Mining API Error-Handling Specifications
from Source Code

Mithun Acharya and Tao Xie

Department of Computer Science, North Carolina State University, Ralsig, USA, 27695
{acharya, xi¢@csc.ncsu.edu

Abstract. API error-handling specifications are often not documented, niecess
tating automated specification mining. Automated mining of error-handlieg-sp
ifications is challenging for procedural languages such as C, whichebqgulicit
exception-handling mechanisms. Due to the lack of explicit exceptionlingnd
error-handling code is often scattered across different procedune files mak-
ing it difficult to mine error-handling specifications through manual ietipa of
source code. In this paper, we present a novel framework for miRl error-
handling specifications automatically from API client code, without any inse
put. In our framework, we adapt a trace generation technique to dighhgad
generate static traces representing different API run-time behaWsapply
data mining techniques on the static traces to mine specifications that define co
rect handling of API errors. We then use the mined specifications totd&idc
error-handling violations. Our framework mines 62 error-handlirec#Tations
and detects 264 real error-handling defects from the analyzed opetespack-
ages:

1 Introduction

Motivation. A software system interacts with third-party librariesaihgh various Ap-
plication Programming Interfaces (API). Throughout th@grawe overload the term
API to mean either a set of related library procedures orgleiibrary procedure in the
set — the actual meaning should be evident from the contesdriect handling of er-
rors incurred after API invocations can lead to serious fgmols such as system crashes,
leakage of sensitive information, and other security campses. API errors are usu-
ally caused by stressful environment conditions, which rmegur in forms such as
high computation load, memory exhaustion, process refaikdes, network failures,
file system failures, and slow system response. As a simglmpbe of incorrect API
error handling, @endprocedure, which sends the content of a file across the neagor
packets, might incorrectly handle the failure of #wcket API (thesocket API can
return an error value of1, indicating a failure), if thesendprocedure returns without
releasing system resources such as previously allocatdepauffers and opened file
handlers. Unfortunately, error handling is the least usided, documented, and tested
part of a system. Toy’s study [14] shows that more thatt & all system failures in

! This work is supported in part by ARO grant W911NF-08-1-0443.

a telephone switching application are due to incorrectrdramdling algorithms. Cris-
tian’s survey [7] reports that up to two-thirds of a prograraynbe devoted to error de-
tection and recovery. Hence, correct error handling shbaldn important part of any
reliable software system. Despite the importance of coeeaor handling, program-
mers often make mistakes in error-handling code [4, 10,&@trect handling of API
errors can be specified as formal specifications verifiablstéiyc checkers at compile
time. However, due to poor documentation practices, ARIrdrandling specifications
are often unavailable or imprecise. In this paper, we pitesanvel framework for stat-
ically mining API error-handling specifications automatlg from software packages
(API client code) implemented in C.

Challenges.There are three main unique challenges in automaticallyngiAPI
error-handling specifications from source code. (1) Minki®J error-handling speci-
fications, which are usually temporal in nature, requirenitying API detailsfrom
source code such as (aditical APIs (APIs that fail with errors), (b) different error
checks that should follow such APIs (depending on diffefdpiterror conditions), and
(c) proper error handling or clean up in the case of API faifyindicated by API errors.
Furthermore, clean up APIs might depend on the APIs calléaréé¢he error is han-
dled. Static approaches [16, 17] exist for mining or chegl®| error-handling spec-
ifications from software repositories implemented in objedented languages such
as Java. Java has explieitception-handlingupport and the static approaches mainly
analyze thecat ch andfi nal | y blocks to mine or check API error-handling specifi-
cations. Procedural languages such as C do not have exggeption-handling mech-
anisms to handle API errors, posing additional challengesfitomated specification
mining: API details are often scattered across differentedures and files. Manually
mining specifications from source code becomes hard andunaie. Hence, we need
inter-procedural techniques to mine critical APIs, diffier error checks, and proper
clean up from source code to automatically mine error-iagdipecifications. (2) As
programmers often make mistakes along API error paths [44107], the proper clean
up, being common among error paths and normal paths, sheutdried from normal
traces (i.e., static traces without API errors along norpahs) instead of error traces
(i.e., static traces with API errors along error paths). ¢éenve need techniques to gen-
erate and distinguish error traces and normal traces, elien the API error-handling
specifications are not knowanpriori. (3) Finally, API error-handling specifications can
be conditional— the clean up for an API might depend on the actual returnevafu
the API. Hence, trace generation has to associate conglifitamg each path with the
corresponding trace.

Contributions. To address the preceding challenges, we develop a novedivark
for statically mining API error-handling specificationseltly from software packages
(API client code), without requiring any user input. Oumfrawork allows mining sys-
tem code bases for API error-handling violations withogjuigng environment setup
for system executions or availability of sufficient systests. Furthermore, our frame-
work detects API error-handling violations, requiring reeuinput in the form of spec-
ifications, programmer annotations, profiling, instrunag¢ion, random inputs, or a set
of relevant APIs. In particular, in our framework, we appbta mining techniques on
generated static traces to mine specifications that defimeatdandling of errors for

the APIs used in the analyzed software packages. We theheseihed specifications
to detect API error-handling violations. In summary, thappr makes the following
main contributions:

— Static approximation of different API run-time behaviors. We adapt a static
trace generation technique [2] to distinguish and appraténifferent API run-time
behaviors (e.g., error and normal behaviors), thus gengratror traces and normal
traces inter-procedurally.

