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Abstract. Unit testing, a common step in software development, presents a chal-
lenge. When produced manually, unit test suites are often insufficient to identify
defects. The main alternative is to use one of a variety of automatic unit-test gener-
ation tools: these are able to produce and execute a large number of test inputs that
extensively exercise the unit under test. However, without a priori specifications,
programmers need to manually verify the outputs of these test executions, which is
generally impractical. To reduce this cost, unit-test selection techniques may be used
to help select a subset of automatically generated test inputs. Then programmers
can verify their outputs, equip them with test oracles, and put them into the existing
test suite. In this paper, we present the operational violation approach for unit-test
generation and selection, a black-box approach without requiring a priori specifica-
tions. The approach dynamically generates operational abstractions from executions
of the existing unit test suite. These operational abstractions guide test generation
tools to generate tests to violate them. The approach selects those generated tests
violating operational abstractions for inspection. These selected tests exercise some
new behavior that has not been exercised by the existing tests. We implemented
this approach by integrating the use of Daikon (a dynamic invariant detection tool)
and Parasoft Jtest (a commercial Java unit testing tool), and conducted several
experiments to assess the approach.

1. Introduction

The test first principle, as advocated by the extreme programming
development process [2], requires unit tests to be constructed and main-
tained before, during, and after the source code is written. A unit test
suite comprises a set of test cases. A test case consists of a test input and
a test oracle, which is used to check the correctness of the test result.
Programmers usually need to manually generate the test cases based on
written or, more often, unwritten requirements. In practice, program-
mers tend to write a relatively small number of unit tests, which in turn
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tend to be useful but insufficient for high software quality assurance.
Some commercial tools for Java unit testing, such as Parasoft Jtest [32],
attempt to fill the gaps not covered by any manually generated unit
tests. These tools can automatically generate a large number of unit test
inputs to exercise the program. However, no test oracles are produced
for these automatically generated test inputs unless programmers do
some additional work: in particular, they need to write some formal
specifications or runtime assertions [7], which seems to be uncommon
in practice. Without this additional work, the tools only check the pro-
gram’s robustness: checking whether any uncaught exception is thrown
during test executions [25, 8]. Without a priori specifications, manually
verifying the outputs of such a large number of test inputs requires
intensive labor, which is impractical. Unit-test selection is a means
to address this problem by selecting the most valuable subset of the
automatically generated test inputs. Then programmers can inspect
the executions of this much smaller set of test inputs to check the
correctness or robustness, and to add oracles.

When a priori specifications are not provided, test generation tools
usually perform white-box test generation. They try to generate tests
to increase structural coverage of the program. In white-box test gen-
eration, the tools cannot get the extra guidance provided by a pri-

ori specifications. For example, the preconditions in specifications can
guide test generation tools to generate only those inputs that satisfy the
preconditions, which are valid test inputs [32, 4]. The postconditions
in specifications can guide test generation tools to generate test in-
puts to violate the postconditions, which are fault-exposing test inputs
[32, 24, 17].

Operational violation is a black-box test generation and selection
approach that does not require a priori specifications. An operational

abstraction describes the actual behavior during program execution
of an existing unit test suite [21]. We use the generated operational
abstractions to guide test generation tools, so that the tools can more
effectively generate test inputs to violate these operational abstractions.
If the execution of an automatically generated test input violates an
operational abstraction, we select this test input for inspection. The
key idea behind this approach is that the violating test exercises a
new feature of program behavior that is not covered by the existing
test suite. We have implemented this approach by integrating Daikon
[12] (a dynamic invariant detection tool) and Parasoft Jtest [32] (a
commercial Java unit testing tool).

The next section describes the example that we use to illustrate our
approach. Section 3 presents background information on the unit-test
generation and selection problems, and two methods that we integrate.
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Section 4 presents the operational violation approach. Section 5 dis-
cusses the issues in the approach. Section 6 describes the experiments
that we conducted to assess the approach. Section 7 discusses related
work, and then Section 8 concludes.

2. Example

This section presents an example to illustrate how programmers can
use our approach to test their programs. The example is a Java imple-
mentation uniqueBoundedStack of a bounded stack that stores unique
elements of integer type. Figure 1 shows the class including several
method implementations that we shall refer to in the rest of the pa-
per. Stotts et al. coded this Java implementation to experiment with
their algebraic-specification-based approach for systematically creat-
ing unit tests [37]; they provided a web link to the full source code
and associated test suites. Stotts et al. also specified formal algebraic
specifications for a bounded stack, whose behavior has a considerable
overlap with uniqueBoundedStack. The specifications are described in
the appendix. The only difference between the specified bounded stack
and uniqueBoundedStack is the way of handling the uniqueness of the
elements stored in a stack.

In the class implementation, the array elems contains the elements
of the stack, and numberOfElements is the number of the elements
and the index of the first free location in the stack. The max is the
capacity of the stack. The push method first checks whether the el-
ement to be pushed exists in the stack. If the same element already
exists in the stack, the method moves the element to the stack top.
Otherwise, the method increases numberOfElements after writing the
element if numberOfElements does not exceed the stack capacity max.
If the stack capacity is exceeded, the method prints an error message
and makes no changes on the stack. The pop method simply decreases
numberOfElements. The top method returns the element in the array
with the index of numberOfElements-1 if numberOfElements >= 0. Oth-
erwise, the method prints an error message and returns -1 as an error
indicator. The getSize method returns numberOfElements. Given an
element, the isMember method returns true if it finds the same element
in the subarray of elems up to numberOfElements, and returns false

otherwise.
Stotts et al. have created two unit test suites for this class: a basic

JUnit [23] test suite (8 tests), in which one test method is generated
for a public method in the target class; and a JAX test suite (16 tests),
in which one test method is generated for an axiom in the algebraic
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public class uniqueBoundedStack {

private int[] elems;

private int numberOfElements;

private int max;

public uniqueBoundedStack() {

numberOfElements = 0;

max = 2;

elems = new int[max];

}

public void push(int k) {

int index;

boolean alreadyMember;

alreadyMember = false;

for(index=0; index<numberOfElements; index++) {

if(k==elems[index]) {

alreadyMember = true;

break;

}

}

if (alreadyMember) {

for (int j=index; j<numberOfElements-1; j++)

elems[j] = elems[j+1];

elems[numberOfElements-1] = k;

} else {

if (numberOfElements < max) {

elems[numberOfElements] = k;

numberOfElements++;

return;

} else {

System.out.println("Stack full, cannot push");

return;

}

}

}

public void pop(){

numberOfElements--;

}

public int top(){

if (numberOfElements < 1) {

System.out.println("Empty Stack");

return -1;

} else {

return elems[numberOfElements-1];

}

}

public int getSize() {

return numberOfElements;

}

public boolean isMember(int k) {

for(int index=0; index<numberOfElements; index++)

if (k==elems[index])

return true;

return false;

}

...

}

Figure 1. The uniqueBoundedStack program
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specifications (shown in the appendix). The basic JUnit test suite does
not expose any fault but one of the JAX test cases exposes one fault
(handling a pop operation on an empty stack incorrectly). In practice,
programmers usually fix the faults exposed by the existing unit tests
before they augment the unit test suite. In this example and for our
analysis of our approach, instead of fixing the exposed fault, we remove
this fault-revealing test case from the JAX test suite to make all the
existing test cases pass.

3. Background

We next describe the unit-test generation and selection problems that
we address, and the operational abstraction generation and specification-
based test generation that we integrate.

3.1. Unit-test generation and selection

In this work, the objective of unit-test generation is to automatically
generate tests to augment the existing tests for a program unit. This
activity is also called unit-test augmentation. More precisely, we want
to generate tests to exercise a program unit’s new behavior that is not
exercised by the existing tests. More formally, the unit-test generation
problem is described as follows.

