
Mining API Error-Handling Specifications
from Source Code

Mithun Acharya and Tao Xie

Department of Computer Science, North Carolina State University, Raleigh, NC, USA, 27695
{acharya, xie}@csc.ncsu.edu

Abstract. API error-handling specifications are often not documented, necessi-
tating automated specification mining. Automated mining of error-handling spec-
ifications is challenging for procedural languages such as C, which lackexplicit
exception-handling mechanisms. Due to the lack of explicit exception handling,
error-handling code is often scattered across different procedures and files mak-
ing it difficult to mine error-handling specifications through manual inspection of
source code. In this paper, we present a novel framework for mining API error-
handling specifications automatically from API client code, without any user in-
put. In our framework, we adapt a trace generation technique to distinguish and
generate static traces representing different API run-time behaviors.We apply
data mining techniques on the static traces to mine specifications that define cor-
rect handling of API errors. We then use the mined specifications to detect API
error-handling violations. Our framework mines 62 error-handling specifications
and detects 264 real error-handling defects from the analyzed open source pack-
ages.1

1 Introduction

Motivation. A software system interacts with third-party libraries through various Ap-
plication Programming Interfaces (API). Throughout the paper, we overload the term
API to mean either a set of related library procedures or a single library procedure in the
set – the actual meaning should be evident from the context. Incorrect handling of er-
rors incurred after API invocations can lead to serious problems such as system crashes,
leakage of sensitive information, and other security compromises. API errors are usu-
ally caused by stressful environment conditions, which mayoccur in forms such as
high computation load, memory exhaustion, process relatedfailures, network failures,
file system failures, and slow system response. As a simple example of incorrect API
error handling, asendprocedure, which sends the content of a file across the network as
packets, might incorrectly handle the failure of thesocket API (thesocket API can
return an error value of-1, indicating a failure), if thesendprocedure returns without
releasing system resources such as previously allocated packet buffers and opened file
handlers. Unfortunately, error handling is the least understood, documented, and tested
part of a system. Toy’s study [14] shows that more than 50% of all system failures in

1 This work is supported in part by ARO grant W911NF-08-1-0443.

a telephone switching application are due to incorrect error-handling algorithms. Cris-
tian’s survey [7] reports that up to two-thirds of a program may be devoted to error de-
tection and recovery. Hence, correct error handling shouldbe an important part of any
reliable software system. Despite the importance of correct error handling, program-
mers often make mistakes in error-handling code [4, 10, 17].Correct handling of API
errors can be specified as formal specifications verifiable bystatic checkers at compile
time. However, due to poor documentation practices, API error-handling specifications
are often unavailable or imprecise. In this paper, we present a novel framework for stat-
ically mining API error-handling specifications automatically from software packages
(API client code) implemented in C.

Challenges.There are three main unique challenges in automatically mining API
error-handling specifications from source code. (1) MiningAPI error-handling speci-
fications, which are usually temporal in nature, requires identifying API details from
source code such as (a)critical APIs (APIs that fail with errors), (b) different error
checks that should follow such APIs (depending on differentAPI error conditions), and
(c) proper error handling or clean up in the case of API failures, indicated by API errors.
Furthermore, clean up APIs might depend on the APIs called before the error is han-
dled. Static approaches [16, 17] exist for mining or checking API error-handling spec-
ifications from software repositories implemented in object-oriented languages such
as Java. Java has explicitexception-handlingsupport and the static approaches mainly
analyze thecatch andfinally blocks to mine or check API error-handling specifi-
cations. Procedural languages such as C do not have explicitexception-handling mech-
anisms to handle API errors, posing additional challenges for automated specification
mining: API details are often scattered across different procedures and files. Manually
mining specifications from source code becomes hard and inaccurate. Hence, we need
inter-procedural techniques to mine critical APIs, different error checks, and proper
clean up from source code to automatically mine error-handling specifications. (2) As
programmers often make mistakes along API error paths [4,10,14,17], the proper clean
up, being common among error paths and normal paths, should be mined from normal
traces (i.e., static traces without API errors along normalpaths) instead of error traces
(i.e., static traces with API errors along error paths). Hence, we need techniques to gen-
erate and distinguish error traces and normal traces, even when the API error-handling
specifications are not knowna priori. (3) Finally, API error-handling specifications can
be conditional– the clean up for an API might depend on the actual return value of
the API. Hence, trace generation has to associate conditions along each path with the
corresponding trace.

Contributions. To address the preceding challenges, we develop a novel framework
for statically mining API error-handling specifications directly from software packages
(API client code), without requiring any user input. Our framework allows mining sys-
tem code bases for API error-handling violations without requiring environment setup
for system executions or availability of sufficient system tests. Furthermore, our frame-
work detects API error-handling violations, requiring no user input in the form of spec-
ifications, programmer annotations, profiling, instrumentation, random inputs, or a set
of relevant APIs. In particular, in our framework, we apply data mining techniques on
generated static traces to mine specifications that define correct handling of errors for

the APIs used in the analyzed software packages. We then use the mined specifications
to detect API error-handling violations. In summary, this paper makes the following
main contributions:

– Static approximation of different API run-time behaviors. We adapt a static
trace generation technique [2] to distinguish and approximate different API run-time
behaviors (e.g., error and normal behaviors), thus generating error traces and normal
traces inter-procedurally.

