration.
Section 4.6 presents the experiments that we conducted to assess tlaehgmthen Section 4.7

concludes.

4.1 Example

We use a binary search tree implementation as a running example to illustraggsirégsapproach.
Figure 4.1 shows the relevant parts of the code. The binary searatldssBST implements a set

of integers. Each tree has a pointer to the root node. Each node hksreneand pointers to the



53

class BST inplenments Set {
Node root;

static class Node {

int value;
Node left;
Node right;
}
public void add(int value) {
if (oot == null) { root = new Node(); root.value = value; }
el se {
Node t = root;
while (true) {
if (tvalue < value) { /* cl ¥
if (tright == null) {
tright = new Node(); t.right.value = value;
br eak;
} else { t = tright; }
} else if (tvalue > value) { I* c2 *
if (tleft == nul 1) {
tleft = new Node(); t.left.value = value;
br eak;
} else { t = tleft }
} el se { /* no duplicates*/ return; } /*c3 %
}
}
}
public void remove( int value) { .. }
public bool ean contains( int value) { .. }

Figure 4.1: A set implemented as a binary search tree

left and right children. The class also implements the standard set opsratidnadds an element,
if not already in the tree, to a leakkmove deletes an element, if in the tree, replacing it with the
smallest larger child if necessary; atmhtains  checks if an element is in the tree. The class also

has a default constructor that creates an empty tree.

Some tools such as Jtest [Par03] or JCrasher [CS04] test a classdrgiiieg random sequences

of methods; forBST, they could for example generate the following tests (written in the JUnit
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framework [GBO3]):

public class BSTTest extends TestCase {
public void testl() {
BST t1 = new BST();
t1.add(0);
tl.add(-1);

tl.remove(0);

public void test2() {
BST t2 = new BST();
t2.add(2147483647);
t2.remove(2147483647);
t2.add(-2147483648);

Each test has a method sequence on the objects of the classestly., creates a treél ,
invokes twoadd methods on it, and then omemove . One strategy adopted by existing tools is
to exhaustively explore all method sequences or randomly explore somedrsethuences up to a
given length. These tools consider that two tests are both generated Hateydifferent method
sequences. As we have shown in Chapter 3, the conservative stpatetyces a high percentage
of redundant testes. The remainder of the chapter shows how towffggenerate non-redundant
tests that exercise the same program behavior as exercised by thogenestded by exhaustively

exploring all method sequences up to a given length.

4.2 Concrete-State Exploration

Unit-test generation for object-oriented programs consists of two patsng up receiver-object
states and generating method arguments. The first part puts an objeetotdth under test into a
particular state before invoking methods on it. The second part proghactsular arguments for
a method to be invoked on the receiver-object state. The concreteqspaiteaeh presented in this
section assumes a fixed set of method arguments have been provideshhatband invoke these

method arguments to explore and set up object states.
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A method-argument staie characterized by a method and the values for the method arguments,
where a method is represented uniquely by its defining class, name, anttiteesgynature. Two
method-argument states are equivalent iff their methods are the same @mehffserooted from
their method arguments are equivalent (isomorphic).

Each test execution produces several method executions.

Definition 9. A method executiois,, s,) is a pair of a method-argument statg and a receiver-

object states,.
Then we define equivalent method executions based on equivalest state

Definition 10. Two method executions,1, s,1) and (s,2, sy2) are equivalentiff s,; and s,o are

equivalent, and,; ands,, are equivalent

Our test generation approach is a type of combinatorial testing. We genesédeto exer-
cise each possible combination of nonequivalent receiver-objecs statenonequivalent method-
argument states. In order to generate method-argument states, our inplonemonitors and
collects method arguments from the executions of existing tests. This mechemisptements
existing method argument generation based on a dedicated test data picbl ceufitains default
data values [Par03, CS04] or user-defined data values [ParQ&jadtice, programmers often write
unit tests [Bec00, Bec03], and these tests often contain some repteseatgument values. Our
approach takes advantage of these tests, rather than requiringrpnogirsito explicitly define rep-
resentative argument values. When there are no manually written testddgsawe collect method
arguments exercised by tests generated by existing test-generation tctlsssitest [Par03] and
JCrasher [CS04].

In order to prepare nonequivalent receiver-object states, initiallgyemerate a set of tests each
of which consist of only one constructor invocation. These initial testageempty” receiver-

object states. Then we generate new tests to exercise each nonedusalpty” object state with

1The definition of a method execution is different from the one present®ddtion 3.4 of Chapter 3. This chapter rep-
resents the states of argument states and receiver states separdtelgémvenience of test generation, whereas Chap-
ter 3 represents the states of argument states and receiver stategle eegiresentation for the safety of redundant-test
detection, because there may be some aliasing relationships betweguereiar and the receiver object, and repre-
senting them in a single representation is needed to capture these relasamshipniently.

2We can show that if two method executions are nonequivalent basedequrebeding definition, then these two
method executions are nonequivalent based on the previous definiGatiion 3.4 of Chapter 3.
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all nonequivalent method-argument states. After we execute the nexaged tests, from the exe-
cution, we collect new object states that are not equivalent to any @ tiject states that have been
exercised by all all nonequivalent method-argument states. Thenmwezaje new tests to exercise
each new object state with all nonequivalent method-argument statesaifigeiteration continues
until we run of memory or time, encounter no new object state, or reachraspeeified iteration
number. The iterations of generating tests are basically a process ofiegpdject states with
method invocations in a breadth-first manner. The pseudo-code of thgetesration algorithm is
presented in Figure 4.2.

The inputs to our test-generation algorithm include a set of existing testsumad-defined max-
imum iteration number, which is the maximum length of method sequences in thagghtasts.
Our algorithm first runs the existing tests and collects runtime information, imgutnequivalent
constructor-argument states and nonequivalent method-argumest §tatalso collect the method
sequence that leads to a honequivalent object state or an argument tincalraggument state. We
use these method sequences to reproduce object states or arguments.

Then for each collected nonequivalent constructor-argument statereate a new test that
invokes the constructor with the arguments. We run the new test that gedacempty” receiver-
object state. From the runtime information collected from running the new t&stletermine
whether the receiver-object state produced by the constructor texedsi a new one (not being
equivalent to any previously collected one); if so, we put it into a frorstr

Then we iterate each object state in the frontier set and invoke eachuigaleqt method-
argument state on the object state. Each combination of an object state atttbd argument list
forms a new test. We run the new test and collect runtime information. If thedviereobject state
produced by the last method execution in the new test is a new one, we mavheceiver-object
state into the new frontier set for the next iteration. In the end of the diitezation, we replace
the content of the current frontier set with the content of the new frosger We next start the
subsequent iteration until we have reached the maximum iteration numberfasrttier set has no
object state. In the end of the algorithm, we return the generated tests abbweteall iterations.
These tests are exported to a test class written in the JUnit framework [GB0O3

Since invoking a state-preserving method on an object state does ngectienstate, we can

still invoke other methods on the object state in the same test. We merge genessteas much
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Set testGenConcreteExp(  Set existingTests, i nt maxiterNum) {
Set newTests = new Set ();

Runti mel nf o runtimelnfo = execAndCollect(existingTests);

Set nonEqConstructorArgStates = runtimelnfo.getNonEqConst ructorArgStates();
Set nonEgMethodArgStates = runtimelnfo.getNonEgMethodArgS tates();

llcreate empty symbolic states

Set frontiers = new Set ();

f oreach (constructorArgState i n nonEgConstructorArgStates) {

Test newTest = makeTest(constructorArgState);
newTests.add(newTest);
runtimelnfo = execAndCollect(newTest);
frontiers.add(runtimelnfo.getNonEqObjState());
}
/lexercise new states from each iteration with each method- argument state
for(int i=l;i<=maxiterNum && frontiers.size()>0;i++) {
Set frontiersForNextlter = new Set ();
f oreach (objState i n frontiers) {
f oreach (argState i n nonEgMethodArgStates) {
Test newTest = makeTest(objState, argState);
newTests.add(newTest);
runtimelnfo = execAndCollect(newTest);

frontiersForNextlter.add(runtimelnfo.getNonEqObjSta te());

}

frontiers.clear();

frontiers.addAll(frontiersForNextlter);

}

return newTests;

Figure 4.2: Pseudo-code implementation of the test-generation algorithmh twasxploring con-
crete states.

as possible by reusing and sharing the same object states among multiple argtinoent state.
This reduces the number of the generated tests and the execution cosgeh#rated test suite.
The generated test suite contains no redundant tests, since our comligatioeration mechanism
guarantees that the last method execution produced by each test isuivatesg to any method

execution produced by earlier executed tests.

Our implementation uses Java reflection mechanisms [AGHOQ0] to generatxecuwteenew
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Figure 4.3: A part of the explored concrete states

tests online. In the end of test generation, we export the tests genefigiedah iteration to a

JUnit test class code [GB03], based on JCrasher’s test codeagiendunctionality [CS04].

When we tesBST by using the test generation algorithm in Figure 4.2, we can provide three
values foradd’s argumentadd(1) , add(2) , andadd(3) , and set the maximum iteration number
as three. Figure 4.3 shows a part of the explored concrete states B®Tratass. Each explored
state has a heap, which is shown graphically in the figure. The constfustareates an empty tree.
In the first iteration, invokingadd on the empty tree with three arguments 2, and3) produces
three new statesst, Ss3, andS,), respectively. In the second iteration, invokismgd(1) onSs does
not modify the receiver-object state, still beifg. Invokingadd(2) andadd(3) on S, produces
two new statesqs andSs), respectively. Similar cases occur SnpandS;.

After exploring an edge (state transition), we generate a specific teseétoisxthis edge. We
generate the test by traversing the shortest path starting from the ectyestriuctor invocatiomgw
BST() ) to the current edge, and outputting the method invocations along the patixdrople, the

test that we generate to exercise the edge ifgno S is:
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public void testtdgeFromS5ToS8() {
BST t = new BST();
t.add(1);
t.add(3);
t.add(2);

We can see that there are two major issues when we use the test gendgatiithma in Fig-
ure 4.2 to tesBST. First, the algorithm assumes that developers or third-party tools prowetecd
relevant values for the method arguments. For example, if we want toajerests to reachBST
object with eight elements, we need to provide at least eight differeresédwadd 's argument. For
complex classes, it is often a challenging task for developers or thitgjoais to produce relevant
values for their method arguments. Second, the algorithm faces the stiisiexwroblem when
exploring concrete states with a even relatively small number of providedehettyument values.
For example, the algorithm runs out of memory when it is used toB8$twith seven different
values for the arguments afid andremove and with the maximum iteration number as seven.

In fact, invoking threeadd method invocations on the empty tree to re&ghSs, andS; exercise
the same program behavior: basically these method invocations put arr integen empty binary
search tree. Invokingdd(3) on .S, exercises the same program behavior as invokidy3)
on Ss: basically each method invocation inserts an integer into a binary searcbomé&gning a
smaller integer. To tackle the state exploration problem, we can construbstacion function
that maps similar concrete states into a single abstract state. One challemgetbaonstruct this
abstraction function automatically. The next section presents our newagbprcalled Symstra,
that uses symbolic execution to automatically group several concrete stat@ssimgle symbolic
state, if these concrete states are isomorphic in an abstract level anddhrepehed by executing

the same path of the program.

4.3 Symbolic-State Representation

The symbolic execution [Kin76] of a method accepts method inputs in the fosyrbolic vari-
ables instead of actual arguments values. In the symbolic execution of an ajented program,

the receiver object of a method invocation can beymbolic statesSymbolic states differ from
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concrete states, on which the usual program executions operate, isythbolic states contain
a symbolic heap that includes symbolic expressions with symbolic variablek ési1symbolic
variables connected with their associated types’ operators), and cafgaiiconstraints on these
variables.

We view a symbolic heap as a graph: nodes represent objects (as \wpelnis/e values and
symbolic expressions) and edges represent object fields) betsome set of objects whose fields
form a setF'. Each object has a field that represents its class. We consider asralpgeats whose

fields are labelled with (integer) array indexes and point to the array etsmen

Definition 11. A symbolic heap is an edge-labelled graih, F), whereE C O x F' x (O U
{nul'I } UU) such that for each fielg of eacho € O exactly on€lo, f,0’) € E. A concrete heap

has only concrete values! € O U {nul | } U P.
Given the definition of a symbolic heap, we can then define a symbolic statalffgr
Definition 12. A symbolic statdC, H) is a pair of a constraint and a symbolic heap.

The usual execution of a method starts with a concrete state of the resbjeet and method-
argument values, and then produces one return value and oneteostate of the receiver object.
In contrast, the symbolic execution of a method starts with a symbolic state ofdbigereobject
and symbolic variables of method arguments, and then produces sateral values and several
symbolic states of the receiver object.sgmbolic execution tregharacterizes the execution paths
followed during the symbolic execution of a program. An edge representsthod invocation
whose symbolic execution follows a specific path. A node in the tree ragieeaesymbolic state
produced by symbolically executing a specific path of a method. Figure éwssa part of the
symbolic execution tree foBST when we invoke a method sequence consisting of onlyatlte
method.

The constructor oBSTfirst creates an empty treg, whose constraint isue . Then we invoke
add on.S; with symbolic variabler; as the argument. The symbolic executioradfi on S; can
explore one path, producing a symbolic stdievhose heap contains the elementand constraint
is still true . In general, while an execution of a method with concrete arguments E®edune

state, the symbolic execution of a method with symbolic arguments can prodcel states, thus
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Figure 4.4: A part of the symbolic execution tree

resulting in an execution tree. For example, the symbolic execution afithen .S, with symbolic
variablexy as the argument produces three symbolic staigsq,, and.Ss), which are produced
by following three different paths withiadd, in particular, taking three different branches,(c2,
andc3) labeled in the method body afid (Figure 4.1): ifz; = x4, the tree does not change, and if

x9 > x1 (Or T9 < 1), T2 IS added in the right (or left) subtree.

Following the typical symbolic executions [Kin76, KPV03, VPK04], our implenation sym-
bolically explores both branches bf statements, modifying the constraint with a conjunct that
needs to hold for the execution to take a certain branch. In this contexpris&aint is callegbath
condition because it is a conjunction of conditions that need to hold for the exedatitake a
certain path and reach the current address. This symbolic executictlydexeplores every path of
the method under consideration. The common issue in the symbolic executiontiethamber of
paths may be infinite (or too large as it grows exponentially with the numbelothes). In such

cases, we can use the standard set of heuristics to explore only soreepatitls [VPK04, BPS00].

Our implementation executes code on symbolic states by rewriting the code tdeoparsym-
bolic expressions [KPV03, VPKO04]. Furthermore, Symstra implements thleration of different
branches by re-executing the method from the beginning for each pilttoutvstoring any inter-

mediate states. Note that Symstra re-executes only one method (for diffates), not the whole
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method sequence. This effectively produces a depth-first exploratipaths within one method,
while the exploration of states between methods is breadth-first as explaitieel next section.
Our Symstra prototype also implements the standard optimizations for symboliatiexed-irst,
Symstra simplifies the constraints that it builds at branches; specificalbregbednjoining the path
condition so farC and the current branch conditi@if (whereC’ is a condition from arif or its
negation), Symstra checks if some of the conjuncts impliesC’; if so, Symstra does not conjoin
C’. Second, Symstra checks if the constra&itdt&C’ is unsatisfiable; if so, Symstra stops the cur-
rent path of symbolic execution, because it is an infeasible path. Thent8ymstra prototype can

use the Simplify [DNSO03] theorem prover or the Omega library [Pug92] tolchasatisfiability.

4.4 Symbolic-State Subsumption

This section presents techniques that compare two symbolic states: chisckimayphism of their
symbolic heaps and checking implication relationships between their constitieise techniques
help determine symbolic-state subsumption: whether one symbolic state sulibenogiser. We

use symbolic-state subsumption to effectively prune the exploration of dimskates (Section 4.5).

4.4.1 Heap-lsomorphism Checking

We define heap isomorphism as graph isomorphism based on node bij@&H*ibtDR]. We want
to detect isomorphic heaps because invoking the same methods on them leguisdatent method
behaviors and redundant tests; therefore, it suffices to exploreomelyrepresentative from each
isomorphism partition. Nodes in symbolic heaps contain symbolic variablese doswdefine a
renamingof symbolic variables. Given a bijection : V' — V, we extend it to the whole :

U — U as follows: 7(p) = pforall p € P, andr(Guy,...,u,) = ©7(u1),...,7(uy,) for all
uy, - .., u, € U and operations. We further extend to substitute free variables in formulas with

bound variables, avoiding capture as usual.

Definition 13. Two symbolic heap&);, 1) and (O, E5) are isomorphiciff there are bijections
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p: 01 — Oyandr : V — V such that:

Ey = {(p(0), f,p(d)l{o, f,0") € Er, 0" € O} U{(p(0), finul 1)[{o, f,nul 1) € By} U

{{p(0), f.7( )0, f,0) € Er,0" € U}.

The definition allows only object identities and symbolic variables to vary: twmasphic
heaps have the same fields for all objects and equal (up to renaming) Igyextpressions for all
primitive fields.

Our test generation based on state exploration does not consider tleepeatiram heap but
focuses on the state of several objects (including the receiver olfjdcarguments of a method
invocation); in this context, the state of an objeds a rooted heap, which is characterized by the
values of the fields of and fields of all objecteeachablefrom o.

We linearizerooted symbolic heaps into integer sequences such that checking syiméatic-
isomorphism corresponds to checking sequence equality. Figure 45 ¢he linearization algo-
rithm for a symbolic rooted heap. It starts from the root and traversebdahp in a depth-first
manner. It assigns a unique identifier to each object that is visited for shéiffire, keeps this map-
ping inobjs , and reuses it for objects that appear in cycles. It also assigns aeudigutifier to
each symbolic variable, keeps this mappingars , and reuses it for variables that appear several
times in the heap.

This algorithm extends the linearization algorithm shown in Figure 3.2 of Chaptih linSymExp
that handles symbolic expressions; this improves on the approach ofiduet al. [KPV03,
VPKO04] that does not use any comparison for symbolic expressionscaWehow that our lin-

earization normalizes rooted heaps.

Theorem 2. Two rooted heap$0;, E1) (with rootr;) and (O, E5) (with rootry) are isomorphic

iff 1'i nearize(r1,(O1, E1))=lineari ze(rg, (O2, E2)).

4.4.2 State-Subsumption Checking

When the rooted heaps in two symbolic states are isomorphic, these two syntatdic @e not
necessarily equivalent (based on the observational equivale®[DGO00]), because the con-

straints in these two symbolic states may not be equivalent (two constrairgg@valent if they
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Map<Qbj ect, i nt > objs; // maps objects to unique ids

Map<SymVar, i nt > vars; // maps symbolic variables to unique ids

int[] linearize( Obj ect root, Heap <O,E>) {
objs = new Map(); vars = new Map();

return lin(root, <O,E>>;

intf] lin( Object root, Heap <O,E>) {
i f (objs.containsKey(root))
ret urn singletonSequence(objs.get(root));
int id = objs.size() + 1; objs.put(root, id);
i nt[] seq = singletonSequence(id);
Edge[] fields = sortByField( { <root, f, 0> inE})
foreach (<root, f, 0> i n fields) {

i f (isSymbolicExpression(o)) seq.append(linSymExp(0));

elseif (0o == null) seq.append(0);
el se seq.append(lin(o, <O,E>)); // pointer to an object
}
return seq;
}

int[] linSymExp( SynExp e) {
i f (isSymVar(e)) {
i f (Ivars.containsKey(e))
vars.put(e, vars.size() + 1);
return singletonSequence(vars.get(e));
} el seif (isPrimitive(e)) ret urn uniqueRepresentation(e);
el se { // operation with operands
i nt[] seq = singletonSequence(uniqueRepresentation(e.getO peration()));
foreach (SynExp e in e.getOperands())
seq.append(linSymExp(e’));

return seq;

Figure 4.5: Pseudo-code of linearization for a symbolic rooted heap

have the same set of solutions). Two symbolic states are equivalent ifghysent the same set of

concrete states. To effectively prune the exploration of symbolic statedgfine the subsumption
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bool ean checkSubsumes( Constrai nt Cl, Heap H1,
Constraint C2, Heap H2) {
int[] i1 = linearize(root(H1), H1);
Map<Synwvar, int> vl = vars; // at the end of previous linearization
Set <SynVar > nl = variables(C1) - vl.keys(); // variables not in the heap
int[] i2 = linearize(root(H2), H2);
Map<SynVar, i nt> v2 = vars; // at the end of previous linearization
Set <SynVar > n2 = variables(C2) - v2.keys(); // variables not in the heap
if (i1 <> i2) return fal se;
Renaming 7 = v2 o vl—! // compose v2 and the inverse of vl

return checkValidity( 7(Ing. C2) = Iny. C1);

Figure 4.6: Pseudo-code of subsumption checking for symbolic states

relationships among symbolic states. Intuitively a symbolic stasebsumes another o if the
concrete states represented$wre a superset of the concrete states represents@ liyen if we
have explored, we do not need to exploi®, because the behaviors exercised by invoking meth-
ods onS’ would have been exercised by invoking methodssofiVe can more effectively prune the
exploration of symbolic states based on symbolic-state subsumption thandrasgohbolic-state
equivalence.