PROBLEM 1. Given a program unit u, a set S of the existing tests for

u, generate new tests that exercise new features not being exercised by

the execution of any test in S.

The term feature is intentionally vague, since it can be defined in dif-
ferent ways. For fault detection, a new feature could be fault-revealing
behavior that does not occur during the execution of the existing tests.
In black-box test generation, a new feature could be a predicate in the
specifications for the unit [6]. In white-box test generation, a new fea-
ture could be program behavior exhibited by executing a new structural
entity, such as statement, branch, or def-use pair.

In practice, automatic unit-test generation tools often generate a
large number of tests, and not all of these tests exercise new features.
The objective of unit-test selection is to select the most valuable subset
of the automatically generated test inputs, allowing a programmer both
to manually verify their test results and to augment the existing unit
tests. There are two closely related goals. For fault detection, the most
valuable test inputs are those that have the highest probability of expos-
ing faults, and verifying their test results can improve the probability
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of detecting faults. For robustness testing [25, 8], the most valuable test
inputs are those that have the highest probability of exposing failures. If
the test inputs actually expose failures, adding preconditions or input-
checking code against these test inputs can improve the robustness
of the code. For black-box or white-box test augmentation, the most
valuable test inputs are those that complement the existing tests to
together achieve a better testing criterion.

More formally, the objective of unit-test selection in this context is
to answer the following question as inexpensively as possible:

PROBLEM 2. Given a program unit u, a set S of the existing tests

for u, and a test t from a set S’ of unselected tests for u, does the

execution of t exercise at least one new feature that is not exercised by

the execution of any test in S?

If the answer is yes, t is removed from S’ and put into S. Otherwise,
t is removed from S’ and discarded. In this work, the initial set S

is the existing unit tests, which are usually manually written. The
set S’ of unselected tests is automatically generated tests. Residual

structural coverage characterizes the structural entities that have not
been covered by existing tests [33]. In white-box test augmentation, we
select a test that can decrease residual structural coverage and thus
increase structural coverage. In black-box test augmentation, we select
a test that covers a new predicate in a priori specifications [6].

Since manual effort is required to verify the results of selected test
inputs, it is important to select a relatively small number of tests. This
is different from the problems that traditional test selection techniques
address [6, 21]. In those problems, there are test oracles for unselected
test inputs. Therefore, selecting a relatively large number of tests during
selection is usually acceptable for those problems, but is not practical
in this work.

3.2. Operational abstraction generation

An operational abstraction is a collection of logical statements that
abstract the program’s runtime behavior [21]. It is syntactically iden-
tical to a formal specification. In contrast to a formal specification,
which expresses desired behavior, an operational abstraction expresses
observed behavior. Daikon [12], a dynamic invariant detection tool, can
be used to infer operational abstractions (also called invariants) from
program executions of test suites. These operational abstractions are
in the form of DbC annotations [27, 26, 31]. Daikon examines variable
values computed during executions and generalizes over these values
to obtain operational abstractions. In particular, Daikon predefines a
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set of grammars for common program properties and conjectures all
possible properties in the grammars for the variables at method entries
and exits. Then Daikon examines the execution data and discards any
properties that are invalidated. After processing all the execution data,
for each detected invariant, Daikon computes the probability that the
invariant would appear by chance in a random set of samples. The
invariant is reported only if its probability is smaller than a user-defined
confidence parameter. This filtering mechanism used by Daikon is called
statistical tests. Like other dynamic analysis techniques, the quality of
the test suite affects the quality of the analysis. Deficient test suites or
a subset of sufficient test suites may not help to infer a generalizable
program property. Nonetheless, operational abstractions inferred from
the executed test suites constitute a summary of the test execution
history. In other words, the executions of the test suites all satisfy the
properties in the generated operational abstractions.

3.3. Specification-based unit-test generation

Given a formal specification, specification-based unit-test generation
tools can automatically generate test inputs for a unit. In this work,
we focus on a class’s specification that consists of preconditions and
postconditions for the methods in the class, in addition to class invari-
ants for the class [27, 26, 31]. Preconditions specify conditions that
must hold before a method can be executed. Postconditions specify
conditions that must hold after a method is completed. Class invariants
specify conditions that the objects of the class should always satisfy.
They are checked for every non-static, non-private method entry and
exit, and for every non-private constructor exit. Class invariants can
be treated as preconditions and postconditions for these methods.

Some testing tools, such as Korat [4] and AsmLT [13, 16], filter
the test input space based on preconditions to effectively automate
unit-test generation. Both Korel et al. [24] and Gupta [17] reduce test
generation for violating postconditions or assertions to the problem
of test generation for exercising a particular statement or branch. A
commercial Java unit testing tool, Parasoft Jtest 4.5 [32], can auto-
matically generate unit tests for a Java class. When no specifications
are provided, Jtest can automatically generate test inputs to perform
white-box testing. When specifications are provided with the class,
Jtest can make use of them to perform black-box testing. The provided
preconditions, postconditions, or class invariants give extra guidance to
Jtest in its test generation. If the code has preconditions, Jtest tries to
generate test inputs that satisfy all of them. If the code has postcondi-
tions, Jtest generates test inputs that verify whether the code satisfies
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Figure 2. An overview of the basic technique

these conditions. If the code has class invariants, Jtest generates test
inputs that try to make them fail. By default, Jtest tests each method
by generating arguments for them and calling them independently. In
other words, Jtest basically tries the calling sequences of length one by
default. Tool users can set the length of calling sequences in the range
of one to three. If a calling sequence of length three is specified, Jtest
first tries all calling sequences of length one followed by all those of
length two and three sequentially.

4. Operational Violation Approach

This section describes the operational violation approach. Section 4.1
explains the basic technique of the approach. Section 4.2 presents the
precondition removal technique to complement the basic technique.
Section 4.3 describes the iterative process of applying these techniques.

4.1. Basic technique

In the basic technique (Figure 2), we run the existing unit test suite
on the program that is instrumented by the Daikon frontend. The
execution produces a data trace file, which contains variable values
computed during execution. Then we use Daikon to infer operational
abstractions from the data trace file. We extend the Daikon toolset
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to insert the operational abstractions into the source code as DbC
annotations. We feed the resulting annotated code to Jtest, which au-
tomatically generates and executes new tests. The two symptoms of an
operational violation are that an operational abstraction is evaluated
to be false, or that an exception is thrown while evaluating an oper-
ational abstraction. When a certain number of operational violations
have occurred before Jtest exhausts its testing repository, Jtest stops
generating test inputs and reports operational violations. Jtest exports
all the operational violations, including the violating test inputs, to a
text file. Given the exported text file, we automatically comment out
the violated operational abstractions in the source code. At the same
time, we collect the operational violations. Then we invoke Jtest again,
which is given the program with reduced operational abstractions. We
repeat the preceding procedure iteratively until we cannot find any op-
erational violations. We call these iterations as inner iterations to avoid
their being confused with the iterations described in Section 4.3. The
inner iterations mainly comprise the activities of Jtest’s test generation
and execution, Jtest’s violation report, and our violated-operational-
abstraction collection and removal. These inner iterations enable Jtest
to fully generate violating tests.

Given the collected operational violations, we select the first en-
countered test for each violated operational abstraction. So when there
are multiple tests that violate the same operational abstraction, we
select only the first encountered one instead of all of them. Since a
selected violating test might violate multiple operational abstractions,
we group together all of the operational abstractions violated by the
same test. Then we sort the selected violating tests based on the number
of their violated operational abstractions. We put the tests that violate
more operational abstractions before those that violate fewer ones. The
heuristic behind this is that a test that violates more operational ab-
stractions might be more valuable than a test that violates fewer ones.
When programmers cannot afford to inspect all violating tests, they
can inspect just the top parts of the prioritized tests.