– Specification mining and violation detection.We apply different mining tech-
niques on the generated error traces and normal traces to identify clean up code, dis-
tinguish clean up APIs from other APIs, and mine specifications that define correct
handling of API errors. To mine conditional specifications,we adapt trace generation
to associate conditions along each path with the corresponding trace. We then use the
mined specifications to detect API error-handling violations.

– Implementation and Experience.We implement the framework and validate
the effectiveness of the framework on 10 packages from theRedhat-9.0 distribution
(52 KLOC),postfix-2.0.16 (111 KLOC), and 72 packages from theX11-R6.9.0
distribution (208 KLOC). Our framework mines 62 error-handling specifications and
detects 264 real error-handling defects from the analyzed packages.

The remainder of this paper is structured as follows. Section 2 starts with a mo-
tivating example. Section 3 explains our framework in detail. Section 4 presents the
evaluation results. Section 5 discusses related work. Finally, Section 6 concludes our
paper.

2 Example

In this section, we use the example code shown in Figures 1(b)and 1(c) to define several
terms and notations (summarized in Figure 1(a)) used throughout the paper. We also
provide a high-level overview of our framework using the example code.

API errors. All APIs in the example code are shown in bold font. In Figure 1(c),
InitAAText andEndAAText areuser-defined procedures. In the figure, user-defined
procedures are shown in italicized font. The user-defined procedure in which an API is
invoked is called theenclosing procedurefor the API. In Figure 1(c),EndAAText,
for instance, is the enclosing procedure for the APIsXftDrawDestroy (Line 27),
XftFontClose (Line 28), andXftColorFree (Line 29). APIs can fail because of
stressful environment conditions. In procedural languages such as C, API failures are
indicated throughAPI errors. API errors are special return values of the API (such as
NULL) or distincterrno flag values (such asENOMEM) indicating failures. For example,
in Figure 1(b), APIrecvfrom returns a negative integer on failures. The API error from
recvfrom is reflected by the return variablecc. APIs that can fail with errors are called
ascritical APIs. A condition checking of API return values orerrno flag in the source
code against API errors is calledAPI-Error Check(AEC); we use AEC(a) to denote
AEC of API a. For example, AEC(recvfrom) is if(cc<0).

Error block. The block of code following an API-error check, which is executed if
the API fails is called theerror block. Error blocks contain error-handling code to handle
API failures. We use EB(a) to denote the error block of APIa. For example, Lines

Definitions and AcronymsLibrary Application Program Interface (API)API&Error Check (AEC). AEC(a) is the required error check for API a.Error Block (EB). EB(a) is the error block of API a. AEC(a) precedes EB(a). ViolatSpecifPath (P) Error Path (ErP) Error Exit&Path (ErExP)Error Return&Path (ErRP)Normal Path (NP) Error E it Trace (ErExT) 123Trace (T) Error Trace (ErT) Error Exit&Trace (ErExT)Error Return&Trace (ErRT)Normal Trace (NT) 45678(a) Definitions and Acronyms 910111213123 ~/Redhatb9.0/routed/ripquery/query .c#include <sys/socket.h>int main (...){... k t () 141516171845678 s = socket (...);...cc = recvfrom (s, ...)...if (cc < 0){ 1920212223910111213 ...close (s);exit (1);}...l () 2425262728141516 close (s)...} 293031(b) Example code from
Redhat-9.0/routed-0.17-14

tion (V) Error&Check Violation (ErCV)Multiple&API Violation (MAV)fication (S) Error&Check Specification (ErCS)Multiple&API Specification (MAS)~/X11bR6.9.0/x11perf/do_text.c#include <X11/Xft/Xft.h>...static XftFont *aafont;static XftDraw *aadraw;static XftColor aacolor;...int InitAAText(XParms xp, Parms p, int reps){...aafont = XftFontOpenName (...);if (aafont == NULL) {...return 0;}aadraw = XftDrawCreate (...);if (!XftColorAllocValue (..., &aacolor)){...XftFontClose (xpÌ>d, aafont);XftDrawDestroy (aadraw);...return 0;}...}...void EndAAText(XParms xp, Parms p){...XftDrawDestroy (aadraw);XftFontClose (xpÌ>d, aafont);XftColorFree (..., &aacolor);...}(c) Example code from
X11-R6.9.0/x11perf

Fig. 1.Terminologies and example code

9-11 in Figure 1(b), Lines 11-12 and 16-20 in Figure 1(c) represent EB(recvfrom),
EB(XftFontOpenName), and EB(XftColorAllocValue), respectively. A given API
can have multiple error blocks depending on the different ways that it can fail (not
shown in the examples for simplicity).

Paths, Traces, and Scenarios.A control-flow path exists between two program
pointsif the latter is reachable from the former through some set ofcontrol-flow edges,
i.e., Control Flow Graph (CFG)edges. Our framework identifies two types of paths
- error path andnormal path. There are two types of error paths. Any path from the
beginning of themain procedure to an exit call (such asexit) in the error block of
some API is called theerror exit-path. For example, all paths ending at theexit call at
Line 11 in Figure 1(b) are error exit-paths (exit call inside EB(recvfrom)). Any path
from the beginning of themain procedure to areturn call in the error block of some
API is called theerror return-path. For example, in Figure 1(c), all paths ending at the
return call at Lines 12 (return call inside EB(XftFontOpenName)) and 20 (return
call inside EB(XftColorAllocValue)) are error return-paths. Error exit-paths and er-
ror return-paths are together known aserror paths. A normal pathis any path from the
beginning of themain procedure to the end of themain procedure without any API er-
rors. For example, any path from Line 3 to Line 15 in Figure 1(b) is a normal path. For
a given path, a trace is the print of all statements that existalong that path. Error paths,