— Specification mining and violation detection.We apply different mining tech-
nigues on the generated error traces and normal tracesrttfydelean up code, dis-
tinguish clean up APIs from other APIs, and mine specificetithat define correct
handling of API errors. To mine conditional specificationg adapt trace generation
to associate conditions along each path with the correspgrchce. We then use the
mined specifications to detect API error-handling violasio

— Implementation and Experience.We implement the framework and validate
the effectiveness of the framework on 10 packages fronRéhkdat - 9. 0 distribution
(52 KLOC), post fi x-2.0.16 (111 KLOC), and 72 packages from the1- R6. 9. 0
distribution (208 KLOC). Our framework mines 62 error-hkng specifications and
detects 264 real error-handling defects from the analyae#ages.

The remainder of this paper is structured as follows. Secistarts with a mo-
tivating example. Section 3 explains our framework in defection 4 presents the
evaluation results. Section 5 discusses related work llfzir&ection 6 concludes our
paper.

2 Example

In this section, we use the example code shown in Figuresah(b) (c) to define several
terms and notations (summarized in Figure 1(a)) used thauigthe paper. We also
provide a high-level overview of our framework using thermy¢e code.

API errors. All APIs in the example code are shown in bold font. In Figu(e)1
I ni t AAText andEndAAText areuser-defined procedureb the figure, user-defined
procedures are shown in italicized font. The user-definedqature in which an API is
invoked is called theenclosing procedurdor the API. In Figure 1(c)EndAAText,
for instance, is the enclosing procedure for the ARAisDr awDest r oy (Line 27),
Xf t Font Cl ose (Line 28), andXxft Col or Free (Line 29). APIs can fail because of
stressful environment conditions. In procedural langsageh as C, API failures are
indicated throughAPI errors API errors are special return values of the API (such as
NULL) or distincter r no flag values (such &&NOMVEM) indicating failures. For example,
in Figure 1(b), APF ecvf r omreturns a negative integer on failures. The API error from
r ecvf r omis reflected by the return varialde.. APIs that can fail with errors are called
ascritical APIs. A condition checking of API return values@rr no flag in the source
code against API errors is call&Pl-Error Check(AEC); we use AECH) to denote
AEC of APl a. For example, AEG(ecvfromisi f (cc<0) .

Error block. The block of code following an API-error check, which is exts if
the APl fails is called therror block Error blocks contain error-handling code to handle
API failures. We use ER) to denote the error block of ARIL. For example, Lines

Definitions and Acronyms Error-Check Specification (ErCS)
ification (S) y -
Library Application Program Interface (API) Multiple-API Specification (MAS)
API-Error Check (AEC). AEC(a) is the required error check for API a. Error-Check Violation (ErCV)
Violation (V)
Error Block (EB). EB(a) is the error block of API a. AEC(a) precedes EB(a). Multiple-API Violation (MAV)
error ath (k) Error Exit-Path (ErExP) ~/X11-R6.9.0/x1lperf/do_text.c
rror Path (Er’ —
Path (P) or Path € Error Return-Path (EXRP) 1 #include <X11/Xft/Xft.h>
Normal Path (NP) 2.
- 3 static xftFont *aafont;
Error Exit-Trace (ErExT) 4 static XftDraw *aadraw;
Error Trace (ErT) .
Trace (T) o (ErD Error Return-Trace (ErRT) 5 static XftColor aacolor;
6
Normal Trace (NT) o . .
7 int InitAAText (XParms xp, Parms p, int reps) {
(a) Definitions and Acronyms 8 ..
9 aafont = XftFontOpenName (...);
10 if (aafont == NULL) {
11 .
12 return 0;
13 1
14 aadraw = XftDrawCreate (...);
~/Redhat-9.0/routed/ripquery/query.c 15 if (!XftColorAllocValue (..., &aacolor)) {
1 #include <sys/socket.h> 16
2 int main(...){ 17 XftFontClose (xp->d, aafont);
3 - 18 XftDrawDestroy (aadraw);
4 s = socket(...); 19
5 P 20 return 0;
6 cc = recvfrom(s, ...) 21 }
7 . 22 ca
8 if (cc < 0){ 23 }
9 e 24 ...
10 close(s) ; 25 void EndAAText (XParms Xp, Parms p){
11 exit(1); 26
12 } 27 XftDrawDestroy (aadraw);
13 - 28 XftFontClose (xp->d, aafont);
14 close (s) 29 XftColorFree (..., &aacolor);
15 P 30 -
16 } 31 }
(b) Example code from Redhat-9.0/routed-0.17-14 (c) Example code from X11-R6.9.0/x11lperf

Fig. 1. Terminologies and example code

9-11 in Figure 1(b), Lines 11-12 and 16-20 in Figure 1(c) espnt EB(ecvfrom),
EB(Xf t Font OpenNane), and EBKf t Col or Al | ocVal ue), respectively. A given API
can have multiple error blocks depending on the differengsaat it can fail (not
shown in the examples for simplicity).