We next formally define symbolic state subsumption based on the concrgis tied each
symbolic state represents. To instantiate a symbolic heap into a concreteweagplace the

symbolic variables in the heap with primitive values that satisfy the constraing isymbolic state.

Definition 14. AninstantiationZ ((C, H)) of a symbolic statéC, H) is a set of concrete heafg$’
such that there exists a valuatign V' — P for whichn(C) is true andH’ is the evaluation)(H)

of all expressions i according tor.

Definition 15. A symbolic statéC, H;) subsumesnother symbolic statéCs, Hs), in notation
(Cy, Hy) D (Ca, Hy), iff for each concrete heafl), € Z((Cs, Hs)), there exists a concrete heap
H{ € Z((C1, Hy)) such thatH| and H) are isomorphic.

We use the algorithm in Figure 4.6 to check if the constraitaf Hs), after suitable renaming,

implies the constraint ofC, H1). When some symbolic variables are removed from the heaps, for
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example, by aemove method, these symbolic variables do not appear in the heaps but may appear
in a constraint. Therefore, the implication is universally quantified overthielyrenamed) symbolic
variables that appear in the heaps and existentially quantified over thelgymas@bles that do not
appear in the heaps (more precisely onlyHn, because the existential quantifier fof in the
premise of the implication becomes a universal quantifier for the whole impli¢ation

We can show that this algorithm is a conservative approximation of subsumptio
Theorem 3. If checkSubsunes((C1, H1), (Ca, Hs)) then(Cy, H,) subsumes$Cs, Ho).

For example, we can show that the heapsinand S, (Figure 4.4) are isomorphic and the
implication (Vz13xe(x1 = z2) = true) holds. Then we can determitg subsumes,. Similarly
we can determiné&s subsumesS;. Note that the renaming operation on constraints (shown in
Figure 4.6) is necessary for us to show that the constraifit ahplies the constraint af.

Our Symstra approach gains the power and inherits the limitations from theigaehumsed
to check the implication on the (renamed) constraints. Our implementation usesribgadi-
brary [Pug92], which provides a complete decision procedure fabRrger arithmetic, and CVC
Lite [BB04], an automatic theorem prover, which has decision proceduareseveral types of con-
straints, including real linear arithmetic, uninterpreted functions, aredgs Because these checks
can consume a lot of time, our implementation further uses the following catserapproxima-
tion: if free-variablesin,. C1) are not a subset of free-variable&ns. C5)), returnfalse  without

checking the implication.

4.5 Symbolic-State Exploration

We next present how our Symstra approach systematically exploresnimkg-state space. The
state space consists of all symbolic states that are reachable with the symbolitian of a method
for the class under test. Our Symstra approach exhaustively expltrasnaed part of the sym-
bolic state space using a breadth-first search. The pseudo-codetektigeneration algorithm is
presented in Figure 4.7.

The inputs to our test-generation algorithm include a set of constrdcamd non-constructor
methodsM of the class under test, and a user-defined maximum iteration number, whiah is

maximum length of method sequences in the generated tests. We first inabkeagestructor on
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Set testGenSymExp( Set C, Set M, int maxiterNum) {
Set newTests = new Set ();
llcreate empty symbolic states
Set frontiers = new Set ();
f oreach (constructor inC) {
Runt i mel nfo runtimelnfo = symExecAndCollect(constructor);
newTests.addAll(runtimelnfo.solveAndGenTests());
frontiers.addAll(runtimelnfo.getNonSubsumedObjState s());
}
/lexercise non-subsumed symbolic states with symbolic exe cution of methods
for(int i=ljix=maxlterNum && frontiers.size()>0;i++) {
Set frontiersForNextlter = new Set ();
f oreach (objState i n frontiers) {
foreach (method in M) {
Runt i nel nf o runtimelnfo = symExecAndCollect(objState, method);
newTests.addAll(runtimelnfo.solveAndGenTests());

frontiersForNextlter.addAll(runtimelnfo.getNonSubsu medObjStates());

}

frontiers.clear();

frontiers.addAll(frontiersForNextlter);

}

return newTests;

Figure 4.7: Pseudo-code implementation of the test-generation algorithioh tisploring sym-
bolic states.

the initial symbolic state, which isy = (true ,{}): the constraint is true, and the heap is empty.
The symbolic execution of the constructor produces some “empty” reeelject states. Then
for each symbolic state produced by the symbolic execution, we generate Weealso determine
whether the symbolic state is subsumed by any previously collected symboljdfstatewe collect

it into a frontier set.

Then we iterate each symbolic-object state collected in the frontier set askkipach method
in M on the object state. We create a new test for each symbolicstaeduced by the symbolic
execution of the method. ¥ is not subsumed by any previously collected symbolic state, we collect

S into the new frontier set for the next iteration. Otherwise, we prune thieduexploration of5: S
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represents only a subset of the concrete heaps that are représestate symbolic state previously
collected for exploration; it is thus unnecessary to explofarther. Pruning based on subsumption
plays the key role in enabling our algorithm to explore large state spacesx&mple,S, and.S;

in Figure 4.4 are pruned because we have collected and ex#omtd S, which subsumé,; and
S7, respectively.

In the end of the current iteration, we replace the content of the cuin@mtier set with the
content of the new frontier set. We next start the subsequent iteratidnuwenhave reached the
maximum iteration number or the frontier set has no symbolic state. In the ene alfgbrithm, we
return the generated tests collected over all iterations. These tests aredxip a test class written
in the JUnit framework [GB03].

During the symbolic-state exploration, we build specific concrete tests thatdethe states
explored through the symbolic execution of a method. Whenever we finishreodha’s symbolic
execution that generates a symbolic st@ieH ), we first generate aymbolic testwhich consists
of the constrainC' and the sequence of method invocations along the shortest path starting fro
the edge of constructor invocation to the edgerfds symbolic execution. We then instantiate the
symbolic test using the POOC constraint solver [SR02] to solve the cornsiraiver the symbolic
arguments for methods in the sequence. Based on the produced sol@iohtain concrete argu-
ments for the sequence leading(t@, H). We export such concrete test sequences into a JUnit test
class [GB03]. We also export the constraihbssociated with the test as a comment for the test in
the JUnit test class.

For example, the tests that we generate to exercise the edg&frtmnb; and the edge frons,
to S5 in Figure 4.4 are:

public void testEdgeFromS2ToS3() {
* x1 > x2 *
int x1 = -999999;
int x2 = -1000000;
BST t = new BST();
t.add(x1);
t.add(x2);

public void testEdgeFromS2ToS5() {
* x1 < x2 */
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int x1 = -1000000;
int x2 = -999999;

BST t = new BST();
t.add(x1);

t.add(x2);

A realistic suite of unit tests contains more sequences that test the interplagebeadd,
remove , andcontains methods. Section 4.6 summarizes such suites.

At the class-loading time, our implementation instruments each branching padiné alass
under test for measuring branch coverage at the bytecode level.olinglsuments each method
of the class to capture uncaught exceptions at runtime. Given a symbdécastthe entry of
a method execution, our implementation uses symbolic execution to achieve rstrectverage
within the method, because symbolic execution systematically explores allléepaths within the
method. If the user of Symstra is interested in only the tests that achieve aeshbtoverage,
our implementation selects only the generated tests that increase brancageowe throw new
uncaught exceptions. Our implementation can also be extended for selestismthat achieve new

bounded intra-method path coverage [BLOO].

4.6 Evaluation

This section presents our evaluation of Symstra for exploring states aedagieg tests. We com-
pare Symstra with the concrete-state approach shown in Section 4.2. Wedéasloped both
approaches within the same infrastructure, so that the comparison dogisenan unfair advan-
tage to either approach because of unrelated improvements. In thesgnexye, we have used
the Simplify [DNSO03] theorem prover to check unsatisfiability of path conditidthe Omega li-
brary [Pug92] to check implications, and the POOC constraint solver2BR0s0lve constraints.
We have performed the experiments on a Linux machine with a Pentium IV 2.8pBidessor
using Sun’s Java 2 SDK 1.4.2 JVM with 512 MB allocated memory.

Table 4.1 lists the 11 Java classes that we use in the experiments. The fokissiegs were
previously used in evaluating our redundant-test detection approaséred in Chapter 3, and the

last five classes were used in evaluating Korat [BKM02]. The columrikenfable show the class
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Table 4.1: Experimental subjects

class methods under test some private methods| #ncnb #
lines | branches
IntStack push,pop - 30 9
UBStack push,pop - 59 13
BinSearchTree add,remove removeNode 91 34
BinomialHeap insert,extractMin findMin,merge 309 70
delete unionNodes,decrease
LinkedList add,remove,removelLast addBefore 253 12
TreeMap put,remove fixAfterIns 370 170
fixAfterDel,delEntry
HeapArray insert,extractMax heapifyUp,heapifyDown 71 29

name, the public methods under test (that the generated sequencesafprsime private methods
invoked by the public methods, the number of non-comment, non-blank linesdefin all those

methods, and the number of branches for each subject.

We use both approaches to explore states uy iterations; in other words, we generate tests
that consist of sequences with upfomethods. The concrete-state approach also requires concrete
values for arguments, so we set it to uSedifferent arguments (the integers from 046 — 1)
for methods under test. Table 4.2 shows the comparison between Symstitzeazahcrete-state
approach. We consideyY in the range from five to eight. (FQ¥ < 5, both approaches generate
tests really fast, usually within a couple of seconds, but those tests davegood quality.) We
tabulate the time to generate the tests (measured in seconds, Columns 3 amdniimber of
explored symbolic and concrete object states (Columns 4 and 8), the nuinhpeneyated tests
(Columns 5 and 9), and the branch covefagehieved by the generated tests (Columns 6 and 10).
In Columns 5 and 9, we report the total number of generated tests and, patbetheses, the

cumulative number of tests that increase the branch coverage.

During test generation, we set a three-minute timeout for each iteration bfehdth-first ex-

3We measure the branch coverage at the bytecode level during thexgtimeaton of both approaches, and calculate
the total number of branches also at the bytecode level.
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ploration: when an iteration exceeds three minutes, the exhaustive digiasbeach approach is
stopped and the system proceeds with the next iteration. We use a “*" magla¢h entry where
the test-generation process timed out; the state exploration of these entodsniger exhaustive.
We use a “—" mark for each entry where its corresponding approamteeed the memory limit.
The results indicate that Symstra generates method sequences of the ggm# leften much
faster than the concrete-state approach, thus enabling Symstra totgéomegar method sequences
within a given time limit. Both approaches achieve the same branch coveragetitod sequences
of the same lengtlV. However, Symstra achieves higher coverage faster. It also talsanésory
and can finish generation in more cases. These results are due to tthafazch symbolic state,
which Symstra explores at once, actually describes a set of concrietg, sthich the concrete-state
approach must explore one by one. The concrete-state approanterfteeds the memory limit

whenN = 7 or N = 8, which is often not enough to guarantee full branch coverage.

4.7 Conclusion

We have proposed Symstra, an approach that uses symbolic executemetatg a small number
of non-redundant tests that achieve high branch and intra-method @athage for complex data
structures. Symstra exhaustively explores symbolic states with symbolic antgiopeto a given
length. It prunes the exploration based on state subsumption; this prypgiedsup the exploration,
without compromising its exhaustiveness. We have implemented the appruhevauated it on
11 subjects, most of which are complex data structures. The results sab@ytimstra generates
tests faster than the existing concrete-state approaches, and givamidse limit, Symstra can
generate tests that achieve better branch coverage than these exigtoaraps.

We finally discuss how Symstra can be leveraged in specification-basied tesd extended to

improve performance and address some inherent limitations of symbolic executio

Specifications. Although the work in this dissertation including the Symstra approach has been
developed to be used in the absence of specifications, Symstra’s tesatiymm can be guided by
specifications if they are provided. These specifications can include chgtboand post-conditions

and class invariants, written in the Java Modelling Language (JML) [LBRY&e JML tool-set
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transforms these constructs into run-time assertions that throw JML-spexifeptions when vi-
olated. Specification-based testing normally needs to genkgaémethod invocations whose
method-entry states satisfy pre-conditions and class invariants, i.e., aptiexs for these con-
structs are thrown at method entries. By default, Symstra does not expitirer a state resulting
from an exception-throwing method execution; therefore, Symstra eglegal method sequences.
If during the exploration Symstra finds a method invocation that violates acposlition or invari-
ant, Symstra has discovered a bug; Symstra can be configured totgenaatests and continue or
stop test generation. If a class implementation is correct with respect to diicgton, paths that
throw post-condition or invariant exceptions should be infeasible.

Our implementation for Symstra operates on the bytecode level. It can mpetdsting of the
specifications woven into method bytecode by the JML tool-set or by similar. tdoke that in this
setting Symstra essentially uses black-box testing [VPKO04] to explore ondg thymbolic states
that are produced by method executions that satisfy pre-conditiondaswiavariants; conditions
that appear in specifications simply propagate into the constraints assogiitedsymbolic state
explored by Symstra. Using symbolic execution, Symstra thus obtains theatjenef legal test

sequences “for free”.

Performance. Based on state subsumption, our current implementation for Symstra expi@res
or more symbolic states that have the isomorphic heap. We can extend our imfzeéareto
explore exactly onenion symbolic state for each isomorphic heap. We can create a union state
using a disjunction of the constraints for all symbolic states with the isomorphp l&gch union
state subsumes all the symbolic states with the isomorphic heap, and thus explasinunion
states can further reduce the number of explored states without comprgthisiexhaustiveness of
the exploration. (Subsumption is a special case of unio@} it C4, thenC; v Cs simplifies to
Cy.)

Symstra enables exploring longer method sequences than the condetpgt@aches. How-
ever, users may want to have an exploration of even longer sequeraeseve some test purpose.
In such cases, the users can apply several techniques that tradeathatge of the intra-method
path coverage for longer sequences. For example, the users mayepabstraction functions for

states [LGO0O0], as used for instance in the AsmLT generation tool [Fobjnary methods for com-
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paring states (e.gequals ), as used for instance in our Rostra approach (Chapter 3). Symatra ca
then generate tests that instead of subsumption use these user-pravidgdns for comparing
state. This leads to a potential loss of intra-method path coverage but&fesditr, user-controlled
exploration. To explore longer sequences, Symstra can also usersthrdéistics [VPK04,BPS00]

for selecting only a set of paths instead of exploring all paths.

Limitations. The use of symbolic execution has inherent limitations. For example, it cangot
cisely handle array indexes that are symbolic variables. This situatiomsoccsiome classes, such
asDisjSet andHashMap used previously in evaluating Rostra (Chapter 3). One solution is to
combine symbolic execution with (exhaustive or random) exploration basedrrete arguments:
a static analysis would determine which arguments can be symbolically exeantkthr the rest,
the user would provide a set of concrete values [Fou].

So far we have discussed only methods that take primitive arguments. Wt clirectly trans-
form non-primitive arguments into symbolic variables of primitive type. Howewe can use
the standard approach for generating non-primitive arguments: gerleean also as sequences of
method calls that may recursively require more sequences of method oasgmtually boil down
to methods that have only primitive values toifl ). (Note that this also handles mutually recursive
classes.) JCrasher [CS04] and Eclat [PEQ5] take a similar approawdthé solution is to trans-
form these arguments into reference-type symbolic variables and entensymbolic execution to
support heap operations on symbolic references. Concrete objprtseating these variables can
be generated by solving the constraints and setting the instance fieldsefsacton. However, the
collected constraints are often not sufficient to generate legal instanaelsich case an additional

object invariant is required.
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Table 4.2: Experimental results of test generation using Symstra and tbeet®state approach

Symstra Concrete-State Approach
class N time| stateg testy %cov time| stateg testy %cov
UBStack 5 0.95 22 43(5)] 92.3 4,98/ 656/ 1950(6) 92.3

6 4.38 30 67(6)| 100.0 31.83 3235 13734(7) 100.0
7 7.20 41 91(6)| 100.0| *269.68|*10735|*54176(7) *100.0
8 10.64 55| 124(6) 100.0 - - - -
IntStack 5 0.23 12 18(3)] 55.6 12.76 4836 5766(4) 55.6
6 042 16 24(4) 66.7 - - - -
7 0.50, 20 32(5)| 88.9| *689.02/*30080|*52480(5) *66.7
8 0.62 24 40(6)| 100.0 - - - -
BinSearchTree| 5 7.06 65| 350(15) 97.1 4.80 188| 1460(16) 97.1
6 28.53 197| 1274(16) 100.0 23.05 731 7188(17) 100.0
7 136.82 626/ 4706(16) 100.0 - - - -
8 | *317.76|/*1458|*8696(16) *100.0 - - - -
BinomialHeap | 5 1.39 6 40(13) 84.3 4.97 380 1320(12) 84.3
6 2.55 7 66(13) 84.3 50.92 3036/12168(12) 84.3
7 3.80 8| 86(15) 90.0 - - - -
8 8.85 9| 157(16) 914 - - - -
LinkedList 5 0.56 6 25(5)| 100.0| 32.61] 3906 8591(6) 100.0
6 0.66 7 33(5)| 100.0| *412.00] *9331|*20215(6) *100.0
7 0.78 8 42(5) 100.0 - - - -
8 0.95 9 52(5)| 100.0 - - - -
TreeMap 5 3.20 16| 114(29) 76.5 3.52 72| 560(31) 76.5
6 7.78 28| 260(35) 82.9 12.42 185| 2076(37) 82.9
7 19.45 59| 572(37) 84.1 41.89 537| 6580(39) 84.1
8 63.21 111| 1486(37) 84.1 - - - -
HeapArray 5 1.36 14 36(9) 75.9 3.75 664 1296(10) 75.9
6 259 20| 65(11) 89.7 - - - -
7 4.78 35| 109(13) 100.0 - - - -
8 11.20 54| 220(13) 100.0 - - - -
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Chapter 5

TEST SELECTION FOR INSPECTION

In practice, developers tend to write a relatively small number of unit tekishvin turn tend to
be useful but insufficient for high software quality assurance. Sanmatic test-generation tools,
such as Parasoft Jtest [Par03], attempt to fill the gaps not coveradybyanually generated unit
tests; these tools can automatically generate a large number of unit test inpuésdise the pro-
gram. However, there are often no expected outputs (oracles) fer dluesmatically generated test
inputs and the tools generally only check the program’s robustneskiobechether any uncaught
exception is thrown during test executions [KJS98, CS04]. Manualijyimy the outputs of such
a large number of test inputs requires intensive labor, which is usually atigath Unit-test selec-
tion is a means to address this problem by selecting the most valuable subisetotomatically
generated test inputs. Then programmers can inspect the executioissmfitih smaller set of test
inputs to check the correctness or robustness, and to add oracles.

If a priori specifications are provided with a program, the execution of automaticallgr-gen
ated test inputs can be checked against the specifications to determinerdogness. In addition,
specifications can guide test generation tools to generate test inputsxafople, the precondi-
tions in specifications can guide test generation tools to generate only validgets that satisfy
the preconditions [Par03, BKM02]. The postconditions in specificatiamsgtiide test generation
tools to generate test inputs to try to violate the postconditions, which are fqasiag test in-
puts [Par03, KAY96, Gup03]. Although specifications can bring us nimefits in testing, specifi-
cations often do not exist in practice.