error exit-paths, error return-paths, and normal paths have corresponding traces:error
traces, error exit-traces, error return-traces, andnormal traces. Error exit-traces and
error return-traces are together known as error traces. TwoAPIs arerelatedif they ma-
nipulate at least one (or more) common variable(s). For example, in Figure 1(b), APIs
recvfrom andclose are related to APIsocket. Thesocket API producess, which
is consumedby the APIsrecvfrom andclose. A scenariois a set of related APIs in a
given trace. A given trace can have multiple scenarios. For example, if there were mul-
tiple socket calls in Figure 1(b), then eachsocket call, along with its corresponding
related APIs, forms a different scenario.

API error-handling specifications. We identify two types of API error-handling
specifications that dictate correct error handling along all paths in a program:error-
check specificationsandmultiple-API specifications. Error-check specifications dictate
that correct AEC(a)’s (API-Error Checks) exist for each APIa (which can fail), before
the API’s return value isusedor themain procedure returns. For a given APIa, the
absence of AEC(a) causes anerror-check violation. Multiple-API specifications dictate
that the rightclean upAPIs are called along all paths. Clean up APIs are APIs called,
generally before a procedure’s return or program’s exit, tofree resources such as mem-
ory, sockets, pipes, and files or torollback the state of a global resource such as the sys-
tem registry and databases. For example, in Figure 1(c),XftFontClose (Line 17) and
XftDrawDestroy (Line 18) are the clean up APIs in EB(XftColorAllocValue). In
Figure 1(c), one error-check specification (the return value of XftColorAllocValue
should be checked againstNULL) and two multiple-API specifications (XftFontOpenName
should be followed byXftFontClose, andXftDrawCreate should be followed by
XftDrawDestroy) are evident. Violation of a multiple-API specification along a given
path is amultiple-API violation. Multiple-API violations along error exit-paths could
be less serious as the operating system might reclaim unfreed memory and resource
handlers along program exits. However, there are several cases where explicit clean up
is necessary even on program exits. For instance, unclosed files could lose recorded
data along an error exit-path if the buffers are not flushed out to the disk. In addition,
any user-defined procedure altering a global resource (suchas the system registry or
a database) shouldrollback along error exit-paths to retain the integrity of the global
resource. Next, we present the high-level overview of our framework using the example
code.

The only input to our framework is the compilable source codeof software pack-
age(s) implemented in C. To mine specifications, our framework initially distinguishes
and generates API error traces and normal traces, for reasons explained later. Our frame-
work then detects API error-handling violations in the source code using the mined
specifications. In particular, our framework consists of the following three stages:

Error/normal trace generation. The trace generation stage distinguishes and gen-
erates error traces (error exit-traces and error return-traces) and normal traces inter-
procedurally. Along normal paths, it is difficult to distinguish clean up APIs from other
APIs. Hence, our framework identifiesprobableclean up APIs from the error traces.
For example, in Figure 1(b), our framework identifies the APIclose (Line 10) from
the error exit-trace that goes through EB(recvfrom). In Figure 1(c), our framework
identifiesXftFontClose (Line 17) andXftDrawDestroy (Line 18) from the error

return-trace that goes through EB(XftColorAllocValue). Note that, in Figure 1(c),
the clean up APIs can also be invoked through the user-definedprocedureEndAAText,
inter-procedurally. However, even in the error block, there could be other APIs that are
not necessarily clean up APIs (hence the term,probable). The final set of actual clean
up APIs and the APIs related to them are determined during thespecification mining
stage.

Specification mining.The specification mining stage generates error-check spec-
ifications and multiple-API specifications. Our framework mines error-check specifi-
cations from error traces by determining API-error checks (AEC) for each API. For
example, our framework determines AEC(recvfrom) to beif (cc < 0) from the
error-exit trace that goes through EB(recvfrom). Programmers often make mistakes
along API error paths. Hence, proper clean up, being common among error paths and
normal paths, should be mined from normal traces instead of error traces. Once prob-
able clean up APIs are mined from error traces, our frameworkmines APIs that might
be related to the probable clean up APIs from normal traces. For example, in Fig-
ure 1(c), our framework determines from normal traces thatXftFontClose is related
to XftFontOpenName, and XftDrawDestroy is related toXftDrawCreate (Fig-
ure 1(c), however, does not show normal paths or traces for simplicity). Our framework
generates multiple-API specifications by applying sequence mining on normal traces.

Verification. Our static verifier uses the mined specifications (error-check and multiple-
API specifications) to detect violations (error-check and multiple-API violations) in the
source code. Next, we present our framework in detail.

3 Framework

The algorithm presented in Figure 2 shows the details of our framework. There are 3
stages and 10 steps (numbered 1-10) in our algorithm. Section 3.1 describes the er-
ror/normal trace generation stage (Steps 1-6). Section 3.2(Steps 7-8) explains the steps
involved in mining API error-handling specifications from the static traces. Finally, Sec-
tion 3.3 describes the verification stage for detecting API error-handling violations of
the mined specifications (Steps 9-10). Our framework adaptsa trace generation tech-
nique developed in our previous work to generate static traces representing different
API run-time behaviors. The trace generation technique uses triggers to generate static
traces. Triggers are represented using finite state machines. The static traces generated
by the trace generation technique with a given trigger depend on the the transitions in
the trigger. Readers may refer to our previous work [2] for further details.