We finally produce a JUnit [23] test class, which contains the sorted
list of violating test inputs as well as their violated operational ab-
stractions. We developed a set of integration tools in Perl to fully
automate the preceding steps, including invoking Daikon and Jtest,
and postprocessing the text file. After running the integration tools,
programmers can then execute or inspect the resulting sorted tests to
verify the correctness of their executions. Optionally, programmers can
add assertions for the test inputs as test oracles for regression testing.

One example of operational violations is shown in Figure 3. The
example indicates a deficiency of the JAX test suite. The top part of
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JAX Test 1:

uniqueBoundedStack stack = new uniqueBoundedStack();

assertTrue(!stack.isMember(2));

JAX Test 2:

uniqueBoundedStack stack1 = new uniqueBoundedStack();

uniqueBoundedStack stack2 = new uniqueBoundedStack();

stack1.push(3);

assertTrue(stack1.isMember(3));

stack1.push(2);

stack1.push(1);//because max is 2, this push cannot put 1 into stack1

stack2.push(3);

stack2.push(2);

//the following assertion makes sure 1 is not in stack1

assertTrue(stack1.isMember(1) == stack2.isMember(1));

Inferred postconditions for isMember:

@post: [($pre(int, k) == 3) == ($result == true)]

@post: [($pre(int, k) == 3) == (this.numberOfElements == 1)]

Violating Jtest-generated test input:

uniqueBoundedStack THIS = new uniqueBoundedStack ();

boolean RETVAL = THIS.isMember (3);

Figure 3. An example of operational violations using the basic technique

Figure 3 shows two relevant tests (JAX Tests 1 and 2) used for in-
ferring the isMember method’s two violated postconditions (assertTrue
in the tests is JUnit’s built-in assertion method). The postconditions
are followed by the violating test input generated by Jtest. In the
postconditions, @post is used to denote postconditions. The $pre key-
word is used to refer to the value of an expression immediately before
calling the method; the syntax to use $pre is $pre(expressionType,

expression). The $result keyword is used to represent the return value
of the method.

The violated postconditions show the following behavior exhibited
by the existing tests:
− The isMember(3) method is invoked iff its return value is true.
− The isMember(3) method is invoked iff the numberOfElements (after

the method invocation) is 1.
The test input of invoking isMember(3) method on an empty stack
violates these two ungeneralizable postconditions.
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4.2. Precondition removal technique

In the basic technique, when the existing test suite is deficient, the
inferred preconditions might be overconstrained so that Jtest filters
out valid test inputs during test generation and execution. However,
we often need to exercise the unit under more circumstances than
what is constrained by the inferred overconstrained preconditions. To
address this, before we feed the annotated code to Jtest, we use a
script to automatically remove all inferred preconditions, and we thus
enable Jtest to exercise the unit under a broader variety of test in-
puts. Indeed, removing preconditions can make test generation tools
less guided, especially those tools that generate tests mainly based on
preconditions [4]. Another issue with this technique is that removing
inferred preconditions allows test generation tools to generate invalid
test inputs if some values of a parameter type are invalid. We shall
further discuss this invalid-input issue in Section 5.

Figure 4 shows one example of operational violations and the use
of this technique. @invariant is used to denote class invariants. The
example indicates a deficiency of the basic JUnit test suite, and the
violating test exposes the fault detected by the original JAX test suite.
The violated postconditions and invariant show the following behavior
exhibited by the existing tests:

− After the invocation of the pop() method, the element on top of
the stack is equal to the element on the second to top of the stack
before the method invocation.

− After the invocation of the pop() method, the numberOfElements is
equal to 0 or 1.

− In the entries and exits of all the public methods, the numberOfElements
is equal to 0, 1, or 2.

Since the capacity of the stack is 2, the inferred behavior seems to
be normal and consistent with our expectation. Jtest generates a test
that invokes pop() on an empty stack. In the exit of the pop() method,
the numberOfElements is equal to -1. This value causes the evaluation
of the first postcondition to throw an exception, and the evaluation of
the second postcondition or the invariant to get the false value. By
looking into the specifications shown in the appendix, we can know that
the implementation does not appropriately handle the case where the
pop() method is invoked on an empty stack; the specifications specify
that the empty stack should maintain the same empty state when the
pop() method is invoked.

The example in Figure 5 shows a deficiency of the JAX test suite,
and the violating test exposes another new fault. This fault is not re-
ported in the original experiment [37]. The inferred postcondition states
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Basic JUnit Test 1:

uniqueBoundedStack stack = new uniqueBoundedStack();

stack.push(3);

stack.pop();

Basic JUnit Test 2:

uniqueBoundedStack stack = new uniqueBoundedStack();

stack.push(3);

stack.push(2);

stack.pop();

Inferred postconditions for pop:

@post: [( this.elems[this.numberOfElements] ==

this.elems[$pre(int, this.numberOfElements)-1] )]

@post: [this.numberOfElements == 0 ||

this.numberOfElements == 1]

Inferred class invariant for uniqueBoundedStack:

@invariant: [this.numberOfElements == 0 ||

this.numberOfElements == 1 ||

this.numberOfElements == 2]

Violating Jtest-generated test input:

uniqueBoundedStack THIS = new uniqueBoundedStack ();

THIS.pop ();

Figure 4. The first example of operational violations using the precondition removal
technique

that the method return is equal to -1 iff the numberOfElements is equal
to 0. The code implementer uses -1 as the error indicator for calling the
top() method on an empty stack instead of an topEmptyStack exception
specified by the specifications shown in the appendix1. According to
the specifications, this stack should also accommodate negative integer
elements; this operational violation shows that using -1 as an error
indicator makes the top method work incorrectly when the -1 element
is put on top of the stack. This is a typical value-sensitive fault and
even a full-path-coverage test suite cannot guarantee to expose this
fault. The basic technique does not report this violation because of the
overconstrained preconditions. The existing tests push only positive
integers into the stack, so Daikon infers several preconditions for the
top method, which prevent the -1 element from being on top of the

1 The assertion in JAX Test 4 does not faithfully reflect the expected behav-
ior of throwing a topEmptyStack exception specified in the appendix. In other
words, the test writer did not implement JAX Test 4 correctly with respect to the
specifications.
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JAX Test 3:

uniqueBoundedStack stack = new uniqueBoundedStack();

stack.push(3);

stack.push(2);

stack.pop();

stack.pop();

stack.push(3);

stack.push(2);

int oldTop = stack.top();

JAX Test 4:

uniqueBoundedStack stack = new uniqueBoundedStack();

assertTrue(stack.top() == -1);

JAX Test 5:

uniqueBoundedStack stack1 = new uniqueBoundedStack();

uniqueBoundedStack stack2 = new uniqueBoundedStack();

stack1.push(3);

assertTrue(stack1.top() == 3);

stack1.push(2);

stack1.push(1);

stack2.push(3);

stack2.push(2);

assertTrue(stack1.top() == stack2.top());

stack1.push(3);

assertTrue(stack1.top() == 3);

Inferred postcondition for top:

@post: [($result == -1) == (this.numberOfElements == 0)]

Violating Jtest-generated test input:

uniqueBoundedStack THIS = new uniqueBoundedStack ();

THIS.push (-1);

int RETVAL = THIS.top ();

Figure 5. The second example of operational violations using the precondition
removal technique

stack. One such precondition is:
@pre: for (int i = 0 ; i <= this.elems.length-1; i++)

$assert ((this.elems[i] >= 0));

where @pre is used to denote a precondition and $assert is used to
denote an assertion statement within the loop body. Both the loop and
the assertion statement form the precondition.
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(1st iteration)

Inferred postcondition for isMember:

@post: [($result == true) == (this.numberOfElements == 1)]

Violating Jtest-generated test input:

uniqueBoundedStack THIS = new uniqueBoundedStack ();