We have developed theperational violationapproach: a black-box test generation and selec-
tion approach that does not requir@riori specifications. Amperational abstractiomescribes the
actual behavior during program execution of an existing unit test suNMEB8]. We use the gen-
erated operational abstractions to guide test generation tools, so thablhean more effectively

generate test inputs that violate these operational abstractions. If tbetiereof an automati-
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cally generated test input violates an operational abstraction, we setetetsthinput for inspection.
The key idea behind this approach is that the violating test exercises aeatwef of program
behavior that is not covered by the existing test suite. We have implementeaptitisach by in-
tegrating Daikon [ECGNO01] (a dynamic invariant detection tool) and the coniatiétarasoft Jtest
4.5 [Par03].

The next section describes the example that we use to illustrate our apprSackion 5.2
presents the operational violation approach. Section 5.3 describespbenesnts that we con-

ducted to assess the approach and then Section 5.4 concludes.

5.1 Example

This section presents an example to illustrate how programmers can usepoascpto test their
programs. The example is a Java implementati8Stack of a bounded stack that stores unique
elements of integer type. Figure 5.1 shows the class including several nietbledhentations that
we shall refer to in the rest of the chapter. Stotts et al. coded this Java imyibdioe to experiment
with their algebraic-specification-based approach for systematicallyirggeanit tests [SLA02];
they provided a web link to the full source code and associated test shiitdts et al. also specified
formal algebraic specifications for the bounded stack.

In the class implementation, the array fieléms contains the elements of the stack, and the
integer fieldnumberOfElements is the number of the elements and the index of the first free
location in the stack. The integer fietdax is the capacity of the stack. Th@p method simply
decreasesumberOfElements . Thetop method returns the element in the array with the index
of numberOfElements-1  if numberOfElements >= 0 . Otherwise, the method prints an error
message and returas as an error indicator. ThgetSize method returnaumberOfElements
Given an element, theMember method returngrue if it finds the same element in the subarray
of elems up tonumberOfElements , and returndalse otherwise.

Stotts et al. have created two unit test suites for this class: a basic JUIBJG&st suite (8
tests), in which one test method is generated for a public method in the targstatal a JAX test
suite (16 tests), in which one test method is generated for an axiaf&Stack 's algebraic specifi-

cations. The basic JUnit test suite does not expose any fault but dhe #\X test cases exposes
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public class UBStack {
private int[] elems;
private int numberOfElements;
private int max;
public UBStack() {
numberOfElements = 0;
max = 2;

elems = new i nt[max];

}
public void push(int k) { .. }
public void pop() { numberOfElements--; }

public int top() {

i f (numberOfElements < 1) {
Syst emout.printin("Empty Stack");
return -1,

} else {

return elems[numberOfElements-1];

}

public int getSize() { return numberOfElements; }
publ i ¢ bool ean isMember( int k) {
for(int index=0; index<numberOfElements; index++)
i f (k==elems[index])
return true;

return fal se;

Figure 5.1: TheuBStack program

one fault (handling aop operation on an empty stack incorrectly). In practice, programmers usu-
ally fix the faults exposed by the existing unit tests before they augment thiesinsuite. In this
example and for our analysis of our approach, instead of fixing thesexpfault, we remove this

fault-revealing test case from the JAX test suite to make all the existing & pass.
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5.2 Operational Violation Approach

In this work, the objective afinit-test selectiois to select the most valuable subset of automatically
generated tests for inspection and then use these selected tests to augneaistithg tests for a
program unit. More precisely, we want to select generated tests toisxerprogram unit’'s new
behavior that is not exercised by the existing tests. Since manual efi@tusred to verify the
results of selected test inputs, it is important to select a relatively small nuohbests. This is
different from the problems that traditional test selection techniqguesasld€R99, HMEO3]. In
those problems, there are test oracles for unselected test inputs.fofaéeselecting a relatively
large number of tests during selection is usually acceptable for those mstbet is not practical
in this work. More formally, the objective of unit-test selection in this contexbignswer the

following question as inexpensively as possible:

Problem. Given a program unit u, a set S of existing tests for u, and a test t from &' sgft
generated tests for u, does the execution of t exercise at least oneatare fihat is not exercised

by the execution of any test in S?

If the answer is yeg, is removed frons’ and put intcS. Otherwiset is removed frons’ and
discarded. In this work, the initial s8tcomprises the existing unit tests, which are usually manually
written. The seB’ of unselected tests is automatically generated tests.

The termfeatureis intentionally vague, since it can be defined in different ways. For elgrap
new feature could be fault-revealing behavior that does not occingiilire execution of the existing
tests. A new feature could be a predicate in the specifications for the IR&JIC A new feature
could be program behavior exhibited by executing a new structural esuitis, as statement, branch,
or def-use pair.

Our operational violation approach uses operational abstractions tactéidze program fea-
tures. Anoperational abstractions a collection of logical statements that abstract the program’s
runtime behavior [HMEOS3]. Itis syntactically identical to a formal specifiaatim contrast to a for-
mal specification, which expresses desired behavior, an operatimstedetion expresses observed
behavior. Daikon [ECGNO01], a dynamic invariant detection tool, can led trs infer operational
abstractions (also called invariants) from program executions of téessihese operational ab-

stractions are in the form of DbC annotations [Mey92, LBR98, ParO2jik@h examines variable
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values computed during executions and generalizes over these vallxaitoaperational abstrac-
tions. Like other dynamic analysis techniques, the quality of the test suitdsaffee quality of the
analysis. Deficient test suites or a subset of sufficient test suites nidnelpato infer a generaliz-
able program property. Nonetheless, operational abstractionseidfieam the executed test suites
constitute a summary of the test execution history. In other words, thetexexof the test suites

all satisfy the properties in the generated operational abstractions.

Our approach leverages an existing specification-based test gendoalito generate new tests
and selects those generated tests that violate the operational abstradtimes iffom the existing
tests. Our implementation uses Parasoft Jtest 4.5 [Par03]. Jtest can taatlyngenerate unit
tests for a Java class. When specifications are provided with the clags;allemake use of them
to perform black-box testing. The provided preconditions, postconditionclass invariants give
extra guidance to Jtest in its test generation. If the code has precondiiiesstries to generate
test inputs that satisfy all of them. If the code has postconditions, Jtestajes test inputs that
verify whether the code satisfies these conditions. If the code has clasmiris, Jtest generates
test inputs that try to make them fail. By default, Jtest tests each method byatiegerguments
for them and calling them independently. In other words, Jtest basicakythéecalling sequences
of length one by default. Tool users can set the length of calling seqaenche range of one to
three. If a calling sequence of length three is specified, Jtest first reglang sequences of length
one followed by all those of length two and three sequentially.

Section 5.2.1 next explains the basic technique of the approach. Secti@npBeBents the
precondition removal technique to complement the basic technique. Secti@ndgstribes the

iterative process of applying these techniques.

5.2.1 Basic technique

In the basic technique (Figure 5.2), we run the existing unit test suite orrdlgegon that is instru-
mented by the Daikon front end. The execution produces a data tracsHitshy contains variable
values computed during execution. Then we use Daikon to infer operbsibsizactions from the
data trace file. We extend the Daikon toolset to insert the operational etimtsainto the source

code as DbC annotations. We feed the resulting annotated code to Jtebtawtnimatically gener-
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Figure 5.2: An overview of the basic technique

ates and executes new tests. The two symptoms of an operational violatitwateae operational
abstraction is evaluated to kse , or that an exception is thrown while evaluating an operational
abstraction. When a certain number of operational violations have ecchafore Jtest exhausts
its testing repository, Jtest stops generating test inputs and reportsiop@raiolations. Jtest ex-
ports all the operational violations, including the violating test inputs, to a tlext fsiven the
exported text file, we automatically comment out the violated operational atistraiin the source
code. At the same time, we collect the operational violations. Then we intekeabain, which
is given the program with reduced operational abstractions. We rédpegateceding procedure it-
eratively until we cannot find any operational violations. We call thesatitars asnner iterations
to avoid their being confused with the iterations described in Section 5.2.3.infke iterations
mainly comprise the activities of Jtest’s test generation and execution, dietason report, and
our violated-operational-abstraction collection and removal. These inmatigtes enable Jtest to

fully generate violating tests.

Given the collected operational violations, we select the first encouhtesefor each violated
operational abstraction. So when there are multiple tests that violate the samatamal abstrac-

tion, we select only the first encountered one instead of all of them. Sisekeeted violating test
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might violate multiple operational abstractions, we group together all of theatbpeal abstractions
violated by the same test. Then we sort the selected violating tests based amther of their vi-

olated operational abstractions. We put the tests that violate more opelratisiractions before
those that violate fewer ones. The heuristic behind this is that a test thaesgiotre operational
abstractions might be more valuable than a test that violates fewer onen.pifggammers cannot

afford to inspect all violating tests, they can inspect just the top parts qirtbetized tests.

We finally produce a JUnit [GBO03] test class, which contains the sortedfligblating test in-
puts as well as their violated operational abstractions. We developedfargeqgration tools in Perl
to fully automate the preceding steps, including invoking Daikon and Jtesp@stdrocessing the
text file. After running the integration tools, programmers can then execusmect the resulting
sorted tests to verify the correctness of their executions. Optionallytgrogers can add assertions

for the test inputs as test oracles for regression testing.

One example of operational violations is shown in Figure 5.3. The exampleatedia defi-
ciency of the JAX test suite. The top part of Figure 5.3 shows two reld¢eats (JAX Tests 1 and 2)
used for inferring thésMember method’s two violated postconditionasGertTrue  in the tests is
JUnit’s built-in assertion method). The postconditions are followed by thetingléest input gen-
erated by Jtest. In the postconditio@yost is used to denote postconditions. Tipee keyword is
used to refer to the value of an expression immediately before calling the méteayntax to use
$pre is $pre(expressionType, expression) . Thes$result keyword is used to represent

the return value of the method.

The violated postconditions show the following behavior exhibited by the egittits:

e TheisMember(3) method is invoked iff its return value taue .

e TheisMember(3) method is invoked iff th@umberOfElements  (after the method invoca-

tion) is 1.

The test input of invokingsMember(3) method on an empty stack violates these two ungeneral-

izable postconditions.
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JAX Test 1:
UBStack stack = new UBStack();
assertTrue(!stack.isMember(2));
JAX Test 2:
UBStack stackl = new UBStack();
UBStack stack2 = new UBStack();
stackl.push(3);
assertTrue(stackl.isMember(3));
stackl.push(2);
stackl.push(l);//because max is 2, this push cannot put 1 in to stackl
stack2.push(3);
stack2.push(2);
/lthe following assertion makes sure 1 is not in stackl

assertTrue(stackl.isMember(1l) == stack2.isMember(1));

Inferred postconditions for isMember:
@post: [($pre(int, k) == 3) == ($result == true)]
@post: [($pre(int, k) == 3) == (this.numberOfElements == 1) ]

Violating Jtest-generated test input:

UBStack THIS = new UBStack ();
boolean RETVAL = THIS.isMember (3);

Figure 5.3: An example of operational violations using the basic technique

5.2.2 Precondition removal technique

In the basic technique, when the existing test suite is deficient, the infereedrglitions might
be overconstrained so that Jtest filters out valid test inputs during testagmn and execution.
However, we often need to exercise the unit under more circumstanaesviiz is constrained
by the inferred overconstrained preconditions. To address thistebei® feed the annotated code
to Jtest, we use a script to automatically remove all inferred preconditiodsywarthus enable
Jtest to exercise the unit under a broader variety of test inputs. IncEadving preconditions can
make test generation tools less guided, especially those tools that genstat@daily based on
preconditions [BKMO02]. Another issue with this technique is that removingrietl preconditions
allows test generation tools to generate invalid test inputs if some values oamgtar type are

invalid.
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Figure 5.4 shows one example of operational violations and the use of thisqae.@invariant
is used to denote class invariants. The example indicates a deficiency @fsibelbnit test suite,
and the violating test exposes the fault detected by the original JAX test Jiiteviolated post-

conditions and invariant show the following behavior exhibited by the exiséisis:

e After the invocation of thepop() method, the element on top of the stack is equal to the

element on the second to top of the stack before the method invocation.

e After the invocation of th@op() method, themumberOfElements is equal ta0 or 1.

¢ In the entries and exits of all the public methods, thenberOfElements  is equal to0, 1,

or2.

Since the capacity of the stack2s the inferred behavior seems to be normal and consistent
with our expectation. Jtest generates a test that invpépg§ on an empty stack. In the exit of
the pop() method, thenumberOfElements is equal to-1 . This value causes the evaluation of
the first postcondition to throw an exception, and the evaluation of the dgustcondition or the
invariant to get théalse value. By looking into the specifications [SLA02] foBStack , we can
know that the implementation does not appropriately handle the case wherepthe method is
invoked on an empty stack; the specifications specify that the empty stadkl shaintain the same
empty state when theop() method is invoked.

The example in Figure 5.5 shows a deficiency of the JAX test suite, and thé&mptest exposes
another new fault. This fault is not reported in the original experimenA[&]. The inferred
postcondition states that the method return is equal tdf the numberOfElements  is equal to
0. The code implementer uses as the error indicator for calling thep() method on an empty
stack instead of atopEmptyStack  exception specified by the specifications [SLA02] . According
to the specifications, this stack should also accommodate negative integentstdirie operational
violation shows that usingl as an error indicator makes tktmp method work incorrectly when
the-1 element is put on top of the stack. This is a typical value-sensitive faulesed a full-
path-coverage test suite cannot guarantee to expose this fault. Tibédahmique does not report
this violation because of the overconstrained preconditions. The exisstgyash only positive

integers into the stack, so Daikon infers several preconditions falothanethod, which prevent
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Basic JUnit Test 1:
UBStack stack = new UBStack();
stack.push(3);
stack.pop();
Basic JUnit Test 2:
UBStack stack = new UBStack();
stack.push(3);
stack.push(2);
stack.pop();

Inferred postconditions for pop:
@post: [( this.elems[this.numberOfElements] ==
this.elems[$pre(int, this.numberOfElements)-1] )]
@post: [this.numberOfElements == 0 ||
this.numberOfElements == 1]

Inferred class invariant for UBStack:

@invariant: [this.numberOfElements == 0 ||
this.numberOfElements == 1 ||
this.numberOfElements == 2]

Violating Jtest-generated test input:
UBStack THIS = new UBStack ();
THIS.pop ();

Figure 5.4: The first example of operational violations using the precondiimoval technique

the-1 element from being on top of the stack. One such precondition is:
@pre: for (int i = 0 ; i <= this.elems.length-1; i++)
$assert ((this.elems[i] >= 0));
where@pre is used to denote a precondition ebabsert is used to denote an assertion statement

within the loop body. Both the loop and the assertion statement form the glioan

5.2.3 lterations

After we perform the test selection using the techniques in Sections 5.28. 2a8dwe can further
run all the violating tests together with the existing ones to infer new operatidistilactions. By

doing so, we can automatically remove or weaken the operational abstragbtated by the vi-
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JAX Test 3:
UBStack stack = new UBStack();
stack.push(3);
stack.push(2);
stack.pop();
stack.pop();
stack.push(3);
stack.push(2);
int oldTop = stack.top();

JAX Test 4:
UBStack stack = new UBStack();
assertTrue(stack.top() == -1);

JAX Test 5:
UBStack stackl = new UBStack();
UBStack stack2 = new UBStack();
stackl.push(3);
assertTrue(stackl.top() == 3);
stackl.push(2);
stackl.push(1);
stack2.push(3);
stack2.push(2);
assertTrue(stackl.top() == stack2.top());
stackl.push(3);
assertTrue(stackl.top() == 3);

Inferred postcondition for top:
@post: [($result == -1) == (this.numberOfElements == 0)]

Violating Jtest-generated test input:
UBStack THIS = new UBStack ();
THIS.push (-1);
int RETVAL = THIS.top ();

Figure 5.5: The second example of operational violations using the piiticorremoval technique

olating tests. Based on the new operational abstractions, Jtest mighaigenew violating tests
for the weakened or other new operational abstractions. We repeptdbess described in Sec-
tions 5.2.1 and 5.2.2 until there are no reported operational violations orth@tilser-specified

maximum number of iterations has been reached. We call these iterationgeagterations Dif-



86

(1st iteration)
Inferred postcondition for isMember:

@post: [($result == true) == (this.numberOfElements == 1)]

Violating Jtest-generated test input:
UBStack THIS = new UBStack ();
THIS.top ();

THIS.push (2);
boolean RETVAL = THIS.isMember (1);

(2nd iteration)
Inferred postcondition for isMember:

@post:[($result == true) $implies (this.numberOfElement s == 1)]

Violating Jtest-generated test input:
UBStack THIS = new UBStack ();
THIS.push (2);

THIS.push (0);
boolean RETVAL = THIS.isMember (0);

Figure 5.6: Operational violations during iterations

ferent from the inner iterations described in Section 5.2.1, these outdrateraperate in a larger
scale. They mainly comprise the activities of the existing tests’ execution, Baikperational-
abstraction generation, our DbC annotation insertion, the inner iteratioth®ua test selection and
augmentation. We have used a script to automate the outer iterations. Inttbetheschapter, for

the sake of brevity, iterations will refer to outer iterations by default.

Figure 5.6 shows two operational violations during the first and secoratittes on the JAX
test suite. The JAX test suite exhibits that the return ofisMember() method istrue iff the
numberOfElements  after the method execution is equal o In the first iteration, a violating
test shows that if theaumberOfElements  after the method execution is equalitpthe return of
theisMember() method is not necessarityue (it can befalse ). After the first iteration, we
add this violating test to the existing test suite. In the second iteration, with threesuigd test
suite, Daikon infers an updated postcondition by weakeningthgredicate (meaning iff o&) to

the $implies  predicate (meaning>). The updated postcondition shows that if the return of the
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isMember() method istrue , thenumberOfElements after the method execution is equalito
In the second iteration, another violating test shows that if the return ofNtenber() method
is true , thenumberOfElements  after the method execution is not necessarily equal (ib can
be equal t@). After the second iteration, we add this violating test to the existing test suite. |
the third iteration, Daikon eliminates thfimplies  predicate since Daikon does not observe any

correlation between the return of teember() method and thaumberOfElements

5.3 Evaluation

Testing is used not only for finding bugs but also for increasing oufid@mce in the code under test.
For example, generating and selecting tests for achieving better struziveshge can increase our
confidence in the code although they do not find bugs; indeed, thesededte used as regression
tests executed on later versions for detecting regression bugs. Altloamgtpproach tries to fill
gaps in the existing test suite or to identify its weakness in order to improve its goalitgpproach
does not intend to be considered as a general approach for gegenadirselecting tests (based on
the current program version) to increase the existing test suite’s tiaspabexposing future arbi-
trarily introduced bugs (on future program versions) during prograaimtenance. Therefore, when
we designed our experiments for assessing the approach, we dicermattetion testing [BDLS80]
to measure the capability of the selected tests in finding arbitrary bugs inedjelmstead, we con-
ducted experiments to primarily measure the capability of the selected testsafimg\aomalous
behavior on the real code, such as revealing a fault in terms of coesecor a failure in terms of
robustness. We do not distinguish these two types of anomalous behewéurde in the absence of
specifications we often could not distinguish these two cases preciselgx&mple, the violating
tests shown in Figure 5.4 and Figure 5.5 would have been consideredatid begts for reveal-
ing failures if the actual precondition fpop() were(this.numberOfElements > 0) and the
actual precondition fopush(int k) were(k >= 0) ; however, these two tests are valid fault-
revealing tests based @BStack 's specifications [SLA02]. Indeed, we could try to hand-construct
specifications for these programs; however, the code implementation anmdesds for these pro-
grams alone are not sufficient for us to recover the specificationsdiedly preconditions) easily

and we do not have easy access to the program intentions originally gesidiade authors’ mind.
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Note that if a selected test does not expose anomalous behavior, it mighrtcstile value in filling
gaps in the existing test suite. However, in the absence of specificatiormyld be too subjective
in judging these tests in terms of providing value; therefore, we did nobperéuch a subjective
judgement in our experiments.

In particular, the general questions we wish to answer include:

1. Is the number of automatically generated tests large enough for prograrmalopt unit-

test selection techniques?