Paths, Traces, and ScenariosA control-flow path exists between two program
pointsif the latter is reachable from the former through some sebafrol-flow edges,
i.e., Control Flow Graph (CFGgdges Our framework identifies two types of paths
- error path andnormal path There are two types of error paths. Any path from the
beginning of themai n procedure to an exit call (such asi t) in the error block of
some APl is called therror exit-path For example, all paths ending at tévei t call at
Line 11 in Figure 1(b) are error exit-pathex(t call inside EB(ecvfr om). Any path
from the beginning of thewi n procedure to aet ur n call in the error block of some
API is called theerror return-path For example, in Figure 1(c), all paths ending at the
ret urn callatLines 12i(et ur n call inside EBKf t Font OpenNane)) and 20 (et urn
call inside EBKf t Col or Al | ocVal ue)) are error return-paths. Error exit-paths and er-
ror return-paths are together knowneasor paths. A normal pathis any path from the
beginning of therai n procedure to the end of thai n procedure without any API er-
rors. For example, any path from Line 3 to Line 15 in Figure) 1¢ka normal path. For
a given path, a trace is the print of all statements that ekistg that path. Error paths,

error exit-paths, error return-paths, and normal paths lcavresponding tracesrror
traces error exit-traces error return-traces andnormal traces Error exit-traces and
error return-traces are together known as error traces ARNs arerelatedif they ma-
nipulate at least one (or more) common variable(s). For @&nn Figure 1(b), APIs
recvfromandcl ose are related to APsocket . Thesocket API producess, which
is consumedby the APIsr ecvf r omandcl ose. A scenariois a set of related APIs in a
given trace. A given trace can have multiple scenarios. kamgle, if there were mul-
tiple socket calls in Figure 1(b), then eacdocket call, along with its corresponding
related APIs, forms a different scenario.

API error-handling specifications. We identify two types of API error-handling
specifications that dictate correct error handling aloigpaihs in a programerror-
check specificationandmultiple-API specificationsrror-check specifications dictate
that correct AECH)’s (API-Error Checks) exist for each ARI(which can fail), before
the API's return value izisedor themai n procedure returns. For a given AR the
absence of AEG() causes arrror-check violation Multiple-API specifications dictate
that the rightclean upAPIs are called along all paths. Clean up APIs are APIs called
generally before a procedure’s return or program’s exifree resources such as mem-
ory, sockets, pipes, and files orrwlback the state of a global resource such as the sys-
tem registry and databases. For example, in Figure X{¢);ont C ose (Line 17) and
Xf t Dr awDest r oy (Line 18) are the clean up APIs in BBt Col or Al | ocVal ue). In
Figure 1(c), one error-check specification (the returnevalfixf t Col or Al | ocVal ue
should be checked agaimgilLL) and two multiple-API specificationX{t Font OpenNane
should be followed byf t Font Cl ose, andXf t Dr awCr eat e should be followed by
Xf t Dr awDest r oy) are evident. Violation of a multiple-API specification atpa given
path is amultiple-API violation Multiple-API violations along error exit-paths could
be less serious as the operating system might reclaim uhfreenory and resource
handlers along program exits. However, there are sevesakaahere explicit clean up
iS necessary even on program exits. For instance, uncldesdcbuld lose recorded
data along an error exit-path if the buffers are not flushedmthe disk. In addition,
any user-defined procedure altering a global resource @siche system registry or
a database) shouldllback along error exit-paths to retain the integrity of the global
resource. Next, we present the high-level overview of camiwork using the example
code.

The only input to our framework is the compilable source cofisoftware pack-
age(s) implemented in C. To mine specifications, our frannkuvotially distinguishes
and generates APl error traces and normal traces, for reagptained later. Our frame-
work then detects API error-handling violations in the seucode using the mined
specifications. In particular, our framework consists effthllowing three stages:

Error/normal trace generation. The trace generation stage distinguishes and gen-
erates error traces (error exit-traces and error retaces) and normal traces inter-
procedurally. Along normal paths, it is difficult to distimigh clean up APIs from other
APIs. Hence, our framework identifiggobableclean up APIs from the error traces.
For example, in Figure 1(b), our framework identifies the APbse (Line 10) from
the error exit-trace that goes through EB¢vfrom). In Figure 1(c), our framework
identifiesXf t Font Cl ose (Line 17) andXf t Dr awDest r oy (Line 18) from the error

return-trace that goes through B8(Col or Al | ocVal ue). Note that, in Figure 1(c),
the clean up APIs can also be invoked through the user-defiremgdureEnd AAText ,
inter-procedurally. However, even in the error block, éheould be other APIs that are
not necessarily clean up APIs (hence the tgurabablg. The final set of actual clean
up APIs and the APIs related to them are determined duringkeification mining
stage.

Specification mining. The specification mining stage generates error-check spec-
ifications and multiple-API specifications. Our frameworknas error-check specifi-
cations from error traces by determining API-error chedk&Q) for each API. For
example, our framework determines AEE¢vfron) to beif (cc < 0) from the
error-exit trace that goes through EBCvf r om). Programmers often make mistakes
along API error paths. Hence, proper clean up, being commmang error paths and
normal paths, should be mined from normal traces insteadrof gaces. Once prob-
able clean up APIs are mined from error traces, our framewores APIs that might
be related to the probable clean up APIs from normal traces.ekample, in Fig-
ure 1(c), our framework determines from normal traces XfhaFont Cl ose is related
to Xft Font OpenName, and Xf t Dr awDest r oy is related toXft DrawCr eat e (Fig-
ure 1(c), however, does not show normal paths or tracesrfgaligity). Our framework
generates multiple-API specifications by applying segaenining on normal traces.

Verification. Our static verifier uses the mined specifications (errockla@d multiple-
API specifications) to detect violations (error-check andtiple-API violations) in the
source code. Next, we present our framework in detalil.