3.1 Error/normal Trace Generation

In this section, we explain how we adapt the trace generationtechnique [2] for gen-
erating API error and normal traces from source code. As shown in Figure 2, the er-
ror/normal trace generation stage has six steps: generate error traces (Step 1), process
error traces (Steps 2-4), identify critical APIs and probable clean up APIs from error
traces (Step 5), and finally, generate normal traces (Step 6). The various steps are ex-
plained next.

// = source code; = FSM; TG = TraceâGenerate; PDMC = PushâDown Model Check// R = critical APIs, PC = probable cleanâup APIs// ERROR/NORMAL TRACE GENERATION// Generate shortest error traces retValChkAPI exitmainErT = getShortest(TG(,));// Extract errorâreturn traces (ErRT) and errorâexit traces (ErExT) from ErT// Note that ErT = ErExT + ErRTErExT = getErExT(ErT);// E t t API h k (AEC) f E E T12 1 enderrnoChkstart APICALL 32mainentry enclosingprocedurereturn// Extract APIâerror checks (AEC) from ErExTAECSet = getAECSet(majorityMine(ErExT));// Use AECSet to extract ErRT from ErTErRT = getErRT(ErT, AECSet);// Identify critical APIs and probable clean up APIs from error traces (ErT)R, PC = getRandPC(ErT);345 R, PC getRandPC(ErT);// Generate random normal traces (NT) up to a specified upperâbound LNT = getRandomL(TG(,));56 1 endstart mainentry R, PC mainreturn// SPECIFICATION MINING// Generate errorâcheck specifications (ErCS) as FSMs from AECSetErCS = generateErCS(AECSet);// Generate multipleâAPI specifications (MAS) as FSMs from normal traces (NT)7 // Generate multiple API specifications (MAS) as FSMs from normal traces (NT)// Apply sequence mining with specified support on extracted scenariosMAS = generateMAS(sequenceMine(extractScenarios(NT), min_sup));// VERIFICATION// Detect errorâcheck violations (ErCV)8 foreach(in ErCS) { ErCV += getShortest(PDMC(,)); }// Detect MultipleâAPI violation along error pathsforeach(in MAS) {MAV += getShortest(PDMC(,)); }910
Fig. 2. The algorithm for mining API error-handling specifications

Step 1 - Generate error traces.An error trace starts from the beginning of the
main procedure and ends in some API error-block with an exit call (causing the pro-
gram to exit) or areturn call (causing the enclosing procedure to return). The trigger
FSM, sayF (Step 1, Figure 2), is used by our trace generator (procedureTG in the
figure) to generate error traces from the program source code(P). The procedureTG
represents our trace generation technique, which adapts the push-down model checking
(PDMC) process. TransitionsretValChk anderrnoChk in the triggerF (from State
2 to State3) identify the return-value check and error-flag check, respectively, for the
API. Transitions from State3 to the final state (Stateend) in the triggerF capture code
blocks following theretValChk or errnoChk in which the program exits or the en-
closing procedure returns. The procedureTG generates all traces inP that satisfy the
trigger F. However, the proceduregetShortest (Step 1, Figure 2) returns only the

shortest trace from the set of all traces generated byTG. As we are interested only in the
API-error check and the set of probable clean up APIs (PC) in the API error block for
a given API from error traces, the program statements prior to the API invocation are
not needed. Hence, it suffices to generate the shortest path for each API invocation with
a followingretValChk or errnoChk. If there are multipleretValChk or errnoChk
for an API call site, then our framework generates the shortest trace for each of the
checks. The triggerF captures the elements ofretValChk, errnoChk, and the code
block after these checks, even if these elements are scattered across procedure bound-
aries. However, the traces generated by this step can also have traces whereretValChk
or errnoChk is followed by a normal return of the enclosing procedure. Such traces,
which are not error traces, are pruned out in the next step.

Steps 2, 3, and 4 - Process error traces.Our framework easily extracts error exit-
traces from error traces (proceduregetErExT, Step 2, Figure 2): error traces that
end with an exit call are error exit-traces. We assume that the API retValChk or
errnoChk, which precedes an exit call in an error-exit trace, is an API-error check.
We then distinguish between thetrueandfalsebranches of the API-error check. For ex-
ample, in Figure 1(b), sinceexit(...) appears in the true branch of AEC(recvfrom)
(if(cc<0)), we assume that<0 is the error return value (API error) ofrecvfrom. For
each API, our framework records API-error check with majority occurrences (proce-
duremajorityMine, Step 3, Figure 2) among error exit-traces (proceduregetAECSet,
Step 3, Figure 2). As mentioned in the previous step, the traces generated in Step 1 can
also have traces whereretValChk or errnoChk is followed by a normal return of the
enclosing procedure. Our framework uses the API-error check set computed from error
exit-traces to prune out such traces to generate error return-traces (proceduregetErRT,
Step 4, Figure 2).