THIS.top ();

THIS.push (2);

boolean RETVAL = THIS.isMember (1);

(2nd iteration)

Inferred postcondition for isMember:

@post:[($result == true) $implies (this.numberOfElements == 1)]

Violating Jtest-generated test input:

uniqueBoundedStack THIS = new uniqueBoundedStack ();

THIS.push (2);

THIS.push (0);

boolean RETVAL = THIS.isMember (0);

Figure 6. Operational violations during iterations

4.3. Iterations

After we perform the test selection using the techniques in Section 4.1
and 4.2, we can further run all the violating tests together with the
existing ones to infer new operational abstractions. By doing so, we can
automatically remove or weaken the operational abstractions violated
by the violating tests. Based on the new operational abstractions, Jtest
might generate new violating tests for the weakened or other new op-
erational abstractions. We repeat the process described in Section 4.1
or 4.2 until there are no reported operational violations or until the
user-specified maximum number of iterations has been reached. We call
these iterations as outer iterations. Different from the inner iterations
described in Section 4.1, these outer iterations operate in a larger scale.
They mainly comprise the activities of the existing tests’ execution,
Daikon’s operational-abstraction generation, our DbC annotation in-
sertion, the inner iterations, and our test selection and augmentation.
We have used a script to automate the outer iterations. In the rest of
the paper, for the sake of brevity, iterations will refer to outer iterations
by default.

Figure 6 shows two operational violations during the first and second
iterations on the JAX test suite. The JAX test suite exhibits that the
return of the isMember() method is true iff the numberOfElements after
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the method execution is equal to 1. In the first iteration, a violating
test shows that if the numberOfElements after the method execution is
equal to 1, the return of the isMember() method is not necessarily true

(it can be false). After the first iteration, we add this violating test
to the existing test suite. In the second iteration, with the augmented
test suite, Daikon infers an updated postcondition by weakening the ==

predicate (meaning iff or ⇔) to the $implies predicate (meaning ⇒).
The updated postcondition shows that if the return of the isMember()

method is true, the numberOfElements after the method execution is
equal to 1. In the second iteration, another violating test shows that if
the return of the isMember() method is true, the numberOfElements after
the method execution is not necessarily equal to 1 (it can be equal to 2).
After the second iteration, we add this violating test to the existing test
suite. In the third iteration, Daikon eliminates this $implies predicate
since Daikon does not observe any correlation between the return of
the isMember() method and the numberOfElements.

5. Discussion

5.1. Inferred Preconditions

The operational abstractions generated from the existing tests might
not be consistent with the oracle specifications, which are the actual
specifications (if any) supplied by the programmers. Assume that OA PRE

and OS PRE are the domains constrained by the preconditions of the op-
erational abstractions and the oracle specifications, respectively. Valid
domains are the ones that satisfy the preconditions of the oracle spec-
ifications, and invalid domains are the ones that do not satisfy these
preconditions. Recall that specification-based test generation tools such
as Jtest usually generate and execute only the test inputs that satisfy
the preconditions. The following is the analysis of different potential
relationships between OA PRE and OS PRE and their effects on Jtest’s
test generation:

1. If (OS PRE - OA PRE) 6= ∅, Jtest does not generate any test inputs
in the valid domain of (OS PRE - OA PRE);

2. If (OA PRE - OS PRE) 6= ∅, Jtest might generate test inputs in the
invalid domain of (OA PRE - OS PRE);

3. If OA PRE = OS PRE, Jtest performs traditional specification-based
test generations as if precondition specifications were written by
programmers.

When the existing tests are only a few or insufficient, the basic
technique suffers mainly from the effect in the first case. But the basic
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technique can guide test generation tools to fully exercise the space
constrained by OA PRE, especially the boundaries of the space. For ex-
ample, assume there are two arguments x and y for a method, and the
existing tests exercise the (x, y) with different combinations, such as
the repeated occurrences of (0, 1), (1, 10), (5, 0), (7, 7), and (10,

5). Daikon might infer the following preconditions:
@pre: 0 <= x <= 10

@pre: 0 <= y <= 10

even if the existing tests never exercise any of the following (x, y) com-
binations: (0, 0), (0, 10), (10, 0), or (10, 10). Test generation tools
can generate these boundary combinations as test inputs to augment
the existing tests. However, these boundary test inputs might not be
selected by our approach unless they violate the existing operational
abstractions.

The precondition removal technique involves removing all the au-
tomatically generated preconditions (OA PRE). This addresses the the
first case by changing the situation to the second case. Class invari-
ants can be treated as preconditions and postconditions for every non-
static, non-private method of the class. Class invariants usually do
not involve arguments for a particular method but some object-field
variables. Therefore, keeping overconstrained class invariants does not
overrestrict the test generation tools that construct object states by
calling method sequences, such as Jtest. In the integration of Daikon
and Jtest, we keep the inferred class invariants in the precondition
removal technique.

Since we do not have or require an oracle specification in our ap-
proach, we are uncertain whether the guidance of our inferred precon-
ditions is underconstrained or overconstrained. We develop the basic
technique to tackle the issue of being underconstrained and develop
the precondition removal technique to tackle the issue of being over-
constrained. In future work, we plan to explore the spectrum that lie
between these two techniques. For example, we plan to use heuristics
to remove or weaken parts of the inferred preconditions.

5.2. Inferred Postconditions

After we write oracle specifications for a method, a fault is exposed
if a test input satisfies the preconditions, but its execution violates
the postconditions. However, in our operational violation approach, a
postcondition violation does not necessarily expose a fault, since either
inferred preconditions or postconditions are not necessarily the same
as the ones in the oracle specifications.
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If the execution of a valid test input causes the violation of an
inferred postcondition, there are two possible causes. The first cause
could be that the postcondition in the operational abstractions is more
constrained than the one in the oracle specifications. The operational
violation indicates that the violating test exercises a new program fea-
ture, which is not covered by the existing test suite. It is desirable
to select this violating test to augment the existing test suite. The
second cause could be that the violating test reveals a fault in terms
of correctness. Running the existing test suite on the code exhibits the
normal behavior reflected by the postcondition, whereas the violating
test makes the code exhibit the faulty behavior.

If the execution of an invalid test input (generated due to under-
constrained preconditions) causes the violation of an inferred postcon-
dition, the test input reveals a potential failure in terms of robust-
ness [25, 8]. The undesirable behavior could suggest programmers to
add the corresponding preconditions or input-checking code for defen-
sive programming. Indeed, the programmers might feel that the invalid
test input might not arise in the environment of using the code or
it is just too costly to add preconditions or checking code; therefore,
the programmers are not obligated to modify their existing code for
handling the selected invalid test input. In practice, programmers often
do not write down the preconditions or input-checking code that guards
against invalid test inputs; these implicit assumptions are hidden and
pose difficulties for other programmers to reuse the code or even for
the code owners to maintain the code. The problems can be alleviated
after our approach augments the existing test suite with these selected
failure-revealing test inputs, even if programmers do not modify the
code for adding preconditions or input checking. Indeed, if the tool that
implements our approach keeps suggesting the programmers to inspect
invalid test inputs that might not arise in the application environment,
the programmers would possibly stop using the tool. To validate our
approach against this pitfall, we need to conduct case studies with
programmers in future work. To alleviate this potential pitfall, we
could also improve the tool in future work to incorporate heuristics
for classifying some violating tests as invalid test inputs and exclude
them for inspection.

Human inspection and modification of the program or its specifica-
tions can take place either at the end of each iteration or after all the
iterations terminate. In the latter way, we re-initiate a new sequence
of iterations on the modified program or specifications. In either way,
if programmers modify the program by fixing exposed bugs or adding
input-checking code, we automatically incorporate these changes in the
subsequent iteration by operating on the modified program. If program-
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mers add preconditions for a method, we keep these manually added
preconditions while applying the basic technique or the precondition re-
moval technique in the subsequence iteration. Therefore these manually
added preconditions can prevent test generation tools from generating
corresponding invalid test inputs in the subsequent iteration.