3 Framework

The algorithm presented in Figure 2 shows the details of mméwork. There are 3
stages and 10 steps (numbered 1-10) in our algorithm. $e8tib describes the er-
ror/normal trace generation stage (Steps 1-6). Sectio(S3ps 7-8) explains the steps
involved in mining API error-handling specifications frohetstatic traces. Finally, Sec-
tion 3.3 describes the verification stage for detecting ARdrehandling violations of
the mined specifications (Steps 9-10). Our framework adaptace generation tech-
nique developed in our previous work to generate statietaepresenting different
API run-time behaviors. The trace generation techniqus wiggersto generate static
traces. Triggers are represented using finite state machiihe static traces generated
by the trace generation technique with a given trigger deémenthe the transitions in
the trigger. Readers may refer to our previous work [2] fotHar detalils.

3.1 Error/normal Trace Generation

In this section, we explain how we adapt the trace generatiohnique [2] for gen-
erating API error and normal traces from source code. As shawrigure 2, the er-
ror/normal trace generation stage has six steps: generatet@aces (Step 1), process
error traces (Steps 2-4), identify critical APls and prdbatlean up APIs from error
traces (Step 5), and finally, generate normal traces (Steph@)various steps are ex-
plained next.

/! 7)= source code;]F: FSM; TG = Trace-Generate; PDMC = Push-Down Model Check
// R = critical APIs, PC = probable clean-up APIs

// ERROR/NORMAL TRACE GENERATION

// Generate shortest error traces

exit
main APl retValChk
1 ErT = getShortest(TG(, entry CALL M i
errnoChk procedure

return

// Extract error-return traces (ErRT) and error-exit traces (ErExT) from ErT
// Note that ErT = ErExT + ErRT
2 ErExT = getErEXT(ErT);
// Extract APl-error checks (AEC) from ErExT
3 AECSet = getAECSet(majorityMine(ErExT));
// Use AECSet to extract ErRT from ErT
4 ErRT = getErRT(ErT, AECSet);

// \dentify critical APIs and probable clean up APIs from error traces (ErT)
5 R, PC=getRandPC(ErT);

// Generate random normal traces (NT) up to a specified upper-bound L
, PC

R,
6 NT =getRandomL(TG 7:) main main);
entry return

// SPECIFICATION MINING
// Generate error-check specifications (ErCS) as FSMs from AECSet

7 FErCS = generateErCS(AECSet);

// Generate multiple-API specifications (MAS) as FSMs from normal traces (NT)
// Apply sequence mining with specified support on extracted scenarios

8]F MAS = generateMAS(sequenceMine(extractScenarios(NT), min_sup));

// VERIFICATION
// Detect error-check violations (ErCV)

9 foreach(]F in]FErCS) {ErCV += getShortest(PDMC\P ,]F)}
// Detect Multiple-API violation along error paths

10 foreach(F in FMAS) {MAV += getShortest(PDMC(P ,]F)); 1

Fig. 2. The algorithm for mining API error-handling specifications

Step 1 - Generate error tracesAn error trace starts from the beginning of the
mai n procedure and ends in some API error-block with an exit calging the pro-
gram to exit) or a et ur n call (causing the enclosing procedure to return). The #iigg
FSM, sayF (Step 1, Figure 2), is used by our trace generator (procetare the
figure) to generate error traces from the program source ¢(BileThe procedurd G
represents our trace generation technique, which adapfmigh-down model checking
(PDMC) process. Transitionst Val Chk ander r noChk in the triggerF (from State
2 to Stated) identify the return-value check and error-flag check, eesipely, for the
API. Transitions from State to the final state (Statend) in the triggerF capture code
blocks following ther et Val Chk or er r noChk in which the program exits or the en-
closing procedure returns. The proceduiegenerates all traces iR that satisfy the
trigger IF. However, the procedurget Short est (Step 1, Figure 2) returns only the

shortest trace from the set of all traces generatetids we are interested only in the
APIl-error check and the set of probable clean up APIs (PC)enAtPI error block for
a given API from error traces, the program statements poidheé API invocation are
not needed. Hence, it suffices to generate the shortestqraga¢h APl invocation with
a following r et Val Chk or er r noChk. If there are multiple et Val Chk or er r noChk
for an API call site, then our framework generates the sibitace for each of the
checks. The triggeF captures the elements pét Val Chk, er r noChk, and the code
block after these checks, even if these elements are shtieross procedure bound-
aries. However, the traces generated by this step can alsdraaes whereet Val Chk

or errnoChk is followed by a normal return of the enclosing procedurectSwaces,
which are not error traces, are pruned out in the next step.

Steps 2, 3, and 4 - Process error trace©ur framework easily extracts error exit-
traces from error traces (proceduget Er ExT, Step 2, Figure 2): error traces that
end with an exit call are error exit-traces. We assume thatARI r et Val Chk or
er rnoChk, which precedes an exit call in an error-exit trace, is an-&Pdr check.
We then distinguish between ttreie andfalsebranches of the API-error check. For ex-
ample, in Figure 1(b), sincexi t (. . .) appears in the true branch of AE@CVf r om)

(i f (cc<0)), we assume that0 is the error return value (API error) okcvf rom For
each API, our framework records API-error check with mayodccurrences (proce-
duremaj ori tyM ne, Step 3, Figure 2) among error exit-traces (procedeteAECSet ,
Step 3, Figure 2). As mentioned in the previous step, thesrgenerated in Step 1 can
also have traces wheret Val Chk or er r noChk is followed by a normal return of the
enclosing procedure. Our framework uses the API-errorkchetcomputed from error
exit-traces to prune out such traces to generate erronrétaces (procedurget Er RT,
Step 4, Figure 2).