Step 5 - Identify critical APIs and probable clean up APIs from error traces.
Our framework computes the set R (critical APIs) and the set PC (probable clean up
APIs) in this step (proceduregetRandPc, Step 5, Figure 2). The set R of critical APIs
is easily computed from error exit-traces and error return-traces. A key observation here
is that it is much easier to find clean up APIs along error pathsthan normal paths. It is
because, on API failures, before the program exits or the enclosing procedure returns,
the primary concern is clean up. Along normal paths, however, it is difficult to separate
clean up APIs from other APIs. Hence, our framework identifies probable clean up
APIs (the set PC) from the error traces. The termprobableindicates that the APIs that
occur in error blocks need not always be clean up APIs. The mining phase prunes out
the non-clean-up APIs from the set PC. In the next step, we show how our framework
identifies APIs related to the probable clean up APIs. These related APIs occur prior to
API-error checks in the source code.

Step 6 - Generate normal traces.A normal trace starts from the beginning of the
main procedure and ends at the end of themain procedure. The procedureTG uses
the trigger FSM, sayF (Step 6, Figure 2), to generate normal traces from the program
source code (P). The edges for State 2 in the triggerF are critical (set R) and probable
clean up APIs (set PC). Our framework generates normal traces (involving critical and
probable clean up APIs) randomly up to a user-specified upperboundL (procedure
getRandomL, Step 6, Figure 2), inter-procedurally. The traces containthe probable

clean up APIs and the APIs related to them, if any. Finally, asAPI error-handling
specifications can be conditional, the clean up for an API might depend on the actual
return value of the API. As a simple example, for themalloc API, thefree API is
called only along paths in which the return value ofmalloc is notNULL (condition).
Hence, normal paths (normal traces) are associated with their corresponding conditions
involving API return values. The conditions, along with APIsequences, form a part of
normal traces and are used in the specification mining stage,explained next.

3.2 Specification Mining

The specification mining stage mines error-check and multiple-API specifications from
the static traces (Steps 7-8). The scenario extraction and sequence mining are performed
in Step 8.

Step 7 - Mine error-check specifications.Our framework generates error-check
specifications (proceduregenerateErCS, Step 7, Figure 2) as Finite State Machines
(FSM,FErCS) from the mined API-error check set. The FSMs representing the error-
check specifications specify that each critical API should be followed by the correct
error checks.

Step 8 - Mine multiple-API specifications.Our frameork mines multiple-API
specifications from normal traces (proceduregenerateMAS, Step 8, Figure 2) as FSMs
(FMAS). Normal traces include the probable clean up APIs (PC), APIs related to the
set PC, and the conditions (involving API return values). The main observation used
in mining multiple-API specifications from normal traces isthat programmers often
make mistakes along error paths [4, 10, 14, 17]. Hence, our framework mines related
APIs from only normal traces and not from error traces. However, a single normal
trace generated by the trace generator might involve several API scenarios, being of-
ten interspersed. A scenario (see Section 2) is a set of related APIs in a given trace.
Our framework separates different API scenarios from a given normal trace, so that
each scenario can be fed separately to our miner. We use a scenario extraction algo-
rithm (procedureextractScenarios, Step 8, Figure 2) [2] that is based on identify-
ing producer-consumerchains among APIs in the trace. The algorithm is based on the
assumption that an API and its corresponding clean up APIs have some form of data
dependencies between them such as a producer-consumer relationship. Each producer-
consumer chain is generated as an independent scenario. Forexample, in Figure 1(c),
the API XftFontOpenName (Line 9) producesaafont, which is consumed by the
API XftFontClose (Line 17). The APIsXftFontOpenName andXftFontClose are
generated as an independent scenario.

Our framework mines multiple-API specifications from independent scenarios us-
ing frequent-sequence mining (proceduresequenceMine, Step 8, Figure 2). LetIS be
the set of independent scenarios. We apply a frequent sequence-mining algorithm [15]
on the setIS with a user-specified supportmin sup (min sup ∈ [0, 1]), which pro-
duces a setFS of frequent sequences that occur as subsequences in at leastmin sup×
|IS| sequences in the setIS. Note that our framework can mine the different error-
handling specifications for the different errors of a given API as long as the different
specifications have enough support among the analyzed client code.

3.3 Verification

Our framework uses the specifications to find API error-handling violations (Steps 9-
10).

Steps 9 and 10 - Detect error-check and multiple-API violations.In Steps 1 and
6, we adapt the push-down model checking (PDMC) process for trace generation by
the procedureTG. Here we use the PDMC process for property verification. The spec-
ifications mined by our framework as FSMs (FErCS andFMAS) represent the error-
handling properties to be verified at this stage. Our framework verifies the property
FSMs inFErCS andFMAS against the source code (P). The mined specifications can
also be used to verify the correct API error handling in othersoftware packages. For
verifying conditional specifications, we adapt the PDMC process to track the value of
variables that take the return value of an API call along the different branches of con-
ditional constructs. Our framework generates (proceduregetShortest) the shortest
path for each detected violation (i.e., a potential defect)in the program, instead of all
violating traces, thus making defect inspection easier forthe users.