2. Is the number of tests selected by our approach small enough forapromrs to inspect
affordably?

3. Do the tests selected by our approach have a high probability of egparsimalous program

behavior?

4. Do the operational abstractions guide test generation tools to betteatpetests for violating

the operational abstractions?

We cannot answer all of these questions easily, so we designed experitmayive an initial
sense of the general questions of efficacy of this approach. Initie&miang of this section, we first
describe the measurements in the experiments. We then present the expiasimeamentation. We

finally describe the experimental results and threats to validity.

5.3.1 Measurements

In particular, we collected the following measurements to address thes@qsetirectly or indi-

rectly:

e Automatically generated test count in the absence of any operationa&hmsir¢AutoT ):
We measured the number of tests automatically generated by Jtest alone iseheeatif any
operational abstraction. We call these testaraguided-generated testEhis measurement is

related to the first question.

e Selected test count$elT ): We measured the number of the tests selected by a test selection

technique. This measurement is related to the second question, as welf@sgtheuestion.
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¢ Anomaly-revealing selected test cou\RT): We measured the number of anomaly-revealing
tests among the selected tests. These anomaly-revealing tests expose aspnogiam be-
havior (related to either faults in terms of correctness or failures in ternabasiness). After
all the iterations terminate, we manually inspect the selected tests, violated mubstets,
and the source code to determine the anomaly-revealing tests. Althoughsbeeliction
mechanism described in Section 5.2.1 guarantees that no two selected teststiensame
set of postconditions, multiple anomaly-revealing tests might suggest the sacwagition
or expose the same fault in different ways. This measurement is relatesl tturth question,

as well as the fourth question.

We collected thetAutoT measurement for each subject program. We collected$k and
#ART measurements for each combination of the basic/precondition removal teebngubject
programs, and number of iterations. These measurements help answest tieee questions.

To help answer the fourth question, we used Jtest alone to produceledgyenerated tests,
then ran the unguided-generated tests, and check them against thttiondabstractions (keeping
the preconditions) generated from the existing tests. We selected thosieleshgenerated tests
that satisfied preconditions and violated postconditions. We then collectetSéiie and#ART
measurements for each subject program, and compared the measureitienti® vwwnes for the
basic technique.

In addition, we used Jtest alone to produce unguided-generated testgaththe unguided-
generated tests, and check them against the operational abstraaioosi(rg the preconditions)
generated from the existing tests. We selected those unguided-gertesitethat violated post-
conditions. We then collected thSelT and#ART measurements for each subject program, and

compared the measurements with the ones for the precondition removal tezhniq

5.3.2 Experiment instrumentation

Table 5.1 lists the subject programs that we used in the experiments. Egebtgrbgram is a
Java class equipped with a manually written unit test suite. The first colunwssih@ names
of the subject programs. The second and third columns show the numpeblaf methods, and

the number of lines of executable code for each program, respectivety/fourth column shows
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Table 5.1: Subject programs used in the experiments.

program #pmethod| #loc | #tests| #AutoT | #EXT
UB-Stack(JUnit) 11 47 8 96 1
UB-Stack(JAX) 11| 47 15 96 1
RatPoly-1 13| 161 24 223 1
RatPoly-2 13| 191 24 227 1
RatPolyStack-1 13 48 11 128 4
RatPolyStack-2 12 40 11 90 3
BinaryHeap 10 31 14 166 2
BinarySearchTree 16 50 15 147 0
DisjSets 4 11 3 24 4
QueueAr 7 27 11 120 1
StackAr 8 20 16 133 1
StackLi 9 21 16 99 0

the number of test cases in the test suite of each program. The last two cguesesnt some

measurement results that we shall describe in Section 5.3.3.

Among these subjectsB-Stack(JUnit) andUB-Stack(JAX) are the example (Section 5.1)
with the basic JUnit test suite and the JAX test suite (with one failing test refovesbec-
tively [SLAO2]. RatPoly-1 /RatPoly-2 andRatPolyStack-1 /RatPolyStack-2  are the stu-
dent solutions to two assignments in a programming course at MIT. Thesteskedlutions passed
all the unit tests provided by instructors. The rest of the subjects comredrdata structures text-
book [Wei99]. Daikon group members developed unit tests for 10 dataetgteuclasses in the
textbook. Most of these unit tests use random inputs to extensivelyigxeéhe programs. We ap-
plied our approach on these classes, and five classes (the last fieeesictlof Table 5.1) have at

least one operational violation.

In the experiments, we used Daikon and Jtest to implement our approactiewaleped a set
of Perl scripts to integrate these two tools. In Jtest’s configuration fordperenents, we set the
length of calling sequence as two. We used Daikon'’s default configarftiadhe generation of op-

erational abstractions except that we turned on the inference of caraitivariants. In particular,
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we first ran Jtest on each subject program to collectttheoT measurement in the absence of any
operational abstraction. We exported the unguided-generated testcfoprogram to a JUnit test
class. Then for each program, we conducted the experiment usingdilcadizhnique, and repeated

it until we reached the third iteration or until no operational violations wepented for the opera-
tional abstractions generated from the previous iteration. At the endchfitaation, we collected
the#SelT and#ARTmeasurements. We performed a similar procedure for the preconditionaemov

technique.

5.3.3 Experimental results

The fifth column of Table 5.1 shows tlutoT results. From the results, we observed that except
for the especially smalbisjSets  program, Jtest automatically generated nearly 100 or more tests.
We also tried setting the length of the calling sequence to three, which cawestdalproduce
thousands of tests for the programs. This shows that we need test setectiniques since it is not
practical to manually check the outputs of all these automatically generated tests

The last column#ExT) of Table 5.1 shows the number of the automatically generated tests that
cause uncaught runtime exceptions. In the experiments, since all theleztiosy methods under
comparison additionally select this type of tests,#8elT and#ART measurements do not count
them for the sake of better comparison.

Table 5.2 and Table 5.3 show th&elT and#ART measurements for the basic technique and
the precondition removal technique, respectively. In either tableit¢hation 1, iteration 2 and
iteration 3columns show the results for three iterations. In Table 5.2utfgriidedcolumn shows
the results for selecting unguided-generated tests that satisfy precogditid violate postcondi-
tions. In Table 5.3, thenguidedcolumn shows the results for selecting unguided-generated tests
that violate postconditions (no matter whether they satisfy preconditionsjthier table, for those
#SelT with the value of zero, their entries and their associat®dT entries are left blank. The
bottom two rows of either table show the median and average percentag@RTdmong#SelT .

In the calculation of the median or average percentage, the entries w#ti® value of zero are

not included.

The numbers of tests selected by both techniques vary across diffeoginams but on average
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Table 5.2: The numbers of selected tests and anomaly-revealing seletsadsieg the basic tech-
nique for each iteration and the unguided-generated tests

program iteration 1 iteration 2 iteration 3 unguided
#SelT #ART | #SelT #ART | #SelT #ART | #SelT #ART

UB-Stack(JUnit) 1 0 2 0
UB-Stack(JAX) 3 0
RatPoly-1 2 2
RatPoly-2 1 1 1 1
RatPolyStack-1
RatPolyStack-2 1 0
BinaryHeap 3 2 1 0 2 2
BinarySearchTree
DisjSets 1 1 1 1
QueueAr 6 1 2 1
StackAr 5 1 1 0 1 1
StackLi

mediang¢ART#SelT ) 20% 0% 0% 100%

averagefART/#SelT ) 45% 25% 0% 88%

their numbers are not large, so their executions and outputs could bederith affordable human
effort. The basic technique selects fewer tests than the precondition akteotanique. This is

consistent with our hypothesis that the basic technique might overconstsdigeneration tools.
We observed that the number of tests selected by either technique is highethehnumber of

tests selected by checking unguided-generated tests against opéetigirections. This indicates
that operational abstractions guide Jtest to better generate tests to viotate $pecifically, the

precondition removal technique gives more guidance to Jtest for demeaaomaly-revealing tests
than the basic technique. There are only two subjects for which the bakitiqae generates
anomaly-revealing tests but Jtest alone does not generate any (shdablén5.2); however, the
precondition removal technique generates more anomaly-revealing tastdtéisa alone for most

subjects (shown in Table 5.3).

We observed that, in the experiments, the selected tests by either technigw@ehtigh probabil-

ity of exposing anomalous program behavior. In the absence of spéicifis, we suspect that many
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Table 5.3: The numbers of selected tests and anomaly-revealing seletder$ileg the precondition
removal technique for each iteration and the unguided-generated tests

program iteration 1 iteration 2 iteration 3 unguided
#SelT #ART | #SelT #ART | #SelT #ART | #SelT #ART
UB-Stack(JUnit) 15 5 6 1 1 0 4 1
UB-Stack(JAX) 25 9 4 0 3 1
RatPoly-1 1 1
RatPoly-2 1 1 1 1
RatPolyStack-1 12 8 5 2 1 0
RatPolyStack-2 10 7 2 0
BinaryHeap 8 6 8 6 6 0 4 3
BinarySearchTree 3 3 1 1
DisjSets 2 2 1 1
QueueAr 11 1 4 1 4 1
StackAr 9 1 1 0 1 1
StackLi 2 0 1 0
mediang¢ART/#SelT ) 68% 17% 0% 75%
averagefART/#SelT ) 58% 22% 0% 62%

of these anomaly-revealing tests are failure-revealing test inputs; pmogges can add precondi-
tions, condition-checking code, or just pay attention to the undesirabkvimetwhen the code’s

implicit assumptions are not written down.

We describe a concrete case for operational violations in the experinsdotoas. RatPoly-1
andRatPoly-2 are two student solutions to an assignment of implemematgoly , which rep-
resents an immutable single-variate polynomial expression, sudh as: — 107, and “z> — 2 *

z? + 53 % 2 + 3”. In RatPoly ’s class interface, there is a methdit for RatPoly ’s division
operation, which invokes another methiejree ; degree returns the largest exponent with a non-
zero coefficient, or O if th®atPoly is “0”. After we ran with Daikon the instructor-provided test
suite on botiRatPoly-1  andRatPoly-2 , we got the same DbC annotations for both student solu-
tions. The precondition removal technique selects one violating test forstadent solution. The
selected violating test fdRatPoly-1 is different from the one foRatPoly-2 ; this result shows

that Jtest takes the code implementation into account when generating testatthie given DbC
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Inferred postcondition for degree:

$result >= 0

Violating Jtest-generated test input (for RatPoly-1):
RatPoly t0 = new RatPoly(-1, -1);//represents -1*x"-1
RatPoly THIS = new RatPoly (-1, 0);//represents -1*x"0
RatPoly RETVAL = THIS.div (t0);//represents (-1*x"0)/(-1 *x-1)

Violating Jtest-generated test input (for RatPoly-2):
RatPoly t0 = new RatPoly(1, 0);//represents 1*x°0
RatPoly THIS = new RatPoly (1, -1);//represents 1*x™-1
RatPoly RETVAL = THIS.div (t0);//represents (1*x™-1)/(1* x"0)

Figure 5.7: Operational violations f®atPoly-1 /RatPoly-2

annotations. The selected test fatPoly-1  makes the program infinitely loop until a Java out-
of-memory error occurs and the selected testRatPoly-2  runs normally with termination and
without throwing exceptions. These tests are not generated by Jteswathout being guided with
operational abstractions. After inspecting the code and its comments, we tlnatrthese selected
tests are invalid, because there is a preconddion= 0 for RatPoly(int ¢, int €) . This case
shows that the operational abstraction approach can help generatpttsto crash a program and

then programmers can improve their code’s robustness when specificateabsent.

We observed that although those non-anomaly-revealing selected tewis elqpose any fault,
most of them represent some special class of inputs, and thus may bbleafuselected for re-
gression testing. We observed, in the experiments, that a couple of iteratemood enough in
our approach. Jtest’s test generation and execution time dominates tirgrtime of applying our
approach. Most subjects took several minutes, buBthayHeap andRatPolyStack programs
took on the order of 10 to 20 minutes. We expect that the execution time captib@zed if fu-
ture versions of Jtest can better support the resumption of test genesatioexecution after we

comment out the violated operational abstractions.
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5.3.4 Threats to validity

The threats to external validity primarily include the degree to which integratedghrty tools, the
subject programs, and test cases are representative of true prattise threats could be reduced
by more experiments on wider types of subjects and third-party tools. d¥adéesst 4.5 is one of
the testing tools popularly used in industry and the only specification-basedegeration tool
available to us at the moment. Daikon is the only publicly available tool for géngraperational
abstractions. Daikon’s scalability has recently been tackled by usingnectal algorithms for
invariant detection [PE04]. In our approach, we use Daikon to infarriaats based on only manual
tests in addition to selected violating tests; the size of these tests is often smallvefodtest 4.5
is not designed for being used in an iterative way; if some operationatbaliens can be violated,
we observed that the number of inner iterations can be more than a dozeheaalapsed time
could be longer than five minutes for some subjects. We expect that thdibtalaf Jtest in
our setting could be addressed by enhancing it to support incrementgetesration when DbC
annotations are being changed. Furthermore, the elapsed time for Jtstistjenieration can be
reduced by enhancing it to avoid generating redundant tests (desoribdapter 4). Alternatively
we can use other specification-based tools with more efficient mechanistastfgeneration, such
as Korat [BKMO02].

We mainly used data structures as our subject programs and the progearetatvely small
(the scalability of Jtest 4.5 poses difficulties for us to try large subjectsndiigt that this is not
the inherent limitation of our approach but the limitation of one particular implementafiour
approach). Although data structures are better suited to the use of imvaeizction and design-
by-contract specifications, Daikon has been used on wider typesgifgms [DaiO4]. The success
of our approach on wider types of programs also depends on thelyinddesting tool’'s capabil-
ity of generating test inputs to violate specifications if there exist violating testsn We expect
that the potential of our approach for wider types of programs couldutiber improved if we
use specification-based testing tools with more powerful test generafpabitty, such as Ko-

rat [BKMO02], CnC [CSO05], and our Symstra tool presented in Chapter 4

The main threats to internal validity include instrumentation effects that can brasesults.

Faults in our integration scripts, Jtest, or Daikon might cause such effecteduce these threats,
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we manually inspected the intermediate results of most program subjects. Timehngats to
construct validity include the uses of those measurements in our experimassess our approach.
We measured the number of anomaly-revealing tests to evaluate the vallectédéests. In future

work, we plan to measure some other possible attributes of the selected tests.

5.4 Conclusion

Selecting automatically generated test inputs to check correctness andnaulgenexisting unit
test suite is an important step in unit testing. Inferred operational abstractat as a summary of
the existing test execution history. These operational abstractions whntgst generation tools to
better produce test inputs to violate the abstractions. We have developegettational violation
approach for selecting generated tests that violate operational abstsattiese selected violating
tests are good candidates for inspection, since they exercise newapréeatures that are not cov-
ered by the existing tests. We have conducted experiments on applyingpittaelp on a set of
data structures. Our experimental results have shown that the size efeéhted tests is reasonably
small for inspection, the selected tests generally expose new interestiagidretiiling the gaps
not covered by the existing test suite, and the selected tests have a higihifitplof exposing
anomalous program behavior (either faults or failures) in the code.

Our approach shows a feedback loop between behavior infereddesigeneration. The feed-
back loop starts with existing tests (constructed manually or automatically) or existang pro-
gram runs. After running the existing tests, a behavior inference taoinfar program behavior
exercised by the existing tests. The inferred behavior can be exploitaddst-generation tool in
guiding its test generation, which generates new tests to exercise newdret&ome generated
tests may violate the inferred proprieties (the form of the inferred behaiakthese violating tests
are selected for inspection. Furthermore, these selected tests ard@tuedxisting tests. The ex-
isting tests augmented by the new selected tests can be used by the behakémcmtool to infer
behavior that is closer to what shall be described by a specification (ifriaisually constructed)
than the behavior inferred from the original existing tests. The new addyehavior can be further
used to guide test generation in the subsequent iteration. Iterations termoniiaie user-defined

maximum iteration number has been reached or no new behavior has beeedrifom new tests.
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This feedback loop provides a means to producing better tests and begttexiagated specifica-
tions automatically and incrementally. The feedback loop not only allows usitobgaefits of

specification-based testing in the absence of specifications, but al¢estacke issue of dynamic
behavior inference: the quality of the analysis results (inferred behavéavily depends on the

quality of the executed tests.
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Chapter 6

TEST ABSTRACTION FOR INSPECTION

Automatic test-generation tools can generate a large number of tests fos.awltsout a prior
specifications, developers usually rely on uncaught exceptions ardngge execution of generated
tests to determine program correctness. However, relying on only ghttexiceptions for catching
bugs is limited and inspecting the execution of a large number of generatedstésisractical.
The operational violation approach presented in Chapter 5 selects et sfiltggenerated tests for
inspection; these selected tests exhibit new behavior that has not bereised by the existing
tests. In this chapter, we present thieserver abstractiomapproach that abstracts and summarizes
the object-state-transition information collected from the execution of gektests. Instead of
inspecting the execution of individual tests, developers can inspecuthmarized object-state-
transition information for various purposes. For example, developeresspect the information to
determine whether the class under test exhibits expected behavior. Penget@n also inspect the
information to investigate causes of the failures exhibited by uncaughpsus. Developers can
inspect the information for achieving better understanding of the class test or even the tests
themselves.

From the execution of tests, we can construct an object state machine){@Stdte in an OSM
represents the state that an object is in at runtime. A transition in an OSMeapsenethod calls
invoked through the class interface transiting the object from one statetiosginStates in an OSM
can be represented by using concrete or abstract representatéoninete-state representatiof
an object, in short asoncrete object stajés characterized by the values of all the fields transitively
reachable from the object (described in Section 3.2.2 of Chapter 3).nérete OSM is an OSM
whose states are concrete object states. Because a concrete OSM imoftemplicated to be
useful for understanding, we extract an abstract OSM that contagtisaat states instead of concrete
states. Arabstract stateof an object is defined by aabstraction functiofLGO00Q]; the abstraction

function maps each concrete state to an abstract state. Our obseivactasapproach defines
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abstraction functions automatically by usingabservey which is a public method with a non-void
return! In particular, the observer abstraction approach abstracts a conbjet# state exercised
by tests based on the return values of a set of observers that aredneakthe concrete object
state. Anobserver abstractiois an OSM whose states are represented by abstract representations
that are produced based on observers. We have implemented a tool Qiadied, for the observer
abstraction approach. Given a Java class and its initial unit test (eitherafhanonstructed or
auotmatically generated), Obstra identifies concrete object states eddrgite tests and generates
new tests to augment these initial tests. Based on the return values of alss¢nfers, Obstra maps
each concrete object state to an abstract state and constructs an OSM.

The next section describes the example that we use to illustrate our appr8action 6.2
presents the observer abstraction approach. Section 6.3 descritmgetiences of applying the

approach on several data structures and then Section 6.4 concludes.

6.1 Example

We use a binary search tree implementation as a running example to illustratesewer abstrac-
tion approach. Figure 6.1 shows the relevant parts of the code. Thehaas246 non-comment,
non-blank lines of code and its interface includes eight public methods ftheim are observers),
some of which are a constructor (denotediig() ), boolean contains(Mylnput info) ,
void add(Mylnput info) , andboolean remove (Mylnput info) . The MyInput argu-
ment type contains an integer field which is set through the class constructdyinput imple-
ments theComparable interface and twaMylnput are compared based on the values of their

fields. Parasoft Jtest 4.5 [Par03] generates 277 tests for the class.