Step 5 - Identify critical APIs and probable clean up APIs from error traces.
Our framework computes the set R (critical APIs) and the €{(fftobable clean up
APISs) in this step (procedurget RandPc, Step 5, Figure 2). The set R of critical APIs
is easily computed from error exit-traces and error retuanes. A key observation here
is that it is much easier to find clean up APIs along error ptithe normal paths. It is
because, on API failures, before the program exits or théosimg procedure returns,
the primary concern is clean up. Along normal paths, howéisrdifficult to separate
clean up APIs from other APIs. Hence, our framework idergifieobable clean up
APIs (the set PC) from the error traces. The tgmobableindicates that the APIs that
occur in error blocks need not always be clean up APIs. Théngniphase prunes out
the non-clean-up APIs from the set PC. In the next step, we $toov our framework
identifies APIs related to the probable clean up APIs. Thelsgad APIs occur prior to
API-error checks in the source code.

Step 6 - Generate normal tracesA normal trace starts from the beginning of the
mai n procedure and ends at the end of the n procedure. The procedufs uses
the trigger FSM, sa¥ (Step 6, Figure 2), to generate normal traces from the pnogra
source codeR). The edges for State 2 in the triggéare critical (set R) and probable
clean up APIs (set PC). Our framework generates normalsgr@aeolving critical and
probable clean up APIs) randomly up to a user-specified uppend L (procedure
get RandonlL, Step 6, Figure 2), inter-procedurally. The traces conthé probable

clean up APIs and the APIs related to them, if any. FinallyA®d error-handling
specifications can be conditional, the clean up for an APhinigpend on the actual
return value of the API. As a simple example, for the | oc API, thefree APl is
called only along paths in which the return valuenaf | oc is notNULL (condition).
Hence, normal paths (normal traces) are associated withctireesponding conditions
involving API return values. The conditions, along with Agdquences, form a part of
normal traces and are used in the specification mining sexgégined next.

3.2 Specification Mining

The specification mining stage mines error-check and ned#y1 specifications from
the static traces (Steps 7-8). The scenario extractionegquksice mining are performed
in Step 8.

Step 7 - Mine error-check specificationsOur framework generates error-check
specifications (procedurgener at eEr CS, Step 7, Figure 2) as Finite State Machines
(FSM, Fg,.cs) from the mined API-error check set. The FSMs representiegetror-
check specifications specify that each critical API showddfdilowed by the correct
error checks.

Step 8 - Mine multiple-API specifications. Our frameork mines multiple-API
specifications from normal traces (procedgeaer at eMAS, Step 8, Figure 2) as FSMs
(Faras). Normal traces include the probable clean up APIs (PC)sABlated to the
set PC, and the conditions (involving API return values)e Thain observation used
in mining multiple-API specifications from normal tracestiigt programmers often
make mistakes along error paths [4, 10, 14, 17]. Hence, aundwork mines related
APIs from only normal traces and not from error traces. H@vea single normal
trace generated by the trace generator might involve sex&lascenarios, being of-
ten interspersed. A scenario (see Section 2) is a set oedelaPls in a given trace.
Our framework separates different API scenarios from argivermal trace, so that
each scenario can be fed separately to our miner. We use argcertraction algo-
rithm (procedureext r act Scenari os, Step 8, Figure 2) [2] that is based on identify-
ing producer-consumetchains among APIs in the trace. The algorithm is based on the
assumption that an API and its corresponding clean up ARIe kame form of data
dependencies between them such as a producer-consuntiensig. Each producer-
consumer chain is generated as an independent scenariex&ople, in Figure 1(c),
the API Xft Font OpenName (Line 9) producesaf ont, which is consumed by the
API Xf t Font Ol ose (Line 17). The APIsXf t Font OpenName andXf t Font Cl ose are
generated as an independent scenario.

Our framework mines multiple-API specifications from indadent scenarios us-
ing frequent-sequence mining (procedseguenceM ne, Step 8, Figure 2). LetS be
the set of independent scenarios. We apply a frequent seepmiming algorithm [15]
on the setl S with a user-specified suppartin_sup (min_sup € [0, 1]), which pro-
duces a sef’S of frequent sequences that occur as subsequences in atlgastp x
|1S| sequences in the séi5. Note that our framework can mine the different error-
handling specifications for the different errors of a giveRlAas long as the different
specifications have enough support among the analyzed ctee.

3.3 \Verification

Our framework uses the specifications to find API error-hiagdViolations (Steps 9-
10).

Steps 9 and 10 - Detect error-check and multiple-API violatns.In Steps 1 and
6, we adapt the push-down model checking (PDMC) processdoetgeneration by
the procedurdG. Here we use the PDMC process for property verification. Tiees
ifications mined by our framework as FSMBH,.cs andF,;45) represent the error-
handling properties to be verified at this stage. Our franmkwerifies the property
FSMs inFg,.cs andF ;45 against the source cod®). The mined specifications can
also be used to verify the correct API error handling in othaftware packages. For
verifying conditional specifications, we adapt the PDMCaass to track the value of
variables that take the return value of an API call along tifferént branches of con-
ditional constructs. Our framework generates (procedeteshor t est) the shortest
path for each detected violation (i.e., a potential defgcthe program, instead of all
violating traces, thus making defect inspection easiettferusers.