4 Evaluation

To generate static traces, we adapted a publicly available model checker called MOPS
[6] with procedures (Steps 1-10) shown in Figure 2. We used BIDE [15] to mine fre-
quent sequences. We have applied our framework on 10 packages from theRedhat-9.0
distribution (52 KLOC),postfix-2.0.16 (111 KLOC), and 72 packages from the
X11-R6.9.0 distribution (208 KLOC). The analyzed packages use the APIsfrom the
POSIX and X11 libraries. We selected POSIX and X11 clients because the POSIX stan-
dard [1] and the Inter-Client Communication Conventions Manual (ICCCM) [13] from
the X Consortium standard were readily available. These standards describe rules for
how well-behaved programs should use the APIs, serving as anoracle for confirming
our mined results. We ran our evaluation on a machine with Redhat Enterprise Linux
version 2.6.9-5ELsmp, 3GHz Intel Xeon processor, and 4GB RAM. For specification
mining and violation detection, the analysis cost ranges from under a minute for the
smallest package to under an hour for the largest one. We nextexplain the evaluation
results (summarized in Figure 3(a)) for the various stages of our framework.

Trace generation.The number of error exit-traces and error return-traces gener-
ated by our framework are shown in Columns 3 (ErExT) and 4 (ErRT) of Figure 3,
respectively. To evaluate trace generation, we manually inspected the source code for
each error exit-trace produced by our framework and each error exit-trace missed by
our framework. Error exit-traces missed by our framework can be determined by man-
ually identifying the exit statements in the analyzed program not found in any of the
generated error exit-traces. There are five sub-columns in Column 3 (ErExT): Σ (total
number of error exit-traces generated or missed by our framework), Σop (total number
of error exit-traces actually generated by our framework),FN = Σ − Σop (total num-
ber of error exit-traces missed by our framework),FP (false positives: generated traces
that are not actually error exit-traces), andIP (inter-procedural: the number of traces
in which the API invocation, API-error check, and error blocks were scattered across
procedure boundaries).

1. Packages 2.LOC 3.ErExT� �op FN = ���op FP IP10�Redhat �9.0�pkgs 52 K 338 320 18 35 18post fix�2.0.16 111 K 124 92 32 3 124X11�R6.9.0 208 K 286 248 38 27 164� 371 K 748 660 88 (12%) 65(10%) 306(41%)4.ErRT 5.ErCS 6.ErCV 7.MAS 8.MAV� FP � FP � FP � FP205 31 3 58 1 40 6 4 3
() T d i l ti30 31 3 4 2 40 6 0 0305 31 3 170 13 40 6 56 9540 31 3(10%) 232 16(7%) 40 6(15%) 60 12(20%)(R)XGetVisualInfo (R)XpQueryScreens (R)XpGetAttribu tesXGetWindowProperty (12) (R)XScreenResourceString (R)XpGetOneAttribu teXQueryTree(5) (R)XGetAtomName (R)glXChooseVisual(a) Traces and violations

(b) MultipleÚAPI specifications for the clean upAPI
XFree mined by our frameworkXQueryTree(5) (R)XGetAtomName (R)glXChooseVisual(R)XFetchBytes (R)malloc XGetIMValues(3)(R)XGetKeyboardMapping XGetWMProtocols(3) (R)XGetWMHints
XFree, mined by our frameworkê:Total, IP: Interprocedural, FP: False Positives, FN : False Negatives, ErExT:Error Exit�Traces, ErRT:Error Return�Traces, ErCS :Error�Check Specifications, ErCV :Error�CheckViolations, MAS :Multiple�API Specifications, MAV :Multiple�API Violations

Fig. 3.Evaluation Results

We observed that the number of false negatives (FN) and falsepositives (FP) were
low, at 12% (88/748) and 10% (65/660), respectively. The main reason for false neg-
atives in the traces generated by our framework is the lack ofaliasing and pointer
analysis. For example, inxkbvleds/utils.c, the variableoutDpy takes the return
value of the APIXtDisplay. Then the value ofoutDpy is assigned to another variable
inDpy, andinDpy is compared toNULL. If inDpy is NULL, a user-defined procedure
uFatalError is called, which then callsexit. Our framework did not capture the
aliasing ofoutDpy to inDpy, and hence missed the trace. However, as the number of
false negatives was low, our framework still generated enough traces for the mining pro-
cess. Some of the traces generated by our framework were not error exit-traces, leading
to false positives. For example, intftp/tftpd.c, the variablef (process id) takes the
return value of the APIfork. The program exits onf>0 (parent process; not an error).
Although the trace was generated by our framework, it is not an error exit-trace (fork
fails with a negative integer). However, as the number of false positives was low, false
error exit-traces were pruned by the mining process. 41% (306/748) of all the error

exit-traces were scattered across procedure boundaries, highlighting the importance of
inter-procedural trace generation. Specifically, all error exit-traces from thepostfix
package crossed procedure boundaries.

Our framework identifies the set of probable clean up APIs from the error traces
(Step 5, Figure 2). After discarding string-manipulating APIs (such asstrcmp and
strlen), printing APIs (such asprintf andfprintf), and error-reporting APIs (such
asperror), which frequently appear (but unimportant) in error blocks, our framework
identified 36 APIs as probable clean up APIs. Our framework used probable clean up
APIs in generating normal traces. For each compilable unit in the analyzed packages,
our framework randomly generated 20 normal traces, ensuring there are enough distinct
traces for mining. Our framework discarded 14/36 APIs aftermining the normal traces
with one of the following reasons: (1) insufficient call sites and hence an insufficient
number of traces to mine from (for example, the APIXEClearCtrlKeys had only two
traces), (2) no temporal dependencies with any APIs called prior to the error block (for
example, the APIXtSetArg appears in an exit trace fromxlogo/xlogo.c. However,
XtSetArg does not share any temporal dependencies with APIs called prior to the
exit block), or (3) insufficient support among the scenarios. Our framework mined 40
multiple-API specifications from the remaining 22/36 probable clean up APIs (Column
7, MAS).