If postconditions in the operational abstractions are less constrained
than the ones in the oracle specifications, our approach might miss
the chance of selecting fault-revealing tests if there is any fault. For
example, the postconditions in the oracle specifications might not be
able to be instantiated using Daikon’s predefined grammars [12, 29,
10] or the existing tests are not sufficient to pass statistical tests for
inferring postconditions. Even if the existing tests are sufficient enough
for inferring the exact set of postconditions in the oracle specifications
and the code is free of faults, our approach could not select any violating
test either.

Note that some violating test inputs for uniqueBoundedStack (such
as the ones in Figures 3 and 5) could be considered as equivalent to
some existing tests if we make a uniformity hypothesis [3, 15] on the
domain of stack elements. For example, the violating test in Figure 3
exercises the method sequence of invoking the constructor method,
the insert method (with an integer argument), and the top method;
this method sequence has been exercised by JAX Test 5 if the program
behaves similarly for different stack elements. However, the uniformity
hypothesis is sometimes not satisfied when testing the behavior of this
program: inserting -1 into the stack can cause the subsequent method
call of top to exhibit special behavior. In general, uniqueBoundedStack
does not satisfy the uniformity hypothesis because inserting an element
that already exists in the stack exhibits different behavior from the one
exhibited by inserting an element that does not exist in the stack.

5.3. Inference Mechanisms of Daikon

Daikon predefines a set of grammars used to describe inferred invariants
during invariant detection [12, 29, 10]. For scalar variables, Daikon
defines three types of grammars: SingleScalar, TwoScalar, and Three-
Scalar. SingleScalar is defined for invariants over a single numeric vari-
able, such as equality with a constant “x == a”, non-zero “x != 0”,
modulus “x ≡ a (mod b)”, a small set of constants “x ∈ {a, b, c}”,
and lying within a range “a 6 x 6 b”. The last two types of Sin-
gleScalar could be possibly expanded by running additional Jtest-generated
tests. For example, theoretically “x ∈ {a, b, c}” can be violated and
expanded to “x ∈ {a, b, c, d}” when Jtest generates a d value for x;
however, in Daikon’s default configuration, the maximum set size for
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this type of invariant is three. Therefore, “x ∈ {a, b, c}” is eliminated
when x with a d value is observed. Theoretically “a 6 x 6 b” can be
violated and expanded to “a 6 x 6 (b+1)” when Jtest generates a
(b+1) value for x. Statistical tests used by Daikon avoid the inference
of “a 6 x 6 (b+1)” because an invariant is not displayed unless the
confidence that the invariant occurs by chance is lower than a low
threshold. These Daikon built-in mechanisms prevent our approach
from selecting an infinite sequence of less interesting tests such as x

with the values of (a-1), (b+1), (a-2), (b+2), ...
TwoScalar is defined for invariants over two numeric variables, such

as ordering “x 6 y” and functions “y = fn(x)”. ThreeScalar is defined
for invariants over three numeric variables, such as linear relationships
“z = ax + by + c”.

For sequence (array) variables, Daikon defines three types of gram-
mars: SingleSequence, TwoSequence, and SequenceScalar. SingleSequence
is defined for invariants over one sequence variable, such as “a[] con-
tains no duplicates”. TwoSequence is defined for invariants over two
sequences, such as “a[] is a subsequence of b[]”. SequenceScalar is
defined for invariants over a scalar and a sequence, such as “x is a
member of a[]”.

Conditional invariants are invariants that are true only part of the
time. One example of a conditional invariant is an inferred postcondi-
tion shown in Figure 6:

[($result == true) $implies (this.numberOfElements == 1)]

This postcondition is a conditional invariant because it depends on
the predicate ($result == true) being true. By default, Daikon turns
off its inference for conditional invariants. Our experience shows that
these conditional invariants are often useful for applying our approach;
therefore, we turn on the inference for conditional invariants when using
Daikon to implement our approach.

6. Experiments

Testing is used not only for finding bugs but also for increasing our
confidence in the code under test. For example, generating and se-
lecting tests for achieving better structural coverage can increase our
confidence in the code although they do not find bugs; indeed, these
tests can be used as regression tests executed on later versions for
detecting regression bugs. Although our approach tries to fill gaps in
the existing test suite or identify its weakness in order to improve its
quality, our approach does not intend to be considered as a general ap-
proach for generating and selecting tests (based on the current program
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version) to increase the existing test suite’s capability of exposing future
arbitrarily introduced bugs (on future program versions) during pro-
gram maintenance. Therefore, when we designed our experiments for
assessing the approach, we did not use mutation testing [5] to measure
the capability of the selected tests in finding arbitrary bugs in general.
Instead, we conducted experiments to primarily measure the capability
of the selected tests in revealing anomalous behavior on the real code,
such as revealing a fault in terms of correctness or a failure in terms
of robustness. We do not distinguish these two types of anomalous
behavior because in the absence of specifications we often could not
distinguish these two cases precisely. For example, the violating tests
shown in Figure 4 and Figure 5 would have been considered as invalid
tests for revealing failures if the actual precondition for pop() were
(this.numberOfElements > 0) and the actual precondition for push(int
k) were (k >= 0); however, these two tests are valid fault-revealing tests
based on the specifications shown in the appendix. Indeed, we could
try to hand-construct specifications for these programs; however, the
code implementation and comments for these programs alone are not
sufficient for us to recover the specifications (especially preconditions)
easily and we do not have easy access to the program intentions orig-
inally residing in code authors’ mind. Note that if a selected test does
not expose anomalous behavior, it might still provide value in filling
gaps in the existing test suite. However, in the absence of specifications,
it would be too subjective in judging these tests in terms of providing
value; therefore, we did not perform such a subjective judgment in our
experiments.

In particular, the general questions we wish to answer include:

1. Is the number of automatically generated tests large enough for
programmers to adopt unit-test selection techniques?

2. Is the number of tests selected by our approach small enough for
programmers to inspect affordably?

3. Do the tests selected by our approach have a high probability of
exposing anomalous program behavior?

4. Do the operational abstractions guide test generation tools to better
generate tests for violating the operational abstractions?

5. Does the tests selected by our approach have a higher probabil-
ity of exposing anomalous program behavior than the tests se-
lected by the residual branch coverage approach [33], which is a
representative of the existing test selection techniques in practice?

We cannot answer all of these questions easily, so we designed ex-
periments to give an initial sense of the general questions of efficacy
of this approach. In the remaining of this section, we first describe the
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measurements in the experiments. We then present the experiment in-
strumentation. We finally describe the experimental results and threats
to validity.

6.1. Measurements

In particular, we collected the following measurements to address these
questions directly or indirectly:

− Automatically generated test count in the absence of any oper-
ational abstraction (#AutoT): We measured the number of tests
automatically generated by Jtest alone in the absence of any oper-
ational abstraction. We call these tests as unguided-generated tests.
This measurement is related to the first question.

− Selected test count (#SelT): We measured the number of the tests
selected by a test selection technique. This measurement is related
to the second question, as well as the fourth and fifth questions.

− Anomaly-revealing selected test count (#ART): We measured the
number of anomaly-revealing tests among the selected tests. These
anomaly-revealing tests expose anomalous program behavior (re-
lated to either faults in terms of correctness or failures in terms of
robustness). After all the iterations terminate, we manually inspect
the selected tests, violated postconditions, and the source code to
determine the anomaly-revealing tests. Although our test selection
mechanism described in Section 4.1 guarantees that no two selected
tests violate the same set of postconditions, multiple anomaly-
revealing tests might suggest the same precondition or expose the
same fault in different ways. This measurement is related to the
third question, as well as the fourth and fifth questions.