4 Evaluation

To generate static traces, we adapted a publicly availabeithecker called MOPS
[6] with procedures (Steps 1-10) shown in Figure 2. We usddEB[15] to mine fre-
quent sequences. We have applied our framework on 10 paskagetheRedhat - 9. 0
distribution (52 KLOC),post fi x-2. 0. 16 (111 KLOC), and 72 packages from the
X11- R6. 9. 0 distribution (208 KLOC). The analyzed packages use the AB the
POSIX and X11 libraries. We selected POSIX and X11 clientsbse the POSIX stan-
dard [1] and the Inter-Client Communication Conventionsi (ICCCM) [13] from
the X Consortium standard were readily available. Thesadstals describe rules for
how well-behaved programs should use the APIs, serving asaate for confirming
our mined results. We ran our evaluation on a machine withhReBnterprise Linux
version 2.6.9-5ELsmp, 3GHz Intel Xeon processor, and 4GB/RPor specification
mining and violation detection, the analysis cost rangemfunder a minute for the
smallest package to under an hour for the largest one. Weeneidin the evaluation
results (summarized in Figure 3(a)) for the various stafesioframework.

Trace generation. The number of error exit-traces and error return-tracegigen
ated by our framework are shown in ColumnsB3ExT) and 4 ErRT) of Figure 3,
respectively. To evaluate trace generation, we manuatiydoted the source code for
each error exit-trace produced by our framework and eadr ewit-trace missed by
our framework. Error exit-traces missed by our framewornk loa determined by man-
ually identifying the exit statements in the analyzed pamgmot found in any of the
generated error exit-traces. There are five sub-columnslungh 3 ErExT): X (total
number of error exit-traces generated or missed by our frarig, X°P (total number
of error exit-traces actually generated by our framewdfk),= X' — X°P (total num-
ber of error exit-traces missed by our framewofiy, (false positives: generated traces
that are not actually error exit-traces), aifd(inter-procedural: the number of traces
in which the API invocation, APl-error check, and error IMeavere scattered across
procedure boundaries).

1. Packages 2.LOC 3. ErExT
> >op FN = Y-y FP 1P
10-Redhat-9.0-pkgs 52K 338 320 18 35 18
postfix-2.0.16 111K 124 92 32 3 124 £
X11-R6.9.0 208 K 286 248 38 27 164
> 371K 748 660 88 (12%) 65(10%) 306(41%)
5.ErCS 6. ErCv 7. MAS 8. MAV
4. ErRT
T 5 FP ¥ FP Y FP 5 FP
205 31 3 58 1 40 6 4 3
2 30 31 3 4 2 40 [3 0 0
305 31 3 170 13 40 [3 56 9
540 31 3(10%) 232 16(7%) 40 6(15%) 60 12(20%)
(a) Traces and violations
(R)XGetVisuallnfo (R)XpQueryScreens (R)XpGetAttributes
XGetWindowProperty(12) (R)XScreenResourceString | (R)XpGetOneAttribute
XQueryTree(5) (R)XGetAtomName (R)gIXChooseVisual
(R)XFetchBytes (R)malloc XGetIMValues(3)
(R)XGetKeyboardMapping | XGetWMProtocols(3) (R)XGetWMHints

(b) Multiple-API specifications for the clean up API

R

XFree, mined by our framework

> Total, IP: Interprocedural, FP: False Positives, FN: False Negatives, ErEXT: Error Exit-
Traces, ErRT: Error Return-Traces, ErCS: Error-Check Specifications, ErCV: Error-Check
Violations, MAS: Multiple-API Specifications, MAV: Multiple-API Violations

Fig. 3. Evaluation Results

We observed that the number of false negatives (FN) and falsigives (FP) were
low, at 12% (88/748) and 1% (65/660), respectively. The main reason for false neg-
atives in the traces generated by our framework is the lacéliaing and pointer
analysis. For example, ixkbvl eds/ util s. c, the variableout Dpy takes the return
value of the APIXt Di spl ay. Then the value ofut Dpy is assigned to another variable
i nDpy, andi nDpy is compared toNULL. If i nDpy is NULL, a user-defined procedure
uFat al Error is called, which then callexi t. Our framework did not capture the
aliasing ofout Dpy to i nDpy, and hence missed the trace. However, as the number of
false negatives was low, our framework still generated gharaces for the mining pro-
cess. Some of the traces generated by our framework werernoegit-traces, leading
to false positives. For example,tifit p/ t f t pd. c, the variablg (process id) takes the
return value of the APf or k. The program exits ofi>0 (parent process; not an error).
Although the trace was generated by our framework, it is naraor exit-tracef(or k
fails with a negative integer). However, as the number afdfadositives was low, false
error exit-traces were pruned by the mining proces$:; 4306/748) of all the error

exit-traces were scattered across procedure boundaigédighting the importance of
inter-procedural trace generation. Specifically, all eexit-traces from thgost f i x
package crossed procedure boundaries.

Our framework identifies the set of probable clean up APIsftbe error traces
(Step 5, Figure 2). After discarding string-manipulatin@l8 (such astrcnp and
strl en), printing APIs (such agri nt f andf pri nt f), and error-reporting APIs (such
asper r or), which frequently appear (but unimportant) in error blgocsur framework
identified 36 APIs as probable clean up APIs. Our framewoddysrobable clean up
APIs in generating normal traces. For each compilable anhé analyzed packages,
our framework randomly generated 20 normal traces, ergsthiare are enough distinct
traces for mining. Our framework discarded 14/36 APIs afiaring the normal traces
with one of the following reasons: (1) insufficient call sitend hence an insufficient
number of traces to mine from (for example, the ABC ear Ct r | Keys had only two
traces), (2) no temporal dependencies with any APIs callied {o the error block (for
example, the APXt Set Ar g appears in an exit trace frorh ogo/ x| ogo. c. However,
Xt Set Ar g does not share any temporal dependencies with APIs calied tor the
exit block), or (3) insufficient support among the scenar@sr framework mined 40
multiple-API specifications from the remaining 22/36 prbleeclean up APIs (Column
7,MAS).