6.2 Observer Abstraction Approach

We first discuss the test argumentation technique that enables the dynaraatien of observer

abstractions (Section 6.2.1). We next describe object state machineg theirepresentations of

we follow the definition by Henkel and Diwan [HDO03]. The definition différsm the more common definition that
limits an observer to methods that do not change any state. We havetfmirstiate-modifying observers also provide
value in our approach and state modification does not harm our approac
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class BST inplenents Set {
Node root;

static class Node {

M1l nput info;
Node left;
Node right;
}
public void add( Myl nput info) {
if (oot == null) { root = new Node(); root.info = info; }
el se {
Node t = root;
while (true) {
i f (tinfo.compareTo(info) < 0) { .. }
el se if (t.value.compareTo(info) > 0) { .. }
el se { /* no duplicates*/ return; }
}
}
}
public bool ean remove( Myl nput info) {
Node parent = null; Node current = root;
whi | e (current != null) {
i f (info.compareTo(current.info) < 0) { .. }
el se if (info.compareTo(current.info) > 0) { .. }

el se { break; }
}

if (current == null) return fal se;
return true;

}

public bool ean contains( Ml nput info) { .. }

Figure 6.1: A set implemented as a binary search tree

observer abstractions (Section 6.2.2). We then define observerdilostsaand illustrate dynamic

extraction of them (Section 6.2.3).
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6.2.1 Test Augmentation

We use the WholeState technique to represent the concrete state of dri®bjtion 3.2.2 of Chap-
ter 3). The technique represents timcrete object statef an object as the heap rooted from the
object; the rooted heap is further linearized to a sequence of the valube Gélds transitively
reachable from the object. Two concrete object states are equivdldmiifrooted heaps are iso-
morphic. A set ofnonequivalent concrete object statmntain concrete object states any two of
which are not equivalent. fmethod-argument state characterized by a method and the values for
the method arguments (Section 4.2 of Chapter 4). Two method-argumentas&eguivalent iff
their methods are the same and the heaps rooted from their method arguraesasnarphic. A set

of nonequivalent method-argument statestain method-argument states any two of which are not

equivalent.

After we execute an initial test suite, the WholeState technique identifies adbjnomlent ob-
ject states and nonequivalent method-argument states that were exdrgithe test suite. We then
apply the test augmentation technique that generates new tests to exechigpossible combina-
tion of nonequivalent object states and nonequivalent non-cotatmnethod-argument states. A
combination of a receiver-object state and a method-argument state fonethad invocation. We
augment the initial test suite because the test suite might not invoke eachiestiseall nonequiv-
alent object states; invoking observers on a concrete object stateeissaeg for us to know the
abstract state that encloses the concrete object state. The augmengaddeagpiarantees the invo-
cation of each nonequivalent non-constructor method-argument stat@ch nonequivalent object
state at least once. In addition, the observer abstractions extraatethiE@ugmented test suite can
better help developers to inspect object-state-transition behavior. Thdesdtypf the test aug-
mentation algorithm i€ (|C'S| x |MC|), whereC'S is the set of the nonequivalent concrete states
exercised by the initial test suifg for the class under test arld C' is the set of the nonequivalent

method calls exercised L.
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6.2.2 Object State Machine

We define an object state machine for a cfass:

Definition 16. An object state machinBOSM) M of a classc is a sextupleM = (I, O, S, 9,

A, INIT) wherel, O, and S are nonempty sets of method callscia interface, returns of these
method calls, and states @6 objects, respective . NIT € S is the initial state that the machine
is in before calling any constructor method©fs : S x I — P(S) is the state transition function
and\ : S x I — P(O) is the output function wherB(S) and P(O) are the power sets of S and O,
respectively. When the machine is in a current staa@d receives a method calfrom 7, it moves

to one of the next states specifiedy, ) and produces one of the method returns giveny).

In the definition, amethod callis characterized by a method-argument state (a method and
the arguments used to invoke the method), not including the receivertaigeée. A method call
together with a receiver-object state affects the behavior of a methodaition. When a method
call in a class interface is invoked on a receiver-object state, an ghtaxception might be thrown.

To represent the state where an object is in after an exception-throwithgdneall, we introduce
a special type of states in an OSkkception statesAfter a method call on a receiver-object state
throws an uncaught exception, the receiver object is in an exceptimnref@mesented by the type
name of the exception. The exception-throwing method call transits the dfgjecthe object state

before the method call to the exception state.

6.2.3 Observer Abstractions

The object states in an OSM can be concrete or abstract. The obdestraction approach automat-
ically constructs abstraction functions to map a concrete state to an ab&ttaciitiese abstraction
functions are defined based on observers. We first define anveb$eltowing previous work on

specifying algebraic specifications for a class [HDO3]:

Definition 17. Anobserverof a classc is a methowb in ¢'s interface such that the return type of

ob is not void.

2The definition is adapted from the definition of finite state machine [LY98jéwer, an object state machine is not
necessarily finite.
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For example BSTs observers includéoolean contains(Myinput info) andboolean
remove (Mylnput info) but [init]() andvoid add(MylInput info) are not observers.

An observer call is a method call whose method is an observer. Giversaccnd a set
of observer callDB = {oby,0ba, ...,0b, } of ¢, the observer abstraction approach constructs an
abstraction of: with respect ta) B. In particular, a concrete state is mapped to an abstract state
as defined byn valuesOBR = {obry, obrs, ..., obr, }, where each valuebr; represents the return

value of observer callb; invoked oncs.

Definition 18. Given a clasg and a set of observer call3B = {oby, obs, ..., 0b, } of ¢, anobserver
abstractiorwith respect t@) B is an OSMM of ¢ such that the states it are abstract states defined

by OB.

For example, consider one BET's observerontains(Mylnput info) . Jtest generates tests
that exercise two observer calls famtain : contains(a0.v:7;) andcontains(a0:null;) ,
wherea: represents théi + 1)th argument andi.v represents the field of the (i + 1)th argu-
ment. Argument values are specified following their argument names segaga* " and different
arguments are separated hy™Now consider eBST object’s concrete staies produced by invok-
ing BST's constructor. Because invokingntains(a0.v:7;) or contains(a0:null;) oncs
returnsfalse , the abstract states for cs is represented bifalse |, false }.

Figure 6.2 shows the observer abstractioB8f with respect to the twaontains  observer
calls and augmented Jtest-generated tests. In the figure, nodes mepieseact states and edges
represent state transitions (method calls). The top state in the figure is matikédIT , indicating
the object state before invoking a constructor. The second-to-top stateked with two observer
calls and theirfalse return values. This abstract state encloses those concrete statesauch th
when we invoke these two observer calls on those concrete states, theirni@ues aréalse . In

the central state, the observer calls throw uncaught exceptions anat Wesgexception-type name

NullPointerException in the positions of their return values. The bottom state is an exception
state, which is marked with the exception-type nax#PointerException . An object is in
such a state after a method call on the object throws\thiointerException . In the next

section, we shall describe transitions in observer abstractions while esergrthe technique for

extracting observer abstractions.
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[nit]O2+-[141]

contains(a0.v:7;)=false
contains{a0:null;)=false

add{a0:null;)?~[2/2] add{a0.v:7;)?/[1/1] remove(a0.v:7;)?ruel[1/1]

contains(a0.v:7;)=NullPointerException
contains{@0:null;)=NullPointerException

contains(a0.v:7;)=true
contains{a0:null;)=false

remove{a0:null;?/~[1/2]

add(a0.v:7;)?/-[2/2] /

add(a0.v:0;)?/-[1/2] ——
bdacao:nulty2r-22] /' remove(a0:null;)?/~[1/1]
ALL_ARGS [5/6] P

contains(a0.v:7;)?+[2/2]
contains{a0:null;)?/~[2/2]
ALL_ARGS [4/4]

remove(a0:null;)?/[2/2]

NullPointerException

Figure 6.2:contains  observer abstraction of BST

An OSM can be deterministic or nondeterministic. In a nondeterministic OSM gterrdinistic
transitions can offer insights into some irregular object behavior (Sectibsh®ws some examples
of exploring nondeterministic transitions). To help characterize nondetistinitransitions, we
have defined two numbers in a dynamically extracted OSM: transition coush&naission counts.
Assume a transition transits stateSg.,+ t0 Se,q4, the transition countassociated witht is the
number of concrete states enclosedip,.: that are transited t8.,,4 by t. Assumem is the method
call associated with, the emission counassociated withb;,,+ andm is the number of concrete
states enclosed M4+ and being at entries of, (but not necessarily being transited $8,4).

If the transition count of a transition is equal to the associated emission dbentransition is
deterministic and nondeterministic otherwise.

Each transition from a starting abstract state to an ending abstract stat&kéexdmath method
calls, their return values, and some counts. For example, the Jtestigentst suite foBST
includes two tests:

public class BSTTest extends TestCase {
public void testl() {
BST bl = new BST();
Myl nput ml = new M/l nput (0);

b1l.add(md);

bl.remove( null);
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public void test2() {
BST b2 = new BST();

b2.remove( nul I');

The execution obl.remove(null) in testl does not throw any exception. Both before
and after invokingbl.remove(null) in testl , if we invoke the two observer calls, their return
values ardalse ; therefore, there is a state-preserving transition on the second-toatep §To
present a succinct view, by default we do not show state-presetnangitions.) The execution of
b1.remove(null) intestl throws aNullPointerException . If we invoke the two observer
calls before invokingp1.remove(null) intest2 , their return values arfalse ; therefore, given
the method execution dfl.remove(null) in test2 , we extract the transition from the second-
to-top state to the bottom state and the transition is markedreritbve(a0:null;)?/ —. Inthe
mark of a transition, when return values awéd or method calls throw uncaught exceptions, we
put “—" in the position of their return values. We put™ after the method calls and * after
return values if return values are not.” We also attach two numbers for each transition in the
form of [N/M] , whereN is the transition count ankllis the emission count. If these two numbers
are equal, the transition is deterministic, and is nondeterministic otherwiseusetteere are two
different transitions from the second-to-top state with the same methockcaiVe(a0:null;)

(one transition is state-preserving being extracted fistl ), the transitiorremove(a0:null;)
from the second-to-top state to the bottom state is nondeterministic, being divathg/2] . We
display thicker edges and bold-font texts for nondeterministic transitiortbegodevelopers can

easily identify them based on visual effect.

6.2.4 Dynamic Extraction of Observer Abstractions

We dynamically extract observer abstractions of a class from unit-testiggns. The number of
the concrete states exercised by an augmented test suite is finite and tht@exadhe test suite is

assumed to terminate; therefore, the dynamically extracted observerciibssare also finite.
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Given an initial test suit@” for a class:, we first identify the nonequivalent concrete stat&s
and method-argument statdsC' exercised byl'. We then augmerif’ with new tests to exercise
CS with M C exhaustively, producing an augmented test stiiteWe have described these steps
in Section 6.2.17" exercises each nonequivalent concrete state9rwith each method-argument
state inM C; therefore, each nonequivalent observer calMi’ is guaranteed to be invoked on
each nonequivalent concrete stat€i at least once. We then collect the return values of observer
calls in M C for each nonequivalent concrete state’l§. We use this test-generation mechanism
to collect return values of observers, instead of inserting observeohettlls before and after any
call site to thec class inT’, because the latter does not work for state-modifying observers, which
change the functional behavior Dt

Given an augmented test suifé and a set of observer cai8B = {oby, obs, ..., 0b, }, we go
through the following steps to produce an observer abstradtioim the form of OSM. Initially
M is empty. During the execution @, we collect the following tuple for each method execution
in ¢'s interface: (csentry, M, M, CSegit), WhEI€Cseptry, m, mr, andcsq,;; are the concrete object
state at the method entry, method call, return value, and concrete objecatstiatemethod exit,
respectively. Ifm's return type is void, we assign-" to mr. If m’s execution throws an uncaught
exception, we also assigr-" to mr and assign the name of the exception typestq;;, called an
exception stateThe concrete object state at a constructor’'s enthNgT, called aninitial state

After the test execution terminates, we iterate on each distinct (Uplg:,,, m, mr, cSexit)
to produce a new tupl@sentry, M, M7, AScqit), Wherease,, andase,;; are the abstract states
mapped frontse,,, andcs..i; based o0 B, respectively. Its..;; is an exception state, its mapped
abstract state is the samecas,;;, whose value is the name of the thrown-exception types.Jf;,,
is an initial state, its mapped abstract state is $INIT. If cs..i: iS not exercised by the initial
tests before test augmentation but exercised by new tests, wesnapto a special abstract state
denoted asV/A, because we have not invoké3 on cs.,;; yet and do not have a known abstract
state forcsggi;.

After we produce(asentry, m, M, ASegit) fPOM (CSentry, M, Mr, CSezit), We then addiseptry
andas..;; to M as states, and put a transition fram.,;,, t0 asc.;; in M. The transition is denoted
by a triple (asentry, m?/mr!, asczit). It aSentry, aSexit, OF (ASentry, m?/mr!, aseqit) iS already

present in}M/, we do not add it. We also increase the transition countdsy,,;,-,, m?/mr!, asezit),
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denoted A (4senrysm? fmr! , which is initialized to one whefiasecniry, m?/mr!, aseqit) 1S

7asewit)
added to)M at the first time. We also increase the emission count.fgf;., andm, denoted as
C

label of each transitioasentry, m?/mr!, asezit) With [Cas,..,,, m? /mrt,asesi)/Clasentrgm)]- THE

asentrysm)- After we finish processing all distinct tupl€sscyiry, m, mr, cSezit), We postfix the
complexity of the extraction algorithm for an observer abstracti@n(j€’'S| x |OB|), whereC'S is
the set of the nonequivalent concrete states exercised by an initialitesi’sand O B is the given

set of observers.

To present a succinct view, we do not display A states and the transitions leadingg A
states. In addition, we combine multiple transitions that have the same startingdingd abstract
states, and whose method calls have the same method names and signatweesve/dombine
multiple transitions, we calculate the transition count and emission count of theiged transi-
tions and show them in the bottom line of the transition label. When a combineditrar®ntains
all nonequivalent method calls of the same method name and signature, weldddl RGS in
the bottom line of the transition label. For example, in Figure 6.2 ctimains edge from the
central state to the bottom state is labeled withL._ARG.S, because theontains edge com-
prisescontains(a0.v:7;) andcontains(a0:null;) , Which are the only ones faontains

exercised by the initial test suite.

When a transition contains only method calls that are exercised by newatgohégsts but not
exercised by the initial tests, we display a dotted edge for the transition. &onpde, in Figure 6.2,
there is a dotted edge from the right-most state to the bottom state because tbe caditfor the

edge is invoked in the augmented test suite but not in the initial test suite.

To focus on understanding uncaught exceptions, we create a sprcéition observeand
construct an observer abstraction based on it. Figure 6.3 shows #giexeobserver abstraction of
BST extracted from the augmented Jtest-generated tests. The exceptioreobs&ps the concrete
states that are ndtV I'T’ or exception states to an abstract state calle&MALThe mapped abstract
state of an initial state is stil VIT and the mapped abstract state of an exception state is still the

same as the exception-type name.
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init])2/-[1/1]

add(a0.v:7;)?/-[2/4]
add(a0.v:0;)?/-[1/4]
add(a0:null;)?/-[2/4]
ALL_ARGS [5/12]

contains(a0.v:7;)?/-[2/5]
contains(a0:null;)?/-[2/5]
ALL_ARGS [4/10]

emove(a0:null;)?/-[4/5]

NullPointerException

Figure 6.3:exception  observer abstraction of BST

6.3 Evaluation

We have used Obstra to extract observer abstractions from a variptpgfams, most of which
were used to evaluate our work in the preceding chapters. Many of gregeams manipulate
nontrivial data structures. In this section, we illustrate how we applied ®bsttwo complex data
structures and their automatically generated tests. We applied Obstra oethesgles on a MS
Windows machine with a Pentium IV 2.8 GHz processor using Sun’s Javak21SbD2 JVM with

512 Mb allocated memory.

6.3.1 Binary Search Tree Example

We have describeBST in Section 6.1 and two of its extracted observer abstractions in Figure 6.2
and 6.3. Jtest generates 277 tests for BST. These tests exercisenfaguivalent concrete ob-
ject states in addition to the initial state and one exception state, 12 nonequivafeconstructor
method calls in addition to one constructor call, and 33 nonequivalent metiegdteons. Obstra
augments the test suite to exercise 61 nonequivalent method executi@nslapked real time for
test augmentation and abstraction extraction is 0.4 and 4.9 secondstivespec

Figure 6.3 shows thatiullPointerException is thrown by three nondeterministic transi-
tions. During test inspection, we want to know under what conditions thepdion is thrown.

If the exception is thrown because of illegal inputs, we can add negegssgonditions to guard
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against the illegal inputs. Alternatively, we can perform defensivgnamming: we can add input
checking at method entries and throw more informative exceptions if thekicigetails. How-
ever, we do not want to over-constrain preconditions, which wouldgmtdegal inputs from being
processed. For example, after inspecting the exception OSM in Figurevé.8hould not con-
sider that illegal arguments include all argumentsdadd, thenull argument foremove , or all
arguments forcontains , although doing so indeed prevents the exceptions from being thrown.
After we inspected theontains OSM in Figure 6.2, we gained more information about the ex-
ceptions and found that callingdd(a0:null;) after calling the constructor leads to an unde-
sirable state: callingontains on this state deterministically throws the exception. In addition,
calling remove(a0:null;) also deterministically throws the exception and callinig throws

the exception with a high probability of 5/6. Therefore, we had more camfilén considering

null as an illegal argument fardd and preventing it from being processed. After we prevented
add(a0:nully) , two remove(a0:null;) transitions still throw the exception: one is determin-
istic and the other is with 1/2 probability. We then consideneti as an illegal argument for
remove and prevented it from being processed. We did not need to impose sinigtien on the
argument ofcontains . Note that this process of understanding the program behavior dbes no

need the access to the source code.

We found that there are three different argumentsattit but only two different arguments
for contains , although these two methods have the same signatures. We could add a method
call of contain(a0.v:0;) to the Jtest-generated test suite; therefore, we could have three ob-

server calls for theontains OSM in Figure 6.2. In the new OSM, the second-to-top state in-

cludes one more observer cadintains(a0.v:0)=false and the nondeterministic transition of
remove(a0:null;) ?/-[1/2] from the second-to-top state to the bottom state is turned into a
deterministic transitiomemove(aO:null;)?/-[1/1] . In general, when we add new tests to a

test suite and these new tests exercise new observer calls in an OSM téisersthhe OSM can
be refined, thus possibly turning some nondeterministic transitions into deteioariss. On the
other hand, adding new tests can possibly turn some deterministic transitionsmeterministic

ones.
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(wr)

[init) Y22 [141]

setLoadFactor(al.7.0,)7/-[17/17]
pULANa0:null ) ?/-[58/58] setloadFactor(a:0 0;)?-[6/6]

ALL_ARGS [23/23)
NullPaointerException

[iRiE)() 24~ 141]

repOk()=false

Figure 6.4:exception  observer abstraction amepOk observer abstraction éfashMap

get(a0.v:0;)=null
get(a0.v:7;)=null
get(a0:null;)=ret.v:0;

~

2 ; %
\/ remove(a0:null;) ?/ret.v:0;![1/1] ' put(@a0null;alnull;)?/ret.v:0;![1/1] + clear()?/-[1/1] put(a:null;al.v:0;)?/mull![2/2] [init]()2/-[1/1]
- . \

get(a0.v:0;)=null
get(a0.v:7:)=null
get(a0null;)=null

put(a0.v:7:al.v:7:)2mull! [17/17] clear()?/-[6/6] ' remove(a0.v:7;)/ret.v:7;![6/6]

get(a0.v:0;)=null
get(a0.v:7;)=ret.v:7;
get(a0:null;)=null

Figure 6.5:get observer abstraction éfashMap

6.3.2 Hash Map Example

A HashMap class was given ifava.util. HashMap from the standard Java libraries [SM03]. A
repOK and some helper methods were added to this class for evaluating KoratQBKWVhe class

has 597 non-comment, non-blank lines of code and its interface inclugagli® methods (13 ob-

servers), some of which afi@it]() , void setlLoadFactor(float f) , void putAll(Map
t) , Object remove(Mylnput key) , Object put(Mylnput key, Mylnput value) , and
void clear() . Jtest generates 5186 tests frshMap. These tests exercise 58 nonequivalent

concrete object states in addition to the initial state and one exception staen@§uivalent non-
constructor method calls in addition to one constructor call, and 416 nomepti method execu-

tions. Obstra augments the test suite to exercise 1683 nonequivalent raetications. The elapsed
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& isEmpty()Z observer. abstraction of HashMap

(nr)

(init]()

Draw

isEmpty():true

put(al,al) |remove(an)

.
e put(an,at)

clear()
Layout

Print

clear()

Quit

isEmpty()=fals

removedal:nullyBinulllf18i24
rermove(al.y: 7P inulll[ai 4]
remove(alyw0;)?inulll[2 4124]
ALL_ARGS [50/63]

Figure 6.6:isEmpty observer abstraction ¢fashMap (screen snapshot)

real time for test augmentation and abstraction extraction is 10 and 15 seceswkctively.

