
DiffGen: Automated Regression Unit-Test 
Generation

Problem: 
 Software programs continue to evolve throughout their lifetime
 Existing test suite is often insufficient to cover changed behavior to guard 
against unintended changes

Solution:  
An approach and a tool, DiffGen, for generating regression unit tests 
 Given two versions, it instruments the code to insert new branches
 If these branches are covered, behavioral differences are exposed

 DiffGen uses a structural test  generation tool to generate tests for covering 
these branches
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Research Question: 
Can the regression test suite generated by DiffGen effectively detect regression 
faults that cannot be detected by previous state-of-the-art approach SeparateGen 
[1], which generates test suites separately for old and new versions?
Experiments: 
 Generate mutants for various subjects
 Generate tests for each version of mutant and original version of class under test 
separately (SeparateGen)
 Generate tests using DiffGen
 For each pair containing a mutant and original version, compare the detection of 
behavioral differences using test suites generated by SeparateGen and DiffGen
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Figure 1: High-Level Overview of DiffGen

DiffGen includes four components:
Change Detector  detects 
textually different methods
Instrumenter instruments the 
source code and synthesizes a test 
driver
Test Generator  generates tests 
for the  synthesized test driver. 
When executed, the generated 
tests expose behavioural 
differences

Approach

Table 3: Experimental results on larger subject programs

Example

public class BSTJUFDriver{
  public void compareInsert(BSTOld oldBST,
     MyInput input){
     BST bstNew = new BST();
     bstNew = copyObject(oldBST);
     boolean b1 = bstOld.insert(input);
     boolean b2 = bstNew.insert(input);
     if(b1 != b2)

 Assert(false);
     if(bstOld.size != bstNew.size)

 Assert(false);
     if(!bstOld.root.equals(bstNew.root))

 Assert(false);
  }
}

class BSTOld implements set{
Node node;
int size;
static class Node{
     MyInput value;
     Node left;
     Node right;
}
public BSTOld() {.....}

public boolean insert(MyInput m){
     Node t = root;
     while(true){
          if(t.compareTo(m.key)>0)  // if(t.compareTo(m.key)>=0
                 if(t.right == null){
                          t.right = new Node(m);
                          break;

}
else

                      t = t.right;
           else

                      if(t.left == null){
           t.left = new Node(m);

       break;
  }
else

                                           t = t.left;
.....

       }
}
public void remove(MyInput m){.....}
public void contains(MyInput m){.....}
.....

}

Branches to be covered to expose 
behavioural differences

Figure 5: Test driver synthesized for JUnit factory

Figure 2: The BSTOld class as in an old version. In a new version, The 
highlighted line is changed to the one shown in the comment.

Figure 4: The BST object states before and after  nodes with Keys 3 and 
5 are inserted, respectively for (a) the old version of class BST and (b) 
the new version of class BST.
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Table 2: Experimental results

Experiments: 
 Subjects and faults taken from Subject Infrastructure Repository [2]
 Seeded all available faults for JTopas one at a time
 Compared SeparateGen and DiffGen to detect the seeded faults

F:  Number of faults 
U:  Number of Faulty versions undetected using SeparateGen
D:  Number of faulty versions detected by DiffGen  among the ones not detected by 
SeparateGen

IF1: Improvement Factor of DiffGen over 
SeparateGen: IF1 = DG-killed/ JUF-unkilled

IF2: Improvement Factor of DiffGen over 
SeparateGen excluding mutants with same 
behavior: IF2 = DG-killed/ (JUF-unkilled – same-behavior)

Figure 3: The BST object states (for both versions) before and 
after nodes with Keys 3, 6, 2, and 7 are inserted, respectively.
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