Error-check specifications.Our framework mined error-check specifications for
only those APIs that occur more than three times among the error traces. In all, our
framework mined 31 error-check specifications (Column 5,ErCS) from the error traces
across all the analyzed packages. 3 (10%) out of the 31 (subcolumnΣ) mined speci-
fications were false positives (subcolumnFP). For example, the APIgeteuid returns
the effective user ID of the current process. The effective ID corresponds to the set ID
bit on the file being executed [1]. Our framework encountersgeteuid()!=0 at least 5
times among error traces leading to a false error-check specification – ‘geteuid fails
by returning a non-zero integer’. But, a non-zero return value simply indicates an un-
privileged process.

Error-check violations. The error-check specifications mined from error traces are
used in detecting error-check violations along the error paths in the analyzed software
packages. Column 6 (ErCV) of Figure 3(a) presents the number of error-check vio-
lations detected by our framework. We manually inspected the violations reported by
our framework. 16 (7%) out of the 232 (subcolumnΣ) reported error-check violations
were false positives (subcolumnFP). The main reason for false positives in the reported
violations is, once again, the lack of aliasing and pointer analysis in our framework. For
example, intwm/session.c andsmproxy/save.c, the variableentry takes the re-
turn value ofmalloc. Then the variableentry is assigned to another variablepentry.
The variablepentry is then checked forNULL, which was missed by our framework.

Multiple-API specifications. Our framework mines multiple-API specifications
from normal traces. Our framework produces a pattern as a multiple-API specification if
the pattern occurred in at least five scenarios, with a minimum support (min sup) of 0.8
among the scenarios. Our framework mined 40 multiple-API specifications (Column 7,
MAS) across all the packages, with 6 (15%) of them being false positives (subcolumn
FP). All multiple-API specifications mined by our framework were conditional – the

clean up APIs in conditional multiple-API specifications depend on the return value or a
parameter (that holds the return value). As an example of a conditional specification, for
the APIXGetVisualInfo, cleaning up through the APIXFree is necessary only if the
fourth input parameter ofXGetVisualInfo (the number of matchingvisual structures)
is non-zero. False positives among the mined specificationsmay occur if some patterns
occuring in the analyzed source code are not necessarily specifications. This result is a
limitation shared by all mining approaches, requiring human inspection and judgement
to distinguish real specifications from false ones. For example, our framework consid-
ered the APIsXSetScreenSaver andXUngrabPointer as probable clean up APIs,
as both APIs appeared in some error traces generated by our framework. The first pa-
rameter of both these APIs is the display pointer produced bythe APIXOpenDisplay.
Hence, our framework mined the property “XSetScreenSaver andXUngrabPointer
should followXOpenDisplay”, leading to a false positive. The number of false speci-
fications mined by our framework is low as the code bases used by our framework for
mining are sufficiently large.

Our framework mines the maximum number of multiple-API specifications around
the clean up APIXFree. From the static traces, 35 APIs from the X11 library were
found to interact with theXFree API, leading to 15 multiple-API specifications with
sufficient support. The specifications mined around the APIXFree are shown in Fig-
ure 3(b).XFree is a general-purpose X11 API that frees the specified data.XFree must
be used to free any objects that were allocated by X11 APIs, unless an alternate API is
explicitly specified for the objects [13]. The pointer consumed by theXFree API can
either be a return value or a parameter (that holds the returnvalue) of some X11 API.
The “(R)” in (R)XGetVisualInfo, for instance, indicates that the return value of the
API XGetVisualInfo should be freed through the APIXFree along all paths. The
“(5)” in XQueryTree(5), for instance, indicates that the fifth input parameter of the
API XQueryTree should be freed through the APIXFree along all paths.

Multiple-API violations. Our framework uses the multiple-API specifications mined
from normal traces to detect multiple-API violations in theanalyzed software pack-
ages. Column 8 (MAV) presents the number of multiple-API violations detected by our
framework. We manually inspected the violations reported by our framework. 12 (20%)
out of the 60 (subcolumnΣ) reported multiple-API violations were false positives (sub-
columnFP). To verify conditional specifications, we adapted MOPS to track the value
of variables that take the return value of an API call along the different branches of
conditional constructs. Tracking API return values while verifying multiple-API spec-
ifications decreases the number of false positives, which would have otherwise been
reported. As a simple example, verifying conditional specifications causes false posi-
tives such as “a file is not closed before the program exits on the failure (NULL) path
of theopen API” not to be reported. Verifying conditional specifications by tracking
return values avoided 87 false positives in the analyzed packages, which would have
otherwise been reported. In all, our framework mines 62 error-handling specifications
and detects 264 real error-handling violations in the analyzed packages. Due to pointer-
insensitive analysis, our framework might not mine all the error-handling specifications
or detect all the error-check and multiple-API violations in the analyzed software pack-
ages, leading to false negatives. For the mined specifications and the detected violations,

we have not quantified the false negatives of our framework. Quantifying the violations
missed by our framework (through manual inspection of source code along all possible
paths in the presence of function pointers and aliasing) is difficult and error prone.