We found that the exception OSM bfashMap contains one deterministic transition, which is
putAll(a0:null;) from NORMAIto NullPointerException , as is shown in the left part of
Figure 6.4. Therefore, we consideredl as an illegal argument fguutAll . We checked the
Java API documentation fa#ashMap [SMO03] and the documentation states thatAll  throws
NullPointerException if the specified map isull . This description confirmed our judgment.
In other observer abstractions, to provide a more succinct view, ulleédbstra does not dis-
play any deterministic transitions leading to an exception state in the exception kEskuse the

information conveyed by these transitions has been reflected in the exc&3M.

We found an error irsetLoadFactor(float f) , a method that was later added to facil-
itate Korat’s test generation [BKM02]. The right part of Figure 6.4 shdherepOk OSM of
HashMap. repOk is a predicate used to check class invariants [LGO00]. If calleygOk on
an object state returnfalse , the object state is invalid. By inspecting thepOK OSM, we
found that callingsetLoadFactor ~ with any argument value deterministically leads to an invalid
state. We checked the source codeeatfoadFactor  and found that its method body is simply
loadFactor = f; , WhereloadFactor  is an object field anél is the method argument. The com-

ments for a private fielthreshold  states that the value tfreshold  shall be(int)(capacity
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* loadFactor) . Apparently this property is violated when settilogdFactor ~ without updat-
ing threshold  accordingly. We fixed this error by appending a call to an existing privegthod
void rehash() in the end ofsetLoadFactor s method body; theehash method updates the
threshold  field using the new value of tHeadFactor  field.

Figure 6.5 shows thget OSM of HashMap. In the representation of method returns on a tran-
sition or in a stateret represents the non-primitive return value agtdv  represents the field of
the non-primitive return value. Recall that a transition with a dotted edge isis&d only by new
generated tests but not by the initial tests. We next walk through the szémarhich developers
could inspect Figure 6.5. During inspection, developers might focus élpioration of an OSM
on transitions. Three such transitions akear , remove , andput . Developers are not surprised
to see thatlear orremove transitions cause a nonemptiashMap to be empty, as is shown by
the transitions from the top or bottom state to the central state. But devekmgesarprised to see
the transition ofput(a0:null;al:null) from the top state to the central state, indicating that
put can cause a nonempHashMap to be empty. By browsing the Java APl documentation for
HashMap [SMO03], developers can find thatashMap allows either a key or a value to il ;
therefore, thenull return ofget does not necessarily indicate that the map contains no mapping
for the key. However, in the documentation, the description for the retfrgest states: “the value
to which this map maps the specified key, or null if the map contains no mappitigsdey.” After
reading the documentation more carefully, they can find that the descriptigetf (but not the
description for the returns afet ) does specify the accurate behavior. This finding shows that the
informal description for the returns gét is not accurate or consistent with the descriptiogexf
even in such widely published Java APl documentation [SMO3].

Figure 6.6 shows a screen snapshot ofifiinpty OSM of HashMap. We configured Ob-
stra to additionally show each state-preserving transition that has the sanoeEimathe as another
state-modifying transition. We also configured Obstra to display on each @uly the method
name associated with the transition. When developers want to see the detatiasition, they
can move the mouse cursor over the method name associated with the trangitiberaithe de-
tails are displayed. We have searched the Internet for manually createdrechines for common
data structures but few could be found. One manually created state mémhineontainer struc-

ture [Ngu98] is almost the same as tkEmpty OSM of HashMap shown in Figure 6.6. There are
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two major differences. ThEN IT state and thgnit]() transition are shown in Figure 6.6 but not
in the manually created state machine. The manually created state machine arfnotatest ele-
ment” for the state-preserving transitimmove(a0) (pointed by the mouse cursor in Figure 6.6)
on theisEmpty()=false state and “last element” for the state-modifying transitemove(a0)
(shown in the middle of Figure 6.6) starting from tisEmpty()=false state; Figure 6.6 shows
these two transition names in bold font, indicating them to be nondeterministic. Méetakat some
of these manually specified conditions for a transition can be inferrediby @sikon [ECGNO1]

on the variable values collected in the starting state and method argumentstfangigon.

6.3.3 Discussion

Our experiences have shown that extracted observer abstractiorgelainvestigate causes of
uncaught exceptions, identify weakness of an initial test suite, findihugslass implementation or
its documentation, and understand class behavior. Although many obabsieactions extracted
for the class under test are succinct, some observer abstractionll a@ngplex, containing too
much information for inspection. For example, three observerashMap, such agollection
values() , have 43 abstract states. The complexity of an extracted observemdiostrdepends
on both the characteristics of its observers and the initial tests. To congralatimplexity, we
can display a portion of a complex observer abstraction based onpesdfied filtering criteria or

extract observer abstractions from the executions of a user-spesiifiset of the initial tests.

Although theisEmpty OSM of HashMap is almost the same as a manually created state ma-
chine [Ngu98], our approach does not guarantee the completendiss tésulting observer ab-
stractions — our approach does not guarantee that the observeactibss contain all possible
legal states or legal transitions. Our approach also does not guathatebe observer abstrac-
tions contain no illegal transitions. Instead, the observer abstractionfuflgitteflect behavior
exercised by the executed tests; inspecting observer abstractionshetplidentify weakness of
the executed tests. This characteristic of our approach is shared lydgtteamic inference tech-

niques [ECGNO1,HDO03, WML02, ABLO2].
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6.4 Conclusion

It is important to provide tool support for developers as they inspeattbeutions of automatically
generated unit tests. We have proposed the observer abstractioaeppo aid inspection of test
executions. We have developed a tool, called Obstra, to extract obsdysteactions from unit-
test executions automatically. We have applied the approach on a varietgygrshms, including
complex data structures; our experiences show that extracted ababsteactions provide useful
object-state-transition information for developers to inspect.

The preceding chapter discusses a feedback loop between behterenge and test generation.
This chapter shows a type of behavior inference: we infer obsebatraations from the execution
of unit tests. The test augmentation in our observer abstraction appnaadxploited exercised-
concrete-state information inferred from the execution of the initial test.sQite test generation
tools presented in Chapter 4 can be further extended to exploit the ohfdvserver abstractions to
guide their test generation process: given an inferred observieaetiien, the test generation tools
can try to generate tests to create new transitions or states in the abstralb&arth& new observer
abstraction (inferred from both the initial tests and new tests) can be ugaititthe test generation
tools to generate tests in the subsequent iteration. Iterations terminate uetddetised maximum

iteration number has been reached or no new transition or state has eresdfifom new tests.
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Chapter 7

PROGRAM-BEHAVIOR COMPARISON IN REGRESSION TESTING

Regression testing retests a program after it is modified. In particulaessign testing com-
pares the behavior of a new program version in order to the behavér old program version to
assure that no regression faults are introduced. Traditional rémmegsting techniques use pro-
gram outputs to characterize the behavior of programs: when runnirsguthe test on two program
versions produces different outputs (the old version’s output is sometitoeed as the expected
output for the test), behavior deviations are exposed. When theseidretiaviations are unex-
pected, developers identify them as regression faults, and may prmcgeloug and fix the exposed
regression faults. When these behavior deviations are intended dompé, being caused by bug-
fixing program changes, developers can be assured so and mag tipel@xpected outputs of the
tests.

However, an introduced regression fault might not be easily expasezh if a program-state
difference is caused immediately after the execution of a new faulty statemefidulh might not
be propagated to the observable outputs because of the information Ib&tingy effects. This
phenomenon has been investigated by various fault models [Mor90, ¥0&32, TRC93]. Re-
cently aprogram spectrunhas been proposed to characterize a program’s behavior inside the blac
box of program execution [BL96, RBDL97]. Some other program specuch as branch, data
dependence, and execution trace spectra, have also been privptheeliterature [BL96, HRS00,
RBDL97].

In this chapter, we propose a new class of program spectra called spectra The value
spectra enrich the existing program spectra family [BL96, HB® RBDL97] by capturing internal
program states during a test execution. An internal program state iacthiazed by the values
of the variables in scope. Characterizing behavior using values ofblesias not a new idea.
For example, Calder et al. [CFE97] proposdue profilingto track the values of variables during

program execution. Our new approach differs from value profiling mnwajor aspects. Instead of
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tracking variable values at the instruction level, our approach tracksialtprogram states at each
user-function entry and exit as the value spectra of a test execut&teathof using the information
for compiler optimization, our approach focuses on regression testingroparing value spectra
from two program versions.

When we compare the dynamic behavior of two program versiodsyiationis the difference
between the value of a variable in a new program version and the condisg one in an old
version. We compare the value spectra from a program’s old versiomamdersion, and use
the spectra differences to detect behavioral deviations in the new nersiée use a deviation-
propagation call tree to show the details of the deviations.

Some deviations caused by program changes might be intended suchag-tiying changes
and some deviations might be unintended such as by introduced regresgisnTo help develop-
ers determine if the deviations are intended, it is important to present to geveline correlations
between deviations and program changesdefiation rootis a program location in the new pro-
gram version that triggers specific behavioral deviations. A deviationis@among a set of program
locations that are changed between program versions. We propoketuwmistics to locate deviation
roots based on the deviation-propagation call tree. ldentifying the deviadimts for deviations
can help to understand the reasons for the deviations and determine mihettdeviations are
regression-fault symptoms or just expected. Identified deviation roatbeadditionally used to
locate regression faults if there are any.

The next section presents the example that we use to illustrate the definitiatuefspectra.
Section 7.2 presents the value-spectra comparison approach. SectilmsariBes our experiences

of applying the approach on several data structures and then Secticonglddes.

7.1 Example

To illustrate value spectra, we use a sample C program shown in Figurehislprogram receives
two integers as command-line arguments. The program outpufgthe maximum of two integers

is less thard, outputso if the maximum of them is equal 1@, and outputa if the maximum of

!Deviation detection in this dissertation is different from the software deviaiwalysis technique developed by
Reese and Leveson [RL97]. Their technique determines whethetvaasefspecification can behave well when there
are deviations in data inputs from an imperfect environment.
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#include <stdio.h>

1 int max(int a, int b) {

2 if (@ >= b) {

3 return a;

4 } else {

5 return b;

6 }

7}

8 int main(int argc, char *argv[]) {
9 int i, j;

10 if (argc = 3) {

11 printf("Wrong arguments!");
12 return 1;

13 }

14 i = atoi(argv[1]);

15 j = atoi(argv[2]);

16 if (max(i,j) >= 0}

17 if (max(i, j) == 0}
18 printf("0");

19 } else {

20 printf("1");

21 }

22 } else {

23 printf("-1");
24}

25 return O;

26 }

Figure 7.1: A sample C program

them is greater thab. When the program does not receive exactly two command-line arguritents,

outputs an error message.

The execution of a program can be considered as a sequence oéligrgram states. Each
internal program state comprises the program'’s in-scope variables einddlues at a particular

execution point. Each program execution unit (in the granularity of stateileck, code fragment,
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function, or component) receives an internal program state and tloeluges a new one. The
program execution points can be the entry and exit of a user-functesu®n when the program
execution units are those code fragments separated by user-fundli@itesa Program output

statements (usually output of /O operations) can appear within any of firogeam execution

units. Since it is relatively expensive in practice to capture all internajrarao states between the
executions of program statements, we focus on internal program states gnanularity of user

functions, instead of statements.

A function-entry state5“""¥ is an internal program state at the entry of a function execution.
Sentry comprises the function’s argument values and global variable valudsnaion-exit state
Serit is an internal program state at the exit of a function executksii?’ comprises the function
return value, updated argument values, and global variable valuésiiNmnS““ does not consider
local variable values. If any of the preceding variables at the functibry @r exit is of a pointer
type, theSe"v or Se* additionally comprises the variable values that are directly or indirectly
reachable from the pointer-type variable.fukction executioS¢""¥ | S¢=it) is a pair of a function
call’s function-entry stat&“™*"¥ and function-exit stat&°**,

Figure 7.2 shows the internal program state transitions of the sample pragttathe command
line arguments of0 1" . In the program execution, tleain function calls themax function twice

with the same arguments, and then outputs as is shown inside the cloud in Figure 7.2.

7.2 Value-Spectra Comparison Approach

We first introduce a new type of semantic spectra, value spectra, whéchsad to characterize
program behavior (Section 7.2.1). We next describe how we compaveliespectra of the same
test on two program versions (Section 7.2.2). We then describe the depatipagations exhibited
by spectra differences (Section 7.2.3). We finally present two heuristicecate deviation roots

based on deviation propagation (Section 7.2.4).

7.2.1 Value Spectra

We propose a new class of semantic speatadije spectrabased on exercised internal program

states. Value spectra track the variable values in internal program stéiiek, are exercised as a
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Figure 7.2: Internal program state transitions of the sample C progracntéxe with input'0 1"

Table 7.1: Value spectra for the sample program with iriput”

spectra profiled entities

value hit main( ent ry(3,"0","1"), exi t (3,"0","1",0)) ,
max(entry(0,1), exit(0,1,1))

value count| main( ent ry(3,"0","1"), exi t (3,"0","1",0))*1 ,
max(entry(0,1), exit(0,1,1))*2

value trace | main( entry(3,"0","1"), exi t (3,"0","1",0)) ,
max(entry(0,1), exit(0,1,1)), Vv,
max(entry(0,1), exit(0,1,1)), Vv, V

output "1"

program executes.

We propose three new variants of value spectra:

e User-function value hit spectréin short asvalue hit spectra Value hit spectra indicate

whether a user-function execution is exercised.
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e User-function value count spect@ short asvalue count spectda Value count spectra

indicate the number of times that a user-function execution is exercised.

e User-function value trace spectfa short asvalue trace spectia Value trace spectra record

the sequence of the user-function executions traversed as a pregeantes.

Table 7.1 shows different value spectra and output spectra for thdes@pogram execution
with input”0 1" . We represent a user-function execution using the following form:
funcname( entry(argvals), exit (argvals,ret)) wherefuncname represents the function
name.argvals afterent ry represents the argument values and global variable values at the func-
tion entry,argvals afterexi t represents the updated argument values and global variable values
at the function exit, andet represents the return value of the function. Function executions in
value hit spectra or value count spectra do not preserve order, vethile trace spectra do preserve
order. In value count spectra, a count market*ohum" is appended to the end of each function
execution to show that the function execution is exercisgd times. Note that if we change the
secondmax function call frommax(i,j)  tomax(j,i) , we will have two distinct entities famnax
in the value hit and value count spectra. It is because these two funsteatens will become
distinct with different function-entry or function-exit states. In value&rapectra; v* markers
are inserted in the function-execution sequence to indicate functiontexeceturns [RR0O1]. The
value trace spectra for the sample program showsrhit callsmaxtwice. Without these markers,
the same function-execution sequence would result frain calling max andmax calling max.

The value trace spectra strictly subsume the value count spectra, analukecount spectra
strictly subsume the value hit spectra. The output spectra are incompuaiigtbieny of the three
value spectra, since the program’s output statements inside a particuldunsiBon body might
output some constants or variable values that are not captured in thdtinsgon'’s entry or exit
state. For example, when we shuffle thpsietf  statements in thenain function body, the pro-
gram still has the same value spectra but different output spectra. @thiérehand, the executions
with different value spectra might have the same output spectra. Howekien those function
bodies containing output statements are not modified in versiothe value trace spectra strictly
subsumes the output spectra. In addition, if we also collect the entry éradaggs of system output

functions in the value trace spectra, the value trace spectra strictly suliseimgtput spectra.
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Value trace spectra strictly subsume dynamically detected invariants bdemsts Daikon
tool [Ern00, ECGNO1] generalizes invariants from variable valuesdhfihe value trace spectra.
Because Daikon infers invariants for each function separately andrdee among function exe-
cutions does not affect the inference results, value count speatratesly subsume dynamically
detected invariants. However, value hit spectra are not comparablaamnityally detected invari-
ants because the number of data samples can affect Daikon’s infeesutis [Ern00, ECGNO1].
For example, after we eliminate the secamak method call by caching the return value of the first
max method call, we will have the same value count spectra but Daikon might eMerfinvariants
for max when running the two program versions with inpat1" , because too few data samples

exhibit some originally inferred invariants.

Execution-trace spectra strictly subsume any other program spectigiingcthe three value
spectra. Other syntactic spectra, such as branch, path, and deteddepe spectra are incompa-
rable with any of the three value spectra. For example, when we changateenent of =
atoi(argv[1]) toi = atoi(argv[l]) + 1 , we will have the same traditional syntactic spec-
tra but different value spectra with inpt@ 1" running on the two program versions. On the other
hand, when we move the statemenpoftf('1") from within the innerlse branch to after the
innerelse branch, and add a redundant statenienti + 1 after theprintf("1") statement,
we will have different traditional syntactic spectra, but the same valuetrspwith input”0 1"

running on the two program versions.

7.2.2 Value Spectra Differences

To compare program behavior between two program versions, weotapace value spectra from
two program versions when we run the same test on them. To compare thespalttra from two
program versions, we need to compare function executions from teesiens. We can reduce the
comparison of two function executions to the comparison of the functioy-anti function-exit
states from these two function executions, including these states’ functinesnaignatures, and
the variable values. When some variables in a function entry or exit stapeiaters, their variable
values are memory addresses. In the presence of these pointer wriabieing a test on the

same program twice might produce different value spectra. If we justéginese pointer-variable
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values, we lose the referencing relationships among variables. Tosadtigproblem, we perform
a linearization algorithm shown in Figure 3.2 of Chapter 3 on each functitny-er function-

exit state. In particular, when we encounter a reference-type vanabifestead of collecting its
value (memory address) in the state representation, we collect the follogpnesentation for the

variable:

e collect “null”if (v ==null ).

e collect “notnull”if (v = null ) and there exists no previously encountered variableuch
that v ==v' ).

e collectvname’ otherwise, wherename’ is the name of the earliest encountered variable

such thaty ==v’ )and ¢ != null ).

Two statesS; andS; areequivalentrepresented a$; = S if and only if their state representa-
tions are the same; otherwise am@nequivalentrepresented aS; # S». Two function executions
F1:(SY Sexity and f, (S5, Svit) areequivalentf and only if they have the same function
name and signatures;™"Y = S5™"Y, andS¢*"* = S5¥. The comparison of value count spectra
additionally considers the number of times that equivalent function exeswi@exercised. Given
a function execution in the new version, the compared function executior ioldhversion is the
one that has the same function name, signature, and function-entry $tagecdnnot find such a
function execution in the old version, the compared function execution ésrgoty function execu-
tion. An empty function execution has a different function name, function sigeafunction-entry
state, or function-exit state from any other regular function executions.

The comparison of value trace spectra further considers the callingicantésequence order in
which function executions are exercised. If we want to determine whitieralue trace spectra are
the same, we can compare the concatenated function-execution sexjoitaevalue traces. If we
want to determine the detailed function-execution differences betweenatiwe irace spectra, we
can use the constructed dynamic call tree and the GNU Diffutils [GNUO2]rtpene the function-
execution traces of two value trace spectra. After the comparison, wharttion executionf is
present in Versiom but absent in Versioh, we can consider that an empty function execution in

Versionb is compared withy in Versiona.
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7.2.3 Deviation Propagation

ASSUMES ;e (Shews ¥, SEEY is a function execution in a program’s new version ging : (S5, Sty
is its compared function execution in the program’s old versioffi,Jf, and f,;4 are equivalent, then
fnew is @anon-deviated function executiotf f,,..., and f,;q are not equivalent, thefy,.., is adevi-

ated function executiotWe have categorized a deviated function execution into one of the following

two types:

e Deviation container f,.., is a deviation container, if5’5Y = Sjﬁi"y but Sezit £ Serit,
If a function execution is identified to be a deviation container, develoarskoow that a
certain behavioral deviation occurssidethe function execution. Note that when there is a
certain behavioral deviation inside a function execution, the function éxaceight not be
observed to be a deviation container, since the behavioral deviation nuighémpropagated

to the function exit.

entry

e Deviation follower f,.., is a a deviation follower, ifS;c,, ¥ # Soel’zl"y. If a function execution
is identified to be a deviation follower, developers can know that a certdiavimral devi-
ation occursheforethe function execution. For value count spectra particularly, a function
execution in a program’s new version can be categorized as a devialimmdbif its count
is different from the count of the compared function execution from tdgpamgram version.
we need to use a matching technique (similar as the one used in the value &etta spm-
parison) to identify which particular function executions in one versiorabsent in the other

version.

