
DiffGen: Automated Regression Unit-Test
Generation

Problem:
 Software programs continue to evolve throughout their lifetime
 Existing test suite is often insufficient to cover changed behavior to guard
against unintended changes

Solution:
An approach and a tool, DiffGen, for generating regression unit tests
 Given two versions, it instruments the code to insert new branches
 If these branches are covered, behavioral differences are exposed

 DiffGen uses a structural test generation tool to generate tests for covering
these branches

Evaluation

Kunal Taneja Tao Xie
 ktaneja@ncsu.edu xie@csc.ncsu.edu

Experiments on Larger Subject Programs

References

[1] R. B. Evans and A. Savoia. Differential testing: a new approach to change detection. In Proc.
ESEC/FSE, pages 549–552, 2007

[2] H. Do, S. G. Elbaum, and G. Rothermel. Supporting controlled experimentation with testing
techniques: An infrastructure and its potential impact. Empirical Software Engineering: An
International Journal, 10(4):405–435,2005.

Research Question:
Can the regression test suite generated by DiffGen effectively detect regression
faults that cannot be detected by previous state-of-the-art approach SeparateGen
[1], which generates test suites separately for old and new versions?
Experiments:
 Generate mutants for various subjects
 Generate tests for each version of mutant and original version of class under test
separately (SeparateGen)
 Generate tests using DiffGen
 For each pair containing a mutant and original version, compare the detection of
behavioral differences using test suites generated by SeparateGen and DiffGen

V1

Change Detector

Syntactically
Different
Methods

Instrumenter

Regression Test
Suite

V2

Figure 1: High-Level Overview of DiffGen

DiffGen includes four components:
Change Detector detects
textually different methods
Instrumenter instruments the
source code and synthesizes a test
driver
Test Generator generates tests
for the synthesized test driver.
When executed, the generated
tests expose behavioural
differences

Approach

Table 3: Experimental results on larger subject programs

Example

public class BSTJUFDriver{
 public void compareInsert(BSTOld oldBST,
 MyInput input){
 BST bstNew = new BST();
 bstNew = copyObject(oldBST);
 boolean b1 = bstOld.insert(input);
 boolean b2 = bstNew.insert(input);
 if(b1 != b2)

 Assert(false);
 if(bstOld.size != bstNew.size)

 Assert(false);
 if(!bstOld.root.equals(bstNew.root))

 Assert(false);
 }
}

class BSTOld implements set{
Node node;
int size;
static class Node{
 MyInput value;
 Node left;
 Node right;
}
public BSTOld() {.....}

public boolean insert(MyInput m){
 Node t = root;
 while(true){
 if(t.compareTo(m.key)>0) // if(t.compareTo(m.key)>=0
 if(t.right == null){
 t.right = new Node(m);
 break;

}
else

 t = t.right;
 else

 if(t.left == null){
 t.left = new Node(m);

 break;
 }
else

 t = t.left;
.....

 }
}
public void remove(MyInput m){.....}
public void contains(MyInput m){.....}
.....

}

Branches to be covered to expose
behavioural differences

Figure 5: Test driver synthesized for JUnit factory

Figure 2: The BSTOld class as in an old version. In a new version, The
highlighted line is changed to the one shown in the comment.

Figure 4: The BST object states before and after nodes with Keys 3 and
5 are inserted, respectively for (a) the old version of class BST and (b)
the new version of class BST.

Instrumented
Source Code

and Test Driver

Test Generator

Execution

Behavioral
Differences

Table 2: Experimental results

Experiments:
 Subjects and faults taken from Subject Infrastructure Repository [2]
 Seeded all available faults for JTopas one at a time
 Compared SeparateGen and DiffGen to detect the seeded faults

F: Number of faults
U: Number of Faulty versions undetected using SeparateGen
D: Number of faulty versions detected by DiffGen among the ones not detected by
SeparateGen

IF1: Improvement Factor of DiffGen over
SeparateGen: IF1 = DG-killed/ JUF-unkilled

IF2: Improvement Factor of DiffGen over
SeparateGen excluding mutants with same
behavior: IF2 = DG-killed/ (JUF-unkilled – same-behavior)

Figure 3: The BST object states (for both versions) before and
after nodes with Keys 3, 6, 2, and 7 are inserted, respectively.

Problem

Table 1: Experimental subjects

http://ase.csc.ncsu.edu/ NCSU ASE Supported in part by NSF grant CCF-0725190