We collected the #AutoT measurement for each subject program. We
collected the #SelT and #ART measurements for each combination of the
basic/precondition removal techniques, subject programs, and number
of iterations. These measurements help answer the first three questions.

To help answer the fourth question, we used Jtest alone to produce
unguided-generated tests, then ran the unguided-generated tests, and
check them against the operational abstractions (keeping the precon-
ditions) generated from the existing tests. We selected those unguided-
generated tests that satisfied preconditions and violated postconditions.
We then collected the #SelT and #ART measurements for each subject
program, and compared the measurements with the ones for the basic
technique.

In addition, we used Jtest alone to produce unguided-generated
tests, then ran the unguided-generated tests, and check them against
the operational abstractions (removing the preconditions) generated
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from the existing tests. We selected those unguided-generated tests that
violated postconditions. We then collected the #SelT and #ART measure-
ments for each subject program, and compared the measurements with
the ones for the precondition removal technique.

To help answer the fifth question, we collected the #SelT and #ART

measurements for each subject program using the residual branch cov-
erage approach. We ran the unguided-generated tests, and selected
those tests that exercised a new branch, which was not covered by any
existing test or any previously selected test. Then we collected the #SelT
and #ART measurements for the residual branch coverage approach.

6.2. Experiment instrumentation

Table I lists the subject programs that we used in the experiments. Each
subject program is a Java class equipped with a manually written unit
test suite. The first column shows the names of the subject programs.
The second and third columns show the number of public methods, and
the number of lines of executable code for each program, respectively.
The fourth column shows the number of test cases in the test suite of
each program. The last two columns present some measurement results
that we shall describe in Section 6.3.

Among these subjects, UB-Stack(JUnit) and UB-Stack(JAX) are the
example (Section 2) with the basic JUnit test suite and the JAX test
suite (with one failing test removed), respectively [37]. RatPoly-1/RatPoly-2
and RatPolyStack-1/RatPolyStack-2 are the student solutions to two
assignments in a programming course at MIT. These selected solutions
passed all the unit tests provided by instructors. The rest of the subjects
come from a data structures textbook [38]. Daikon group members de-
veloped unit tests for 10 data structure classes in the textbook. Most of
these unit tests use random inputs to extensively exercise the programs.
We applied our approach on these classes, and five classes (the last five
at the end of Table I) have at least one operational violation.

In the experiments, we used Daikon and Jtest to implement our
approach. We developed a set of Perl scripts to integrate these two
tools. In Jtest’s configuration for the experiments, we set the length of
calling sequence as two. We used Daikon’s default configuration for the
generation of operational abstractions except that we turned on the
inference of conditional invariants. In particular, we first ran Jtest on
each subject program to collect the #AutoT measurement in the absence
of any operational abstraction. We exported the unguided-generated
tests for each program to a JUnit test class. Then for each program,
we conducted the experiment using the basic technique, and repeated
it until we reached the third iteration or until no operational viola-
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Table I. Subject programs used in the experiments.

program #pmethod #loc #tests #AutoT #ExT

UB-Stack(JUnit) 11 47 8 96 1

UB-Stack(JAX) 11 47 15 96 1

RatPoly-1 13 161 24 223 1

RatPoly-2 13 191 24 227 1

RatPolyStack-1 13 48 11 128 4

RatPolyStack-2 12 40 11 90 3

BinaryHeap 10 31 14 166 2

BinarySearchTree 16 50 15 147 0

DisjSets 4 11 3 24 4

QueueAr 7 27 11 120 1

StackAr 8 20 16 133 1

StackLi 9 21 16 99 0

tions were reported for the operational abstractions generated from
the previous iteration. At the end of each iteration, we collected the
#SelT and #ART measurements. We performed a similar procedure for
the precondition removal technique.

The Hansel tool is an extension to JUnit that adds code coverage
testing to the testing framework [20]. Based on the Hansel tool, we
developed a test selection tool based on residual branch coverage. We
used the test selection tool to collect the #SelT and #ART measurements
based on the residual branch coverage among the unguided-generated
tests.

6.3. Experimental results

The fifth column of Table I shows the #AutoT results. From the results,
we observed that except for the especially small DisjSets program,
Jtest automatically generated nearly 100 or more tests. We also tried
setting the length of the calling sequence to three, which caused Jtest to
produce thousands of tests for the programs. This shows that we need
test selection techniques since it is not practical to manually check the
outputs of all these automatically generated tests.

The last column (#ExT) of Table I shows the number of the auto-
matically generated tests that cause uncaught runtime exceptions. In
the experiments, since all the test selection methods under comparison
additionally select this type of tests, the #SelT and #ART measurements
do not count them for the sake of better comparison.

Table II and Table III show the #SelT and #ART measurements for the
basic technique and the precondition removal technique, respectively.
In either table, the iteration 1, iteration 2, and iteration 3 columns
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Table II. The numbers of selected tests and anomaly-revealing selected tests using
the basic technique for each iteration and the unguided-generated tests

program iteration 1 iteration 2 iteration 3 unguided

#SelT #ART #SelT #ART #SelT #ART #SelT #ART

UB-Stack(JUnit) 1 0 2 0

UB-Stack(JAX) 3 0

RatPoly-1 2 2

RatPoly-2 1 1 1 1

RatPolyStack-1

RatPolyStack-2 1 0

BinaryHeap 3 2 1 0 2 2

BinarySearchTree

DisjSets 1 1 1 1

QueueAr 6 1 2 1

StackAr 5 1 1 0 1 1

StackLi

median(#ART/#SelT) 20% 0% 0% 100%

average(#ART/#SelT) 45% 25% 0% 88%

Table III. The numbers of selected tests and anomaly-revealing selected tests using
the precondition removal technique for each iteration and the unguided-generated
tests

program iteration 1 iteration 2 iteration 3 unguided

#SelT #ART #SelT #ART #SelT #ART #SelT #ART

UB-Stack(JUnit) 15 5 6 1 1 0 4 1

UB-Stack(JAX) 25 9 4 0 3 1

RatPoly-1 1 1

RatPoly-2 1 1 1 1

RatPolyStack-1 12 8 5 2 1 0

RatPolyStack-2 10 7 2 0

BinaryHeap 8 6 8 6 6 0 4 3

BinarySearchTree 3 3 1 1

DisjSets 2 2 1 1

QueueAr 11 1 4 1 4 1

StackAr 9 1 1 0 1 1

StackLi 2 0 1 0

median(#ART/#SelT) 68% 17% 0% 75%

average(#ART/#SelT) 58% 22% 0% 62%
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show the results for three iterations. In Table II, the unguided column
shows the results for selecting unguided-generated tests that satisfy
preconditions and violate postconditions. In Table III, the unguided

column shows the results for selecting unguided-generated tests that
violate postconditions (no matter whether they satisfy preconditions).
In either table, for those #SelT with the value of zero, their entries and
their associated #ART entries are left blank. The bottom two rows of
either table show the median and average percentages of #ART among
#SelT. In the calculation of the median or average percentage, the
entries with a #SelT value of zero are not included.

The numbers of tests selected by both techniques vary across differ-
ent programs but on average their numbers are not large, so their exe-
cutions and outputs could be verified with affordable human effort. The
basic technique selects fewer tests than the precondition removal tech-
nique. This is consistent with our hypothesis that the basic technique
might overconstrain test generation tools. We observed that the num-
ber of tests selected by either technique is higher than the number of
tests selected by checking unguided-generated tests against operational
abstractions. This indicates that operational abstractions guide Jtest
to better generate tests to violate them. Specifically, the precondition
removal technique gives more guidance to Jtest for generating anomaly-
revealing tests than the basic technique. There are only two subjects
for which the basic technique generates anomaly-revealing tests but
Jtest alone does not generate any (shown in Table II); however, the
precondition removal technique generates more anomaly-revealing tests
than Jtest alone for most subjects (shown in Table III).