The details of value spectra differences can provide insights into deviatigragation in the
execution of the new program version. To provide such details, we ateag#tion information to a
dynamic call tree, where a vertex represents a single function execuaticaneedge represents calls
between function executions. From the trace collected during a testtexeowe first construct
a dynamic call tree and then annotate the call tree with deviation informationrtodateviation-
propagation call tree. Figure 7.3 shows the deviation-propagation aadl trfetwo test executions
on a new (faulty) version of thieas program. Thacas program, its faulty versions, and test suite

are contained in a set siemens programs [HFGO94], which are used in the experiment described
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(The execution of the 58th test)
O main
|__O initialize
|__O alt_sep_test
|__O Non_Crossing_Biased_Climb
| |__O Inhibit_Biased_Climb
| |_O Own_Above_Threat
|__O Non_Crossing_Biased_Descend
| |__O Inhibit_Biased_Climb
| |__O Own_Below_Threat-------- [dev follower]
| |_O ALIM-----mmommmmommeeee [dev foll ower]
| O Own_Above_Threat

(The execution of the 91st test)
O main
|__O initialize
|__O alt_sep_test------------------- [dev contai ner]
|__O Non_Crossing_Biased_Climb
| |__O Inhibit_Biased_Climb
| [__O Own_Above_Threat
| |__O ALIM
|__O Own_Below_Threat
|__O Non_Crossing_Biased_Descend- [dev container]
|__O Inhibit_Biased_Climb
|__O Own_Below_Threat

Figure 7.3: Value-spectra-based deviation-propagation call treereM/grogram version (the 9th
faulty version) of thecas program

in Section 7.3. In the call trees, each node (showd)as associated with a function execution, and
parent node calls its children nodes. For brevity, each node is marke@mittthe corresponding
function name. The execution order among function executions is from phie the bottom, with
the earliest one at the top. If there is any deviated function executionyittida type is marked in

the end of the function name.
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Usually behavioral deviations are originated from certain program lotatioat are changed
in the new program version. These program locations are cadde@tion roots The function that
contains a deviation root is callelgviation-root containerin the new version of theas program,

a relational operator in the old version is changed te=. The function that contains this changed
line isNon_Crossing _Biased _Descend .

Some variable values at later points after a deviation-root execution midét ldm the ones
in the old program version because of the propagation of the deviations déetation root. The
deviations at the function exit of the deviation-root container might cawseldfiation-root con-
tainer to be observed as a deviation container. Note that some callers ef/tagah-root container
might also be observed as deviation containers. For example, in the loliveeeaof Figure 7.3,
the deviation-root containéton_Crossing _Biased _Descend is observed as a deviation container

and its callemlt _sep _test is also observed as a deviation container.

Sometimes deviations after a deviation-root execution might not be propagate exit of the
deviation-root container, but the deviations might be propagated to thesotisome callees of the
deviation-root container, causing these callees to be observed asatefadlowers. For example,
in the upper call tree of Figure 7.3, the deviation-root container’s catfegsBelow _Threat and

ALIM are observed as deviation followers.

7.2.4 Deviation-Root Localization

In the previous section, we have discussed how deviations are ptedageen a known deviation

root. This section explores the reverse direction: locating deviation roaibs®rving value spectra
differences. This task is calledeviation-root localization Deviation-root localization can help
developers to better understand which program change(s) causelosétrwed deviations and then

determine whether the deviations are expected.

Recall that given a function executiqf;ww:wﬁﬁffy,Smt), if frew iS @ deviation container,

new

entry

S is not deviated bufSeZi is deviated; if e, iS @ deviation follower,S5rhY has already

new

been deviated; iff,..., is a non-deviated function execution, neith&f, ¥ nor S¢*% is deviated.

Deviation roots are likely to be within those statements executed within a deviatitaimer or

before a deviation follower. The following two heuristics are to narrowmltve scope for deviation
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roots based on deviation propagation effects:

Heuristic 1 Assumef is a deviation follower andj is the caller off . If (1) g is a devia-
tion container or a non-deviated one, and (2) any function executionebeiys entry and the
call site off is a non-deviated one, deviation roots are likely to be among those statements ex
ecuted between thg's entry and the call site of, excluding user-function-call statements. For
example, in the upper call tree of Figure 7GynBelow _Threat is a deviation follower and its
caller Non_Crossing _Biased _Descend is a non-deviated one. THhehibit _Biased _Climb
invoked immediately before th@wnBelow Threat is a non-deviated one. Then we can ac-
curately locate the deviation root to be among those statements executedrbétereantry of
Non_Crossing _Biased _Descend and the call site obwnBelow _Threat .

Heuristic 2 Assumef is a deviation container. If any df's callees is a non-deviated one,
deviation roots are likely to be among those statements executed wihumnction body, exclud-
ing user-function-call statements. For example, in the lower call tree oféig:3, the function
executionNon_Crossing _Biased _Descend is a deviation container and any of its callees is a
non-deviated one. Then we can accurately locate the deviation root fmdmegahose statements
executed within th&lon_Crossing _Biased _Descend ’s function body.

When multiple changes are made at different program locations in the rogwapn version,
there might be more than one deviation root that cause behavioral desiali@adeviation root's
deviation effect is not propagated to the execution of another deviatidnenad each deviation root
causes their own value spectra differences, our heuristics can lathtddviation roots at the same

time.

7.3 Evaluation

This section presents the experiment that we conducted to evaluate coaeppWe first describe
the experiment’s objective and measures as well as the experiment instatiorer\We then present

and discuss the experimental results. We finally discuss analysis cairaats to validity.

7.3.1 Objective and Measures

The objective of the experiment is to investigate the following questions:
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1. How different are the three value spectra types and output spepeairtyterms of their

deviation-exposing capability?

2. How accurately do the two deviation-root localization heuristics locateatiatibn root from

value spectra?

Given spectra typ#, programP, new version”’, and the se€'T of tests that cover the changed
lines, let DT(S, P, P',CT) be the set of tests each of which exhibftsspectra differences and
LT(S,P,P',CT) be the subset aDT'(S, P, P’, CT) whose exhibited spectra differences can be
applied with the two heuristics to accurately locate deviation roots. To ansuestions 1 and 2,

we use the following two measures, respectively:

e Deviation exposure ratioThe deviation exposure ratio for spectra typis the number of the

tests inDT'(S, P, P', C'T) divided by the number of the tests @/I", given by the equation:
|DT(S,P,P',CT)]|

|CT]|
e Deviation-root localization ratio The deviation-root localization ratio for spectra types the
number of the tests ihT'(.S, P, P’, C'T) divided by the number of the testsinr’(S, P, P/, C'T),

: . LT(S,P,P.CT
given by the equatlonw

Higher values of either measure indicate better results than lower valugbe Bxperiment,
we measure the deviation-root localization ratio in the function granularitthibconvenience of
measurement. That is, when the deviation-root localization locates the dewviatibcontainers
(the functions that contain changed lines), we consider that the localizaturately locates the
deviation root. For those changed lines that are in global data definitidiopowe consider the
deviation-root containers to be those functions that contain the executathereferencing the

variables containing the changed data.

7.3.2 Instrumentation

We built a prototype of the spectra-comparison approach to determine ahticpl utility. Our
prototype is based on the Daikon [ECGNO1] front end for C programaikdd is a system for

dynamically detecting likely program invariants. It runs an instrumentedranogcollects and
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examines the values that the program computes, and detects patterniamastgps among those
values. The Daikon front end instruments C program code for collectitaytchces during program
executions. By default, the Daikon front end instruments nested orsigeuypes (structs that have
struct members) with the instrumentation depth of three. For example, giv@ntamo the root of

a tree structure, we collect the values of only those tree nodes that ane thighree depth of three.

We have developed several Perl scripts to compute and compare aildhisads of value spectra
and output spectra from the collected traces. In the experiment, we halemienged the deviation-
root localization for only value hit spectfa.Given two spectra, our tools report in textual form
whether these two spectra are different. For value hit spectra, ourdanlslisplay spectra dif-
ferences in deviation-propagation call trees in plain text (as is shown urdsgr.3) and report

deviation-root locations also in textual form.

We use seven C programs as subjects in the experiment. ResearchemensSResearch
created these seven programs with faulty versions and a set of tes{ld&§2094]; these programs
are popularly referred as tlsemens programs (we used the programs, faulty versions, and test
cases that were later modified by Rothermel and Harrold [RHOH98]).ré$warchers constructed
the faulty versions by manually seeding faults that were as realistic as jgodgsiich faulty version
differs from the original program by one to five lines of code. Theaed®ers kept only the faults
that were detected by at least three and at most 350 test cases in thateesColumns 1-4 of
Table 7.2 show the program names, number of functions, lines of exézutadbe, and number
of tests of these seven subject programs, respectively. Column 5 ctiaimumbers separated
by "/ . The first number is the number of the faulty versions selected in this expdrand the
second number is the total number of faulty versions. Columns 6 showséhaegavspace cost (in
kilobytes) of storing traces collected for a test’s value spectra , regphctihe last column shows
the description of the subject programs.

We perform the experiment on a Linux machine with a Pentium IV 2.8 GHz psaeeln the ex-
periment, we use the original program as the old version and the faultygonoas the new version.

We use all the test cases in the test suite for each program. To contraktleeo$ the experiment,

2\We have not implemented deviation-root localization for value countloeveace spectra, because their implemen-
tation requires the matching of traces from two versions, which is challgrimyiritself and beyond the scope of this
research.
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Table 7.2: Subject programs used in the experiment

program | funcs| loc | tests| vers | |vs_trc|(kb/test) | program description
printtok 18 | 402 | 4130 717 36 | lexical analyzer
printtok2 19 | 483 | 4115 10/10 50 | lexical analyzer
replace 21| 516 | 5542 | 12/32 71 | pattern replacement
schedule 18 | 299 | 2650 9/9 982 | priority scheduler
schedule2 16 | 297 | 2710 | 10/10 272 | priority scheduler
tcas 9| 138 | 1608 | 9/41 8 | altitude separation
totinfo 7| 346 | 1052 | 6/23 27 | information measurg

for those programs with more than 10 faulty versions, we select only tlaosty fversions in an
order from the first version to make each selected version have ableasaulty function that has

not yet occurred in previously selected versions.

7.3.3 Results

Figures 7.4 and 7.5 use boxplots to present the experimental results.oX e & boxplot shows
the median value as the central line, and the first and third quartiles as thedod/@pper edges
of the box. The whiskers shown above and below the boxes technicphgsent the largest and
smallest observations that are less than 1.5 box lengths from the end afxthintpractice, these
observations are the lowest and highest values that are likely to beveds&mall circles beyond
the whiskers are outliers, which are anomalous values in the data.

Figure 7.4 shows the experimental results of deviation exposure ratioarthabmputed over
all subjects. The vertical axis lists deviation exposure ratios and the htalzxis lists four spectra
types: output, value hit, value count, and value trace spectra. Figureshé\ss the experimental
results of deviation-root localization ratios for value hit spectra. Thitoaaxis lists deviation-root
localization ratios and the horizontal axis lists subject names.

From Figure 7.4, we observed that checking value spectra diffesénceeases the deviation
exposure ratio about a factor of three compared to checking progugputalifferences. This indi-

cates that a relatively large portion of deviations could not be propat@afgdgram outputs. There
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Figure 7.4: Experimental results of deviation exposure ratios

are no significant differences of the deviation exposure ratios amongréevalue spectra, except
that the third quartile of the value trace spectra is slightly higher than the ot afalue hit or
value count spectra. We found that there were three versions waleietvace spectra have higher
deviation exposure ratios than value hit and value count spectra. Uile ifathese three versions
sometimes cause some deviation followers to be produced in value tracespatthese deviation
followers are equivalent to some function executions produced by thprofitam version; there-
fore, although the value trace spectra are different, their value hitrap@cvalue count spectra are

the same.

In Figure 7.5, the deviation-root localization ratios for value hit spectanaar 1.0 for all sub-
jects except for thachedule2 program; therefore, their boxes are collapsed to almost a straight
line near the top of the figure. The results show that our heuristics foe \Etuspectra can ac-
curately locate deviation roots for all subjects except fordttedule2 program. We inspected

schedule2 s traces carefully to find out the reasons. We found that the Daikant #aod did
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Figure 7.5: Experimental results of deviation-root localization ratios flrevhit spectra

not collect complete program state information in a key linked-list strusthedule2 using the
instrumentation depth of three (the default configuration of the Daikort fead). In some of
schedule2 ’s faulty versions, deviations occur on the key linked-list struct beyihveddepth of
three. Therefore we could not detect the deviations at the exits of deviatts. We expect that

we could increase the deviation-root localization ratios after increasingstrementation depth.

The experiment simulates the scenario of introducing regression faults riogoaps during
program modifications. When programmers perform a modification that iexpaicted to change
a program’s semantic behavior, such as program refactoring [Fow@8kpectra comparison ap-
proach can show the occurrences of unintended deviations and viatiale-root localization ac-
curately locates the regression faults. Moreover, we can reversethi@v order by treating the
faulty version as the old version and the correct version as the newneiidien we can conduct a
similar experiment on them. This simulates the scenario of fixing program Rilgse our spectra

comparison is symmetric, we expect to get the same experimental results.hdhis that when
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programmers perform a bug-fixing modification, our approach can shem the occurrences of

the intended deviations.

7.3.4 Analysis Cost

The space cost of our spectra-comparison approach is primarily tlee $pastoring collected
traces. Columns 6 of Table 7.2 shows the average space in kilobytes é§Biyed for storing
trace of a test’s value spectra. The average required space forrartges from 8 to 71 KB except
for the value spectra of thechedule andschedule2 programs (with the space of 982 and 272
KB, respectively), because these two programs contain global linkestiigts, whose collected
values require considerably larger space.

The time cost of our approach is primarily the time of running instrumented amdiedting
and storing traces) as well as computing and comparing spectra (deviatiblocalization is a
part of spectra comparison). The slowdown ratio of instrumentation is the fimeoing a test
on instrumented code divided by the time of running the same test on uninstadrmde. We
observed that the average slowdown ratio of instrumentation range2fro, except for the value
spectra okchedule andschedule2 programs (with the ratios of 48 and 31, respectively). The
average elapsed real time for running a test on instrumented code femrgesto 30 milliseconds
(ms), except for the value spectraszhedule andschedule2 programs (with the time of 218
and 137 ms, respectively). The elapsed real time for computing and cimgp&o spectra of a test
ranges from 24 to 170 ms, except for the value spectrscioddule andschedule2 programs
(with the time of 3783 and 1366 ms, respectively).

We speculate that applying our approach on larger programs couldradigétter improvement
of deviation exposure over program output checking, becausetidagare probably less likely to
be propagated to the outputs of larger programs. We speculate that deviitdocalization ratios
based on value spectra might be less affected by the scale of prograntheéhigpe of variables
used by programs (e.g., simple versus complex data structures).

Larger programs require higher space and time costs. The time or spstcef @ur value-

spectra-comparison approach can be approximately characterized as

VCost = O(|vars| x |user funcs| X |testsuite|)
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where|vars| is the number of variables (including the pointer references reachaltetfre vari-
ables in scope) at the entry and exit of a user functiesgr funcs| is the number of executed and
instrumented user functions, aftdstsuite| is the size of the test suite.

To address scalability, we can redyeestsuite| by applying our approach on only those tests
selected by regression test selection techniques [RH97]. In additiamamedso reduck:ser funcs|
by instrumenting only those modified functions and their (statically determinetty}-ugdevel callers
or those functions enclosed by identified firewalls [LW90, WL92]. Thued scope of instrumen-

tation trades a global view of deviation propagation for efficiency.

7.3.5 Threats to Validity

The threats to external validity primarily include the degree to which the supjegrams, faults

or program changes, and test cases are representative of taliequralhesiemens programs

are small and most of the faulty versions involve simple, one- or two-line niigraeseded faults.

Moreover, the new versions in our experiment do not incorporate &h#rfree changes since all
the changes made on faulty versions deliberately introduce regressits1 fahese threats could
be reduced by more experiments on wider types of subjects in future Whekthreats to internal
validity are instrumentation effects that can bias our results. Faults in otatype and the Daikon
front end might cause such effects. To reduce these threats, we liganapected the spectra
differences on a dozen of traces for each program subject. Orag threonstruct validity is that our
experiment makes use of the data traces collected during executionsjragsiuat these precisely
capture the internal program states for each execution point. Howeyegctice the Daikon front

end explores nested structures up to the depth of only three by default.

7.4 Conclusion

After developers made changes on their program, they can rerun theprs regression tests to
assure the changes take effect as intended: refactoring code to ingmdeeuality, enhancing
some functionality, fixing a bug in the code, etc. To help developers to gagharconfidence on
their changes, we have proposed a new approach that checkmrbgheavior inside the black box

over program versions besides checking the black-box programtsutp
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We have developed a new class of semantic spectra, called value steediti@acterize program
behavior. We exploit value spectra differences between a progranesion and new version in
regression testing. We use these value spectra differences to exfgealibehavioral deviations
inside the black box. We also investigate deviation propagation and develdgetwistics to locate
deviation roots. If there are regression faults, our deviation-rootifaten additionally addresses
the regression fault localization problem. We have conducted an expérimeseven C program
subjects. The experimental results show that value-spectra compapj@aaeh can effectively de-
tect behavioral deviations even before deviations are (or even if teayod) propagated to outputs.
The results also show that our deviation-root localization based on vpkara can accurately
locate the deviation roots for most subjects.

Our approach has not constructed a feedback loop between beimdgience and test genera-
tion by using inferred value spectra to guide test generation. Howeseauke generating tests to
exhibit program-output deviations in a new version is an undecidablégmolhe existing test gen-
eration techniques [DO91,KAY98, WEOQ3] for this problem can try to gateetests to propagate the
deviation from an outermost deviated function execution to its caller. Thrdagations, gradually
the value spectra differences can guide the test generation tools tgpateplae deviations as close

as possible to the program locations for I/O outputs.
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Chapter 8

FUTURE WORK

This research has demonstrated that the effectiveness of automated testibe improved
through a framework that reduces the cost of both computer and huffoatn €here are still many
opportunities for extending this work, and this chapter discusses some ffttlre directions that

can be conducted by extending the research in this dissertation.

8.1 Scaling

The experiments that we have conducted in this research primarily foausitolesting of individ-
ual structurally complex data structures. The redundant-test detecpooea is evaluated against
existing test generation tools, which generate a large number of testsdbatieety small number of
non-redundant tests. The non-redundant-test generation andbséstcéion approaches are evalu-
ated against a relatively low bound of exhaustive testing. The test selegmoach and regression
testing approach are evaluated on a set of relatively small programs}, Ibeited in fact by the
scalability of the underlying test generation tool or dynamic invariant detettiol (the existing
implementation of the regression testing approach uses Daikon'’s frorbeamadlect value spectra
information).

Scaling redundant-test detection deals primarily with reducing the oveudfezalecting and
storing nonequivalent method executions in memory. For a large progranest with long method
sequences, the size of a single state’s representation can be largdafg test suite, the number
of nonequivalent states or method executions can be large. Our implemergatjgoys some
state compression techniques such as using a Trie [Fre60] data struéterean further reduce
state-storage requirement by employing some state compression techigl83s [V01] used in
explicit state model checking [CGP99].