Error-check specifications. Our framework mined error-check specifications for
only those APIs that occur more than three times among tlog gaces. In all, our
framework mined 31 error-check specifications (ColumBrg;S) from the error traces
across all the analyzed packages. 3%)@ut of the 31 (subcolumi’) mined speci-
fications were false positives (subcolu@R). For example, the ARdet eui d returns
the effective user ID of the current process. The effectivedrresponds to the set ID
bit on the file being executed [1]. Our framework encoung@tseui d() ! =0 at least 5
times among error traces leading to a false error-checkifgaion — ‘get eui d fails
by returning a non-zero integerBut, a non-zero return value simply indicates an un-
privileged process.

Error-check violations. The error-check specifications mined from error traces are
used in detecting error-check violations along the err¢hg@ the analyzed software
packages. Column &¢CV) of Figure 3(a) presents the number of error-check vio-
lations detected by our framework. We manually inspectedviblations reported by
our framework. 16 (%) out of the 232 (subcolum#’) reported error-check violations
were false positives (subcolunfi®). The main reason for false positives in the reported
violations is, once again, the lack of aliasing and pointexlsis in our framework. For
example, in wn sessi on. c andsnpr oxy/ save. c, the variablesnt ry takes the re-
turn value ofal | oc. Then the variablent ry is assigned to another varialpent ry.

The variablepent ry is then checked foxULL, which was missed by our framework.

Multiple-API specifications. Our framework mines multiple-API specifications
from normal traces. Our framework produces a pattern as tipl@sAP| specification if
the pattern occurred in at least five scenarios, with a mimraupport {nin_sup) of 0.8
among the scenarios. Our framework mined 40 multiple-ARt#jtations (Column 7,
MAS) across all the packages, with 6 f2pof them being false positives (subcolumn
FP). All multiple-API specifications mined by our framework meconditional — the

clean up APIs in conditional multiple-API specificationgpdad on the return value or a
parameter (that holds the return value). As an example ofdittonal specification, for
the APIXGet Vi sual | nf o, cleaning up through the ARXFr ee is necessary only if the
fourth input parameter ofGet Vi sual | nf o (the number of matchingsual structurep
is non-zero. False positives among the mined specificati@soccur if some patterns
occuring in the analyzed source code are not necessarityfispéions. This result is a
limitation shared by all mining approaches, requiring harimspection and judgement
to distinguish real specifications from false ones. For edanour framework consid-
ered the APIXSet Scr eenSaver andXungr abPoi nt er as probable clean up APlIs,
as both APIs appeared in some error traces generated byaooevirork. The first pa-
rameter of both these APIs is the display pointer producetth®yAPIXOpenDi spl ay.
Hence, our framework mined the properget Scr eenSaver andXuUngr abPoi nt er
should followXOpenDi spl ay”, leading to a false positive. The number of false speci-
fications mined by our framework is low as the code bases ugedibframework for
mining are sufficiently large.

Our framework mines the maximum number of multiple-API sfieations around
the clean up APKFree. From the static traces, 35 APIs from the X11 library were
found to interact with th&Fr ee API, leading to 15 multiple-API specifications with
sufficient support. The specifications mined around the Xlee are shown in Fig-
ure 3(b).XFr ee is a general-purpose X11 API that frees the specified d&taee must
be used to free any objects that were allocated by X11 APlssaran alternate API is
explicitly specified for the objects [13]. The pointer comsd by thexXFr ee API can
either be a return value or a parameter (that holds the realug) of some X11 API.
The “(R)” in (R)XGet Vi sual | nf o, for instance, indicates that the return value of the
API XGet Vi sual | nf o should be freed through the ARFr ee along all paths. The
“(5)" in XQuer yTree(5), for instance, indicates that the fifth input parametethe
API XQuer yTr ee should be freed through the ARFr ee along all paths.

Multiple-APl violations. Our framework uses the multiple-API specifications mined
from normal traces to detect multiple-API violations in thealyzed software pack-
ages. Column 8MIAV) presents the number of multiple-API violations detectedr
framework. We manually inspected the violations reportedur framework. 12 (2%)
out of the 60 (subcolumi) reported multiple-API violations were false positiveslgs
columnFP). To verify conditional specifications, we adapted MOPSaak the value
of variables that take the return value of an API call along diifferent branches of
conditional constructs. Tracking API return values whigifying multiple-API spec-
ifications decreases the number of false positives, whichldvbave otherwise been
reported. As a simple example, verifying conditional speafions causes false posi-
tives such as “a file is not closed before the program exitsherfdilure \ULL) path
of the open API” not to be reported. Verifying conditional specificat®by tracking
return values avoided 87 false positives in the analyze#ggges, which would have
otherwise been reported. In all, our framework mines 62rdramdling specifications
and detects 264 real error-handling violations in the aredypackages. Due to pointer-
insensitive analysis, our framework might not mine all teehandling specifications
or detect all the error-check and multiple-API violationglie analyzed software pack-
ages, leading to false negatives. For the mined specifiaéind the detected violations,

we have not quantified the false negatives of our framewodarn@fying the violations
missed by our framework (through manual inspection of seaode along all possible
paths in the presence of function pointers and aliasingffiswt and error prone.