We observed that, in the experiments, the selected tests by either
technique have a high probability of exposing anomalous program be-
havior. In the absence of specifications, we suspect that many of these
anomaly-revealing tests are failure-revealing test inputs; programmers
can add preconditions, condition-checking code, or just pay attention
to the undesirable behavior when the code’s implicit assumptions are
not written down.

We describe a concrete case for operational violations in the exper-
iments as follows. RatPoly-1 and RatPoly-2 are two student solutions
to an assignment of implementing RatPoly, which represents an im-
mutable single-variate polynomial expression, such as “0”, “x − 10”,
and “x3 − 2 ∗ x

2 + 53 ∗ x + 3”. In RatPoly’s class interface, there is
a method div for RatPoly’s division operation, which invokes another
method degree; degree returns the largest exponent with a non-zero
coefficient, or 0 if the RatPoly is “0”. After we ran with Daikon the
instructor-provided test suite on both RatPoly-1 and RatPoly-2, we got
the same DbC annotations for both student solutions. The precondition
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Inferred postcondition for degree:

$result >= 0

Violating Jtest-generated test input (for RatPoly-1):

RatPoly t0 = new RatPoly(-1, -1);//represents -1*x^-1

RatPoly THIS = new RatPoly (-1, 0);//represents -1*x^0

RatPoly RETVAL = THIS.div (t0);//represents (-1*x^0)/(-1*x^-1)

Violating Jtest-generated test input (for RatPoly-2):

RatPoly t0 = new RatPoly(1, 0);//represents 1*x^0

RatPoly THIS = new RatPoly (1, -1);//represents 1*x^-1

RatPoly RETVAL = THIS.div (t0);//represents (1*x^-1)/(1*x^0)

Figure 7. Operational violations for RatPoly-1/RatPoly-2

removal technique selects one violating test for each student solution.
The selected violating test for RatPoly-1 is different from the one for
RatPoly-2; this result shows that Jtest takes the code implementation
into account when generating tests to violate the given DbC annota-
tions. The selected test for RatPoly-1 makes the program infinitely
loop until a Java out-of-memory error occurs and the selected test
for RatPoly-2 runs normally with termination and without throwing
exceptions. These tests are not generated by Jtest alone without being
guided with operational abstractions. After inspecting the code and its
comments, we found that these selected tests are invalid one, because
there is a precondition e >= 0 for RatPoly(int c, int e). This case
shows that the operational abstraction approach can help generate test
inputs to crash a program and then programmers can improve their
code’s robustness when specifications are absent.

We observed that although those non-anomaly-revealing selected
tests do not expose any fault, most of them represent some special class
of inputs, and thus may be valuable if selected for regression testing.
We observed, in the experiments, that a couple of iterations are good
enough in our approach. Jtest’s test generation and execution time
dominates the running time of applying our approach. Most subjects
took several minutes, but the BinaryHeap and RatPolyStack programs
took on the order of 10 to 20 minutes. We expect that the execution
time can be optimized if future versions of Jtest can better support the
resumption of test generation and execution after we comment out the
violated operational abstractions.

Table IV shows the experimental results for the residual branch
coverage approach. The last two columns of Table IV show the #SelT

and #ART measurements in the residual branch coverage approach. The
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Table IV. The numbers of selected tests and anomaly-revealing
selected tests using the residual branch coverage approach

program #total #pre #post #SelT #ART

branch residual residual

UB-Stack(JUnit) 41 13 5 5 1

UB-Stack(JAX) 41 1 1

RatPoly-1 125 3 3

RatPoly-2 139 9 9

RatPolyStack-1 22 7 6 1 0

RatPolyStack-2 16 0 0

BinaryHeap 34 2 0 1 0

BinarySearchTree 56 7 7

DisjSets 10 0 0

QueueAr 21 2 0 2 0

StackAr 20 1 0 1 0

StackLi 21 6 5 1 0

median(#ART/#SelT) – 0%

average(#ART/#SelT) – 3%

second column (#total branch) of Table IV shows the count of the
total branches for each subject. The third column (#pre residual)
presents the count of residual branches after executing the existing
tests but before executing any unguided-generated tests. The fourth
column (#post residual) presents the count of residual branches after
executing both the existing tests and the selected unguided-generated
tests. The bottom two rows of Table IV show the median and average
percentages of #ART among #SelT.

We observed that the existing tests have already left no residual
branches on two of the subjects. The unguided-generated tests can fur-
ther reduce the count of residual branches on half of the subjects. The
number of the selected tests or anomaly-revealing tests in the residual
coverage approach is fewer than the one in the operational violation
approach. We further measured the residual branch coverage after the
execution of both the existing tests and the tests selected by the op-
erational violation approach. The count of residual branches is usually
larger than the one in the residual branch coverage approach. This
indicates that the residual branch coverage approach is more effective
in selecting tests to achieve better branch coverage. On the other hand,
the tests selected by the residual branch coverage approach cannot
expose most of the anomalous program behavior that is exposed by the
tests selected by the operational violation approach. This suggests that
combining the residual branch coverage approach and the operational
violation approach may provide a better solution for unit-test selection.
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6.4. Threats to validity

The threats to external validity primarily include the degree to which
integrated third-party tools, the subject programs, and test cases are
representative of true practice. These threats could be reduced by more
experiments on wider types of subjects and third-party tools. Parasoft
Jtest 4.5 is one of the testing tools popularly used in industry and
the only specification-based test generation tool available to us at the
moment. Daikon is the only publicly available tool for generating op-
erational abstractions. Daikon’s scalability has recently been tackled
by using incremental algorithms for invariant detection [34]. In our
approach, we use Daikon to infer invariants based on only manual tests
in addition to selected violating tests; the size of these tests is often
small. However, Jtest 4.5 is not designed for being used in an iterative
way; if some operational abstractions can be violated, we observed that
the number of inner iterations can be more than a dozen and the elapsed
time could be longer than five minutes for some subjects. We expect
that the scalability of Jtest in our setting could be addressed by enhanc-
ing it to support incremental test generation when DbC annotations
are being changed. Furthermore, the elapsed time for Jtest’s test gen-
eration can be reduced by enhancing it to avoid generating redundant
tests [41]. Alternatively we can use other specification-based tools with
more efficient mechanisms for test generation, such as Korat [4].

We mainly used data structures as our subject programs and the
programs are relatively small (the scalability of Jtest 4.5 poses dif-
ficulties for us to try large subjects, but note that this is not the
inherent limitation of our approach but the limitation of one partic-
ular implementation of our approach). Although data structures are
better suited to the use of invariant detection and design-by-contract
specifications, Daikon has been used on wider types of programs [10].
The success of our approach on wider types of programs also depends
on the underlying testing tool’s capability of generating test inputs
to violate specifications if there exist violating test inputs. We expect
that the potential of our approach for wider types of programs could be
further improved if we use specification-based testing tools with more
powerful test generation capability, such as Korat [4] or CnC [9].

The main threats to internal validity include instrumentation effects
that can bias our results. Faults in our integration scripts, Jtest, or
Daikon might cause such effects. To reduce these threats, we manually
inspected the intermediate results of most program subjects. The main
threats to construct validity include the uses of those measurements in
our experiments to assess our approach. We measured the number of
anomaly-revealing tests to evaluate the value of selected tests. In future



Tool-Assisted Unit-Test Generation and Selection 29

work, we plan to measure some other possible attributes of the selected
tests. We used residual branch coverage approach as a representative of
the existing test selection approaches to compare with our approach. In
future work, we plan to use residual dataflow coverage for comparison,
since the fault-exposing capability of data flow coverage criteria has
been shown to be better than the one of branch coverage criteria [14].