Scaling non-redundant-test generation needs to address the sanme &salig redundant-test
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detection: reducing the overhead of keeping track of nonequivalahioeexecutions. We can use
those preceding techniques to scale test generation. In addition, wedtareithe state space for ex-
ploration in different ways. Instead of exhaustively exploring methodseces (state space) within
a small bound, we can explore the state space with longer method sequéthdesuristics-guided
search [GV02, TAC 04] or evolutionary search [RN95, GK02, Ton04] for achieving dertaver-
age criteria discussed in Section 2.1. Developers can also specifycéibsifanctions to reduce the
state space (the Rostra technigues based asgtids method provide mechanisms for developers
to define abstraction functions). Because it may not be feasible to explarge state space of a
single class or multiple classes in a single machine, we can distribute the testtgemiasks among
multiple machines [MPY 04] and collectively generate tests for a large class or multiple classes in
a system. If we use test generation techniques based on concrete alisystdie exploration, we
need to address the communication and coordination issues among multiple reactaaeiding
exploring states that have been explored by other machines. If we tggetesation techniques
based on exploring method sequences without tracking actual concr&gmbolic states, we can
get around the communication and coordination issues but with the pricelofieg a larger space.
In addition, when we test multiple classes in a system (either in a single machineltgzle ma-
chines), we need to carefully select the test generation order of multigieesldecause we prefer
to explore a clasA's state space earlier Xis an argument type of another class method and we

want to use the explored statesfodis the arguments &s method when exploring’s state space.

Scaling the test selection approach needs to scale both the underlyirficapen-based test
generation tool and dynamic invariant tool. Some techniques for scalirgifispgon-based test
generation are similar to those preceding ones for scaling non-reduiedgaigeneration. In ad-
dition, we can use some test generation techniques [BKMO02] tailored aidingd for exploit-
ing specifications. Some techniques for scaling a dynamic invariant todbders discussed by
Ernst [Ern00] and developed by Perkins and Ernst [PEO4]. Scalingegression testing approach
primarily deals with the collection of program state information from test exetsitg@md compu-
tation of value spectra from program state information. Some techniquessdting a dynamic
invariant tool discussed by Ernst [Ern00] are applicable in addrgdkim scalability of collecting

program state information, such as selectively instrumenting program points



137

8.2 New types of behaviors to exploit

Research in this dissertation exploits the inferred behaviors in the foriofmatic specifica-
tions [Hoa69, Gri87] or finite state machines [LY96]. Program behawarsbe described in other
forms such as algebraic specifications [GH78] and protocol specifisaRRBY00, BRO1, DFO1,
DLS02], and symmetry properties [Got03]. We can infer these typeshaiiars from test execu-
tions and use these behaviors to guide test generation by borrowinggeesifrom specification-
based test generation. In addition, we can apply the operational violgifmoach by selecting
any generated tests that violate the behaviors inferred from the existisg té@wever, inferring
behaviors in the form of algebraic specifications or symmetry propertigsres specifically con-
structed method sequences, which may not already exist in the existinggiiyaranstructed) tests.
Therefore, we may need to generate extra new tests to help infer behfwiorthe existing tests;
the situation is the same in the test abstraction approach: we need to gereeatests in order to
infer observer abstractions from the existing tests.

The operational violation approach selects tests based on a common ratssiatging a test
if the test exercises a certain program behavior that is not exhibiteddwopsly executed tests.
We can select tests based on a different new rationale: selecting a sespasial test if the test
exercises a certain program behavior that is not exhibited by most o#itey selecting a test as a
common test if the test exercises a certain program behavior that is extigiedtor most other
tests. Inferred behaviors in the form of algebraic specifications hese tound to be promising for

test selection based on this new rationale [Xie04, XN04b].

8.3 New types of quality attributes to test

Our research focuses on testing a program'’s functional correctngspustness. We can extend
our research to test other quality attributes of a program. For exampte/asefperformance test-
ing [AW96, VW98, WVO00] creates representative workloads (includingrage, heavy, or stress
workloads) to exercise the program and observe its throughput ponies time. In performance
testing, generally generating non-redundant tests is still useful to eelyangram states to reach
heavy-loaded states; however, invoking redundant tests sometimes nuagfaein performance

testing, for example, when a program’s performance can be degrhdeduse of garbage collec-
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tion behavior) by running redundant tests that create extensive temminjacts. In performance
testing, we can also apply the operational violation approach by infergimggram’s performance
behavior. Then we can select those generated tests that causeanptogrerform worse than the
observed performance exercised by the existing tests. We can alsehiafelnaracteristics of the
bad-performance-inducing tests to help diagnosis the performanbiprooots.

Software security testing [WT03, HM04, PM04] tests a program to malke ther program be-
have correctly in the presence of a malicious attack. Security risks casduketo guide security
testing. For example, for a database application, one potential securitis IBRL injection at-
tacks [HHLT03,HOO05]. We can extend our test generation approautartdle complex string oper-
ations during symbolic execution. Then we can use symbolic execution toagemest inputs that
get through input validators but produce SQL injection attacks. In additieroperational violation
approach has a good potential for security testing, because secutiitg tesends to test the pro-
gram under malicious inputs, which exercise program behaviors diffén@m the ones exercised

by normal inputs in manually created tests.

8.4 Broader types of programs to test

We can detect redundant tests among tests generated for GUI applidMie899, MemO01] or
directly generate non-redundant tests for GUI applications. In testinga@plications, event se-
guences correspond to method sequences in testing object-orientednpsogrhe program state
before or after an event can be abstracted by considering only the@tthgeassociated GUI, which
is modeled in terms of the widgets that the GUI contains, their properties, analines of the
properties. Then the techniques of detecting redundant tests or tlegem@n-redundant tests can
be similarly applied to GUI tests.

We can detect redundant tests among tests generated for databasaiappl[iKS03, CDF 04]
and directly generate non-redundant tests for database applicatidastihg database applications,
the program state before or after a method call additionally includes theadatatate. After includ-
ing database states in the program state representation, we can thenredietedant tests for testing
database applications. Because a database state can be large, we statiaianalysis techniques

to determine which parts of the database state are relevant to affect theiemeof a method and
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consider only these relevant parts when collecting the program state loefafter the method call.

We can extend our testing techniques to test programs written in aspededr@ngramming
languages such as AspectJ [KEM7, Tea03]. We can treat an aspect as the unit under test (like
a class in an object-oriented program) and advice as the method undéikeeat gublic method
in a class). Then we can detect redundant tests for testing an asp&diND4]. In addition,
we can adapt our test generation technigues to generate tests foiestlffiexercising an as-
pect [XZMNO5].

Our research focuses on testing a sequential program. When detectinglant tests for test-
ing a concurrent program, we can no longer operate on the granuléiitdieidual method calls
because thread interactions can occur within a method execution caugémgrdimethod behaviors
given the same method inputs. One possible extension to our redundadetztion techniques is
to monitor and collect the inputs to each code segment separated by tha@skitheeaction points
within a method. However, this finer granularity can suffer from the stgiosion problem more

seriously.

8.5 New types of software artifacts to use

This research uses the program under test and sometimes its manuallg tesete\We can also use
other types of software artifacts if they exist in the software developnreceps. For example, if
grammars have been written for defining test inputs, we can use these gsmtarefiectively gen-
erate test inputs [SB99, Zay04]. If a method for checking class invasiaa method for validating
inputs has been written, we can also use the method to generate test inpctised§f [BKMO02].
If requirements are written for the program under test, we can use th@eaeeents to generate
tests [WGS94, EFM97, ABM98, GH99]. We can also improve our testingiigales with the infor-
mation collected from the program’s actual usage, such as operatiarfitihgr[Woi93, Woi94], or
other in-field data [OLHL02, OAHO03, MPY04].

When a model (specification) for a program is specified, model-bas@thtf3IK99,GGSV02,
Fou, Par04] can be performed. In model-based testing, the underlyidglmsed for test genera-
tion is often an abstract one, being derived after abstracting the pragkesiavior. Two method

sequences may produce the same abstract state in the model but we manhitd weep only
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one method sequence and discard the other one, because the cdatestérsthe code) produced
by two method sequences may be different and two method sequences veagifferent fault-

detection capabilities. Although we may not apply redundant-test detectitreagenerated tests
based on abstract states of the model, we can apply redundant-tetibddtesed on the concrete

states exercised by tests generated based on the model.

8.6 Testing in the face of program changes

Program changes are inevitable. When a program is changed, irywonly the tests generated
for the old version may not be sufficient to cover the changed or adoée, ©r to expose bugs
introduced by the program changes. Although our regression testimgigees intend to exploit the
existing tests to expose behavior deviations, generating new tests to extbecishanged or added
code is sometimes necessary. Because exploring the whole recgwetsibtes from the ground
for the new version is not economical, we can incorporate incrementaltatign to re-explore
only the parts of the state space that are affected by the program shange

In general, as has been suggested by longitudinal program analygBB2[Nwe can plan and
apply test generation across the multitude of program versions. We eanfasmation retained
from an earlier test generation to reduce the scope of the test geneyationewer version or to
better test a newer version. The way of strategically allocating testing nasmight enable us
to apply otherwise infeasible test generation over multiple versions of agmmgs opposed to a

specific version.
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Chapter 9

ASSESSMENT AND CONCLUSION

This dissertation proposes a framework for improving effectivenessitoimated testing in the
absence of specifications. A set of techniques and tools have bedpply within the framework.
First, we have defined redundant tests based on method input valugewehobed a tool for detect-
ing redundant tests among automatically generated tests; these identifiadaldtests increase
testing time without increasing the ability to detect faults or increasing devefopanfidence on
the program under test. Experimental results show that about 90% ofstsegenerated by the
commercial Parasoft Jtest 4.5 [Par03] are redundant tests. Sewverdve developed a tool that
generates only non-redundant tests by executing method calls symbolicatiyltwe the symbolic-
state space. Symbolic execution not only allows us to reduce the state gspagplbration but also
generates relevant method arguments automatically. Experimental resultshsttdhe tool can
achieve higher branch coverage faster than the test generationdrasedcrete-state exploration.
Third, we have used Daikon [Ern00] to infer behavior exercised bye#iging tests and feed the
inferred behavior in the form of specifications to a specification-bastdjgmeration tool [Par03].
Developers can inspect those generated tests that violate these ibieheedor, instead of inspect-
ing a large number of all generated tests. Experimental results show theeléfited tests have a
high probability of exposing anomalous program behavior (either faulilares) in the program.
Fourth, we have used the returns of observer methods to group tmstaites into abstract states,
from which we construct succint observer abstractions for inspecinrevaluation shows that the
abstract-state transition diagrams can help discover anomalous behatiay, ekception-throwing
behavior, and understand normal behavior in the class interface. Wwédthave defined value spec-
tra to characterize program behavior, compared the value spectraafraid version and a new
version, and used the spectra differences to detect behavior desiatitire new version. We have
further used value spectra differences to locate deviation roots. iEx@al results show that com-

paring value spectra can effectively expose behavior differenetgelen versions even when their
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actual outputs are the same, and value spectra differences can lie lgszde deviation roots with
high accuracy. Finally, putting behavior inference and test generatgmilter, we can construct
a feedback loop between these two types of dynamic analysis, starting wékisdimg test suite
(constructed manually or automatically) or some existing program runs. Wedteown several
instances of the feedback loop in different types of behavior infexeflae feedback loop produces

better tests and better approximated specifications automatically and incrementally

9.1 Lessons learned

Software testing research has been conducted for more than threesiedawever, when we look
at industry, we can find that only a few commercial automated testing toolsvailatde in the

market and better tool support is needed in order to meet the demand licsditgrare reliability.

The research in this dissertation has developed new technigues and togidsdee the effectiveness
of automated software testing. Our work does not assume that the progdentest is equipped
with specifications, because specifications often do not exist in praQiceresearch is motivated
to investigate whether benefits of specification-based testing can beexthiex great extent in the
absence specifications and then bring these benefits to a massive gamyglopers in industry.
Our research has shed light on this promising direction and pointed ou futork along this

direction. In this section, we summarize some lessons that we learned froregsbarch and we

hope these lessons may be helpful to other researchers (includingpus¥uing future research.

Dynamic analysis tools can be integrated tooRecently researchers [NEO1, Ern03, You03, CS05]
have proposed approaches that integrate dynamic and static analysisusBehe results
of dynamic analysis based on observed executions may not generaliseri® éxecutions,
static analysis can be used to verify the results of dynamic analysis [NEBXdause the
results of static analysis may be less precise (more conservative) thanamhaally occur at
runtime, dynamic analysis can be used to select the results of static analysisrtiztually
occur at runtime [CS05]. Our research shows that dynamic analysialeare integrated:

a dynamic behavior inference tool produces likely properties, whicheguadtest generation
tool to generate tests to violate these properties, and new generatedddsisher used to

infer new likely properties. A feedback loop on dynamic analysis then earobstructed.
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“Both measuring and managing redundancy are important.” Our redundant-test detection ap-
proach allows us not only to measure test redundancy but also to manage [grecisely,
avoid) test redundancy. Although previous research [MK01, KhBBB102, Mar05, VPK04]
proposed new techniques for directly generating nonequivalent métipods (therefore,
there is no redundancy among the generated tests), other existing &Esttgemtools may not
easily adopt these previously proposed new techniques, partly lecitease techniques may
require specifications or these techniques may not be integrated well vwsthtthads’ existing
test generation mechanisms. We found it important to measure how well @&tesiagjon tool
performs in terms of redundancy among its generated tests, and equallyanigoguide the
tool to improve its performance. Our proposed approach can measuesltiredancy of tests
generated bynytest generation tool and compare the performance of different tocdsl loais
the measurement results. Indeed, existing test adequacy criteria ssigiessent coverage
can also be used to compare the performance of different tools in ternasisfi/mg these
criteria; however, our proposed measurement offers an operati@yabf managing (more
precisely, avoiding) the test redundancy during or after the tools’ egigdist generation pro-

cess.

Breaking into pieces helps.Traditional test-generation techniques consider two tests are different
(therefore, both are needed) if these two tests consist of differenbheguences; however,
it is often expensive to exercise all possible method sequences withiraeraall sequence-
length bound. In fact, we care about the program behavior exerbis&dch method call
individually. After we break a method sequence into pieces of method callsweitan
check whether at least one of these individual method calls exercisketewior that has not
been exercised before. Breaking the whole into pieces and focusipigoss instead of the

whole can offer opportunities for reducing the space for exploration.

Grouping pieces helps.After the generated tests exercise the concrete state space, the state trans
tion diagram constructed from the whole concrete state is often too complicabeduseful
for inspection. After we use an observer method to group together tltwsmete states

whose immediately observable behaviors are the same, we can produngrectsdiagram
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for inspection, reducing the human effort in test inspection. In testrgéor based on state
exploration, it is often too expensive to explore the whole concrete state spur test gener-
ation approach then uses symbolic execution to group together thoseteosiates that can

be instantiated from the same symbolic state, reducing the space for exploratio

Looking inside helps. Traditional regression testing techniques look at the observable outputs o
two program versions and check whether they are different; howigvemnften difficult for
existing tests to propagate behavior deviations inside the program execistibie observable
outputs. Checking inside the program executions can help expose titeséady deviations
even if these deviations are not propagated to the observable outpugs.aibbject-oriented
program is tested, the state of a receiver object can affect the belwdive method call
invoked on the receiver object. As was pointed out by Binder [BinQ4thite limiting scope
of effect, encapsulation is an obstacle to controllability and observability demgntation
state.” Consequently, existing test generation tools consider a reobiet as a black box
and invoke different sequences of method calls on the receiver objeatever, our research
on redundant-test detection and test generation shows that testing toaslidaok inside

receiver object states at testing time in order to generate tests more effectiv

Exploit the most out of artifacts that already exist in practice. We found that it is a good start-
ing point for tools to first take full advantage of those artifacts that ajrexikt in practice
before requiring developers to invest effort in writing extra artifactslgdor the tools. The
relatively popular adoption of Parasoft Jtest [Par03] and Agitar Agi{&giO4] in industry
is partly due to their “push button” feature in test automation. At the same timeder t
improve tools’ effectiveness, we should exploit the most out of the atsithat already exist.
For example, if arquals method exists for a class, our research on redundant-test detection
and test generation uses it as an abstraction function to reduce the atadmpexploration.
Our research on test generation can use the arguments exercisedigniinely constructed
tests to explore the state space. Our research on test abstraction alsthseseer meth-
ods of a class as abstraction functions to reduce the state space fatimsp®ur research

on test selection uses the behavior exercised by the manually constrigttetbtguide test
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generation and selection.

It is sometimes unavoidable for a tool to ask help from developers (isely). Our research tries to
push up the limit of benefits that automated testing tools can provide; howevésund that
we cannot totally leave developers out of the picture, because it is dffenltifor the tools
to infer the exact intent or expected behavior of the program underQestresearch on test
selection, test abstraction, and regression testing produces resudevédopers to inspect.
We found that it is important to allow developers to invest their inspectiontsffio an eco-
nomical way; otherwise, developers would simply give up investing theirictgm efforts
(thus giving up using the tools). For example, instead of inspecting thetooftpach single
test, developers can inspect a small subset of tests selected by owrleetibs approach
(together with their violated abstractions). Instead of inspecting the completate-state
transition diagram, developers can inspect the succinct observeaclusis generated by
our test abstraction approach. When presenting information for dearslog inspect, tools
should be carefully designed to include interesting information as much abfeoand at the

same time exclude uninteresting information as much as possible.

Working around industrial tools helps. We started the project on test selection for inspection by
integrating Daikon [Ern00] and Parasoft Jtest 4.5 [Par03], which ésajra few automated
test-generation tool in industry and has a relatively large group of .ukater we started a
project on redundant-test detection by detecting a high percentagdurfdant tests among
tests generated by Parasoft Jtest 4.5. We found that this strategykangvaround industrial
tools allows a research project to make an impact on industry more easilyiolegh transfer
or tool adoption in industry is a complex procedure, involving both techaimdinontechnical
issues. By working around industrial tools, our research can catelstirys attention and
facilitate technology transfer by demonstrating that our new techniqueasngaiave existing

industrial tools and can be potentially incorporated by them.

Automatically generating complex arguments is more difficult than epected. Test generation
techniques based on concrete-state exploration assumes that a setad argtlments are

provided and then invokes methods with these arguments to explore theteestate space.
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Our tool implementation dynamically collects the arguments exercised by a JUritass,
which is either manually constructed or automatically generated by existingeestagion
tools. We found that complex arguments generated by existing test gendrmtls [Par03,
CSO04] are often not satisfactory when testing some classes that aratactdictures. This
limitation prevents our test-generation tools from being applied on a signifpeation of
classes in practice. Although our test generation techniques basedntiolgy execution
can automatically derive relevant arguments during state exploration, tbe tygenerated
arguments are still limited to primitive types. One future solution is to explore thesgiate
of the argument-type objects using method calls. Another solution is to capidireaay the
arguments invoked on the class under test when running system tests (3&5]. Indeed, if
class invariants for complex-argument classes exist, some specificaged-test-generation

tools [MKO1, BKMO02] can be used to generate valid complex arguments.

Practical lightweight specifications may help. Although our research has developed testing tech-

niques and tools that do not require specifications, we found that thetieéiness of auto-
mated testing could be further improved if the tools are given extra guidanites iform

of lightweight specifications. In order to make writing specification pract&acifications
shall be easy to write and understand. For example, Korat [BKMO2)®ayenerates non-
redundant tests by usingrapOk method, which is an implementation for checking a class
invariant [LBR98, LG0O0]. Tillmann et al. [TSO5] proposed an apptottat allows devel-
opers to write parameterized unit tests, which embed assertions for chedgebraic spec-
ifications [GH78]. Then their approach uses symbolic execution to autorhatismerate

relevant arguments for the parameterized unit-test methods.

Model-based testing may be a good way to go when doing integratiom eystem testing. Our re-

search primarily focuses on unit testing. Although some technigues in seaneh may be
adapted to be applied in integration or system testing, integration or systeny testime
absence of models (specifications) seems to be more challenging, paglsbesf the scal-
ability issue. We suspect that developers would be more willing to write modeds\idnole

(sub)system, because the return on investment is much higher than wrigicifjcgdions for
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a class unit. Industrial experiences from Microsoft [GGSV02, Fau] BBM [Par04] have

shown promising results of model-based testing.

Despite the progress we have made in this research, there is much spdoe d¢efr future
work in improving the effectiveness of automated software testing. Oaarels strategy has been
to tackle real but low-end problems where no specifications are assuntefhais on the units’
sequential, functional behaviors (even if structurally complex). Wheeldping techniques and
tools for tackling these problems, we learned that the success of automstied teepends on
good coordination of effort between computers and developers. ciafigevhen we go beyond
low-end problems and try to focus on integration or system testing, nartidmal testing, and so
on, developers might need to provide significantly more guidance to the tootgptove testing

effectiveness.
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