5 Related Work

Dynamic. Previous work has mined API properties from program exeautiaces.
For example, Ammons et al. [3] mine API properties as prdisioi finite state au-
tomata from execution traces. Perracotta developed by &aab [18] mines temporal
properties (in the form of pre-defined templates involviwg tAPI calls) from execu-
tion traces. Different from these approaches, our framkwtnes specifications from
source code of API clients. Dynamic approaches requirgs#tiuntime environments
and availability of sufficient system tests that exercisgous parts of the program and
hence the violations might not be easily exposed. In conas new framework mines
API error-handling specifications from static traces withsuffering from the preced-
ing issues.

Static. Previous several related static approaches developedhigy msearchers
also mine properties from source code for finding defectgldfret al. propos&leta-
level Compilatiorj8] to detect rule violations in a program based on user-pieny, sim-
ple, system-specific compiler extensions. Their approathats defects by statically
identifying inconsistencies in commonly observed behaW&-Miner developed by Li
and Zhou [11] mine programming rules as frequiggmsetgordering among program
statements is not considered) from source code. Apart fieinghintra-procedural, nei-
ther approach considers data-flow or control-flow depeneehetween program el-
ements, required for mining error-handling specificationso recent approaches in
static specification mining, most related to our framewark,from Chang et al. [5] and
Ramanathan et al. [12]. Chang et al.'s approach [5] minesfigeions agraph minors
from program dependence grapbyg adapting a frequent sub-graph mining algorithm.
Specification violations are then detected by their hdarggaph-matching algorithm.
The scalability of their approach is limited by the undentyigraph mining and match-
ing algorithms. Furthermore, their approach does not mar&litional specifications.
Ramanathan et al. [12] mine preconditions of a given proaedaross different call
sites. To compute preconditions for a procedure, theinaigtollects predicates along
each distinct path to each procedure call. As their apprizaht applicable to postcon-
ditions, it cannot mine error-handling specificationstiStapproaches [16, 17] exist to
analyze programs written in Java, which has explicit exoephandling support. Sev-
eral proposals [9] exist for extending C with exception-diarg support. In contrast,
our framework is applicable to applications implementegriocedural languages with
no explicit support for exception handling.

6 Conclusions

We have developed a framework to automatically mine APIranemdling specifica-
tions from source code. We then use the mined specificatoretect API error-
handling violations from the analyzed software package?3l @ient code). We have

implemented the framework, and validated its effectiver@s 10 packages from the
Redhat - 9. 0 distribution (52 KLOC),post fi x-2. 0. 16 (111 KLOC), and 72 pack-
ages from thex11- R6. 9. 0 (208 KLOC). Our framework mines 62 error-handling
specifications and detects 264 real error-handling defemts the analyzed packages.

References

1. IEEE Computer Society. IEEE Standard for Information Technology Btat®perating
System Interface POSIX Part |: System Application Program Interface WEEE Std
1003.1b-19931994.

2. M. Acharya, T. Xie, J. Pei, and J. Xu. Mining API patterns as partides from source
code: From usage scenarios to specification®rtt. ESEC/FSEpages 25—-34, 2007.

3. G. Ammons, R. Bodik, and J. Larus. Mining specifications.Piac. POPL pages 4-16,
2002.

4. M. Bruntink, A. V. Deursen, and T. Tourwe. Discovering faults in idibased exception
handling. InProc. ICSE pages 242-251, 2006.

5. R. Y. Chang and A. Podgurski. Finding what's not there: A new @gght to revealing
neglected conditions in software. Broc. ISSTApages 163—-173, 2007.

6. H. Chen and D. Wagner. MOPS: an infrastructure for examiningrigg@roperties of soft-
ware. InProc. CCS pages 235-244, 2002.

7. F. Cristian.Exception Handling and Tolerance of Software Faults. In Software Falét-To
ance, Chapter 5John Wiley and Sons, 1995.

8. D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs agaa¢ behavior: A
general approach to inferring errors in systems cod®réc. SOSPpages 57-72, 2001.

9. N. H. Gehani. Exceptional C for C with exceptiorSoftware Practices and Experiences
22(10):827-848, 1992.

10. H. Gunawi, C. Rubio-Gonzalez, A. Arpaci-Dusseau, R. Arpagd®au, and B. Liblit. EIO:
Error handling is occasionally correct. Rroc. USENIX FASTpages 242—251, 2006.

11. Z. Li and Y. Zhou. PR-Miner: automatically extracting implicit programg rules and
detecting violations in large software code.Rroc. ESEC/FSEpages 306315, 2005.

12. M. K. Ramanathan, A. Grama, and S. Jagannathan. Static sp@mifiggference using
predicate mining. IfProc. PLDI, pages 123-134, 2007.

13. D. Rosenthal.Inter-client communication Conventions Manual (ICCCM), Version X.0
Consortium, Inc.1994.

14. W. Toy. Fault-tolerant design of local ESS processorshimTheory and Practice of Reliable
System Design, Digital Pres$982.

15. J. Wang and J. Han. BIDE: Efficient mining of frequent closeglisaces. IProc. ICDE,
pages 79-90, 2004.

16. W. Weimer and G. C. Necula. Finding and preventing run-time eandlng mistakes. In
Proc. OOPSLApages 419-431, 2004.

17. W. Weimer and G. C. Necula. Mining temporal specifications forretetection. InProc.
TACAS pages 461-476, 2005.

18. J.Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das. Perradditang temporal API rules
from imperfect traces. IRroc. ICSE pages 282—-291, 2006.