7. Related work

We first discuss how our work relates to other projects on specification-
based, state-based, and structural testing. We then compare our work
with other testing approaches based on operational abstractions.

7.1. Specification-based, state-based, and structural

testing

Boyapati et al. develop the Korat tool to systematically explore the
input space of a given Java predicate that represents the method pre-
conditions [4]. Korat can efficiently generate all non-isomorphic in-
puts (within a given input size) that satisfy the preconditions. The
AsmLT [13, 16] tool adopts Korat’s input space pruning technique
to generate test inputs from an abstract-state-machine specification
language. Based on DbC specifications for a Java class, Parasoft Jtest
automatically generate unit tests that satisfy preconditions and try to
violate postconditions [32]. All these specification-based test generation
tools require a priori specifications. When specifications are provided
for a unit a priori, Chang and Richardson use specification coverage
criteria to suggest a candidate set of test cases that exercise new as-
pects of the specification [6]. Our approach uses generated operational
abstractions to guide test generation tools and select generated tests
without requiring a priori specifications. Our approach allows program-
mers to gain some benefits of specification-based testing without the
pain of writing specifications. Although in this work, we integrated
Daikon and Jtest to implement our approach, we plan to implement our
approach by using some other specification-based unit-test generation
tools [4, 17].

In state-based testing, our previous work develops Rostra [41], a
framework for detecting redundant unit tests, and presents five fully
automatic techniques for representing and comparing object states.
Rostra has been used to select non-redundant tests generated by test-
generation tools; the selected tests preserve the ability to detect faults
and the structural coverage of the original test suite. The operational
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violation approach selects a much smaller set of tests for inspection and
the selected tests are not intended to preserve the fault-detection capa-
bility; the operational violation approach intends to help programmers
spend their inspection time on a small subset of generate tests that
exhibit new interesting behavior.

In white-box testing (such as testing based on residual structural
coverage [33]), programmers can select and inspect the tests that pro-
vide new structural coverage unachieved by the existing test suite. Test
case prioritization techniques, such as additional structural coverage
techniques, can produce a list of sorted tests for regression testing
[35, 36]. Clustering and sampling the execution profiles can also be used
to select a list of tests for inspection and selection [11]. Our approach
complements these existing test selection approach based on structural
coverage.

7.2. Operational-abstraction-based testing

Harder et al. present a testing technique based on operational ab-
stractions [21]. Their operational difference technique starts with an
operational abstraction generated from an existing test suite. Then it
generates a new operational abstraction from the test suite augmented
by a candidate test case. If the new operational abstraction differs
from the previous one, it adds the candidate test case to the suite.
This process is repeated until some number n of candidate cases have
been consecutively considered and rejected. Both operational difference
and our approach use the operational abstractions generated from test
executions. Our approach exploits operational abstractions’ guidance
to test generation, whereas operational difference operates on a fixed
set of given tests. In addition, their operational difference approach
selects tests mainly for regression testing, whereas our approach selects
tests mainly for inspection.

Hangal and Lam develop the DIDUCE tool to detect bugs and track
down the root causes [19]. The DIDUCE tool can continuously check a
program’s behavior against the incrementally inferred invariants during
the run(s), and produce a report of all invariant violations detected
along the way. A usage model of DIDUCE is proposed, which is similar
to the unit-test selection problem in this work. Both DIDUCE and our
approach make use of violations of the inferred invariants. The inferred
invariants used by our approach are produced by Daikon at method
entry and exit points, whereas DIDUCE infers a limited set of simpler
invariants from procedure call sites and object/static variable access
sites. Also DIDUCE does not investigate the effects of operational
abstractions on test generation.
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Nimmer and Ernst use failed static verification attempts to indicate
the deficiencies in the unit tests [30]. The unverifiable invariants indi-
cate unintended properties and programmers can get hints on how to
improve the tests. Our approach reports not only the violated invari-
ants but also the executable counterexamples for them. In addition,
the over-restrictiveness of preconditions makes static verification of
inferred invariants less effective. Even if a static verifier could confirm
an inferred postcondition given some overconstrained preconditions, it
is hard to tell whether it is generalizable to the actual preconditions. In
our approach, the precondition removal technique tries to tackle this
problem.

Gupta and Heidepriem propose a new structural coverage criterion
called invariant-coverage criterion for dynamic detection of program in-
variants [18]. Their experimental results showed that invariant-coverage
test suites could effectively augment branch coverage and definition-use
pair coverage test suites to remove spurious inferred invariants. They
manually generated all the tests in their experiments. The main goal
of their approach is to generate suitable tests that support accurate
detection of program invariants. Our approach focuses on selecting the
tests that violate the inferred postconditions. Our approach addition-
ally considers the effects of inferred preconditions and postconditions
on automatic test generation. Their invariant-coverage criterion can
be incorporated in the underlying test generation that our approach
integrates.

In previous work, we propose a generic framework for a feedback
loop between test generation and dynamic behavior inference [42]. In
the feedback loop, we can mutually enhance both test generation and
dynamic behavior inference iteratively. We have implemented a feed-
back loop between test generation and equivalent-object-state inference
[40]. The approach in this work focuses on operational abstractions
in the form of DbC specifications, which is another instance of the
feedback loop. The framework also accommodates other kinds of oper-
ational abstractions, such as protocol specification [1, 39] and algebraic
specification [22]. In future work, we plan to implement these other
operational abstractions in our approach.

8. Conclusion

Selecting automatically generated test inputs to check correctness and
augment the existing unit test suite is an important step in unit testing.
Inferred operational abstractions act as a summary of the existing test
execution history. These operational abstractions can guide test gener-
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ation tools to better produce test inputs to violate the abstractions.
We have developed the operational violation approach for selecting
generated tests that violate operational abstractions; these selected
violating tests are good candidates for inspection, since they exercise
new program features that are not covered by the existing tests. We
have conducted experiments on applying the approach on a set of data
structures. Our experimental results have shown that the size of the
selected tests is reasonably small for inspection, the selected tests gen-
erally expose new interesting behavior filling the gaps not covered by
the existing test suite, and the selected tests have a high probability of
exposing anomalous program behavior (either faults or failures) in the
code.

Instead of considering the test augmentation as a one-time phase,
it should be considered as a frequent activity in software evolution,
perhaps as frequent as regression unit testing. When a program is
changed, the operational abstractions generated from the same unit
test suite might change as well, presenting opportunities for possible
operational violations. Tool-assisted unit-test augmentation may be a
practical means of evolving unit tests and assuring better unit quality.
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9. Appendix

Stotts et al. [37] provided formal algebraic specifications for a bounded
stack, whose behavior has a considerable overlap with uniqueBoundedStack

(shown in Figure 1). The only difference between the specified bounded
stack and uniqueBoundedStack is the way of handling the uniqueness of
the elements stored in a stack. The specification is specified using the
functional language SML [28]:

datatype BST = New of int |

push of BST * int ;

fun isEmpty (New(n)) = true |

isEmpty (push(B,e)) = false ;

fun maxSize (New(n)) = n |

maxSize (push(B,e)) = maxSize(B) ;

fun getSize (New(n)) = 0 |

getSize (push(B,e)) = if getSize(B)=maxSize(B)

then maxSize(B)

else getSize(B)+1 ;

fun isFull (New(n)) = n=0 |

isFull (push(B,e)) = if getSize(B)>=maxSize(B)-1

then true

else false ;

exception topEmptyStack;

fun top (New(n)) = raise topEmptyStack |

top (push(S,e)) = if isFull(S)

then top(S)

else e ;

fun pop (New(n)) = New(n) |

pop (push(S,e)) = if isFull(S)

then pop(S)

else S ;