5 Related Work

Dynamic. Previous work has mined API properties from program execution traces.
For example, Ammons et al. [3] mine API properties as probabilistic finite state au-
tomata from execution traces. Perracotta developed by Yanget al. [18] mines temporal
properties (in the form of pre-defined templates involving two API calls) from execu-
tion traces. Different from these approaches, our framework mines specifications from
source code of API clients. Dynamic approaches require setup of runtime environments
and availability of sufficient system tests that exercise various parts of the program and
hence the violations might not be easily exposed. In contrast, our new framework mines
API error-handling specifications from static traces without suffering from the preced-
ing issues.

Static. Previous several related static approaches developed by other researchers
also mine properties from source code for finding defects. Engler et al. proposeMeta-
level Compilation[8] to detect rule violations in a program based on user-provided, sim-
ple, system-specific compiler extensions. Their approach detects defects by statically
identifying inconsistencies in commonly observed behavior. PR-Miner developed by Li
and Zhou [11] mine programming rules as frequentitemsets(ordering among program
statements is not considered) from source code. Apart from being intra-procedural, nei-
ther approach considers data-flow or control-flow dependences between program el-
ements, required for mining error-handling specifications. Two recent approaches in
static specification mining, most related to our framework,are from Chang et al. [5] and
Ramanathan et al. [12]. Chang et al.’s approach [5] mines specifications asgraph minors
from program dependence graphsby adapting a frequent sub-graph mining algorithm.
Specification violations are then detected by their heuristic graph-matching algorithm.
The scalability of their approach is limited by the underlying graph mining and match-
ing algorithms. Furthermore, their approach does not mine conditional specifications.
Ramanathan et al. [12] mine preconditions of a given procedure across different call
sites. To compute preconditions for a procedure, their analysis collects predicates along
each distinct path to each procedure call. As their approachis not applicable to postcon-
ditions, it cannot mine error-handling specifications. Static approaches [16,17] exist to
analyze programs written in Java, which has explicit exception-handling support. Sev-
eral proposals [9] exist for extending C with exception-handling support. In contrast,
our framework is applicable to applications implemented inprocedural languages with
no explicit support for exception handling.

6 Conclusions

We have developed a framework to automatically mine API error-handling specifica-
tions from source code. We then use the mined specifications to detect API error-
handling violations from the analyzed software packages (API client code). We have

implemented the framework, and validated its effectiveness on 10 packages from the
Redhat-9.0 distribution (52 KLOC),postfix-2.0.16 (111 KLOC), and 72 pack-
ages from theX11-R6.9.0 (208 KLOC). Our framework mines 62 error-handling
specifications and detects 264 real error-handling defectsfrom the analyzed packages.

References

1. IEEE Computer Society. IEEE Standard for Information Technology Portable Operating
System Interface POSIX Part I: System Application Program Interface API, IEEE Std
1003.1b-1993. 1994.

2. M. Acharya, T. Xie, J. Pei, and J. Xu. Mining API patterns as partial orders from source
code: From usage scenarios to specifications. InProc. ESEC/FSE, pages 25–34, 2007.

3. G. Ammons, R. Bodik, and J. Larus. Mining specifications. InProc. POPL, pages 4–16,
2002.

4. M. Bruntink, A. V. Deursen, and T. Tourwe. Discovering faults in idiom-based exception
handling. InProc. ICSE, pages 242–251, 2006.

5. R. Y. Chang and A. Podgurski. Finding what’s not there: A new approach to revealing
neglected conditions in software. InProc. ISSTA, pages 163–173, 2007.

6. H. Chen and D. Wagner. MOPS: an infrastructure for examining security properties of soft-
ware. InProc. CCS, pages 235–244, 2002.

7. F. Cristian.Exception Handling and Tolerance of Software Faults. In Software Fault Toler-
ance, Chapter 5. John Wiley and Sons, 1995.

8. D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as deviant behavior: A
general approach to inferring errors in systems code. InProc. SOSP, pages 57–72, 2001.

9. N. H. Gehani. Exceptional C for C with exceptions.Software Practices and Experiences,
22(10):827–848, 1992.

10. H. Gunawi, C. Rubio-Gonzalez, A. Arpaci-Dusseau, R. Arpaci-Dusseau, and B. Liblit. EIO:
Error handling is occasionally correct. InProc. USENIX FAST, pages 242–251, 2006.

11. Z. Li and Y. Zhou. PR-Miner: automatically extracting implicit programming rules and
detecting violations in large software code. InProc. ESEC/FSE, pages 306–315, 2005.

12. M. K. Ramanathan, A. Grama, and S. Jagannathan. Static specification inference using
predicate mining. InProc. PLDI, pages 123–134, 2007.

13. D. Rosenthal.Inter-client communication Conventions Manual (ICCCM), Version 2.0. X
Consortium, Inc.1994.

14. W. Toy. Fault-tolerant design of local ESS processors. InThe Theory and Practice of Reliable
System Design, Digital Press, 1982.

15. J. Wang and J. Han. BIDE: Efficient mining of frequent closed sequences. InProc. ICDE,
pages 79–90, 2004.

16. W. Weimer and G. C. Necula. Finding and preventing run-time error handling mistakes. In
Proc. OOPSLA, pages 419–431, 2004.

17. W. Weimer and G. C. Necula. Mining temporal specifications for error detection. InProc.
TACAS, pages 461–476, 2005.

18. J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das. Perracotta: Mining temporal API rules
from imperfect traces. InProc. ICSE, pages 282–291, 2006.

