
An Empirical Study on Evolution of API Documentation

Lin Shi1, Hao Zhong1, Tao Xie3, and Mingshu Li1,2

1 Laboratory for Internet Software Technologies, Institute of Software,
Chinese Academy of Sciences, Beijing 100190, China

2 Key Laboratory for Computer Science, Chinese Academy of Sciences, Beijing 100190, China
3 Department of Computer Science, North Carolina State University, USA

{shilin,zhonghao}@itechs.iscas.ac.cn, xie@csc.ncsu.edu,
mingshu@iscas.ac.cn

Abstract. With the evolution of an API library, its documentation also evolves.
The evolution of API documentation is common knowledge for programmers
and library developers, but not in a quantitative form. Without such quantitative
knowledge, programmers may neglect important revisions of API documentation,
and library developers may not effectively improve API documentation based on
its revision histories. There is a strong need to conduct a quantitative study on
API documentation evolution. However, as API documentation is large in size
and revisions can be complicated, it is quite challenging to conduct such a study.
In this paper, we present an analysis methodology to analyze the evolution of
API documentation. Based on the methodology, we conduct a quantitative study
on API documentation evolution of five widely used real-world libraries. The
results reveal various valuable findings, and these findings allow programmers
and library developers to better understand API documentation evolution.

1 Introduction

In modern software industries, it is a common practice to use Application Programming
Interface (API) libraries (e.g., J2SE1) to assist development, and API documentation is
typically shipped with these API libraries. With API documentation, library developers
provide documents on functionalities and usages of API elements (i.e., classes, meth-
ods, and fields of API libraries), and programmers of library API client code (referred
to as programmers for short in this paper) follow these documents to use API elements.

Due to various factors such as adding new functionalities and improving API usabil-
ity, both API libraries and their documentation evolve across versions. For example, the
document of the java.sql.connection.close() method in J2SE 1.52 has a no-
tice that connections can be automatically closed without calling the close method
(Figure 1a). In J2SE 1.63, library developers delete the notice, and emphasize the im-
portance of calling the close method explicitly (Figure 1b). In practice, the preceding
document of J2SE 1.5 is misleading, and causes many related defects. For example, a
known defect4 of the Chukwa project is related to unclosed JDBC connections. Existing
research [16] shows that programmers are often unwilling to read API documentation

1 http://www.oracle.com/technetwork/java/javase/overview
2 http://java.sun.com/j2se/1.5.0/docs/api/
3 http://java.sun.com/javase/6/docs/api/
4 http://issues.apache.org/jira/browse/CHUKWA-9



(a) J2SE 1.5

close
void close() throws SQLException

Releases this Connection object's database 
and JDBC resources immediately instead of 
waiting for them to be automatically 
released.
Calling the method close on
a Connection object that is already closed is 
a no-op.
Note: A Connection object is automatically 
closed when it is garbage collected. Certain 
fatal errors also close a Connection object.

(b) J2SE 1.6

close
void close() throws SQLException

Releases this Connection object's database 
and JDBC resources immediately instead of 
waiting for them to be automatically 
released.
Calling the method close on
a Connection object that is already closed is 
a no-op.
It is strongly recommended that an 
application explicitly commits or rolls back 
an active transaction prior to calling the 
close method. If the close method is called 
and there is an active transaction, the results 
are implementation-defined.

Fig. 1. An example of API documentation evolution

carefully. If programmers miss the revision in J2SE 1.6, they may follow the old doc-
ument in J2SE 1.5, and still introduce defects that are related to unclosed connections
even after the document is modified. From the revision, library developers can also learn
a lesson, since their API documentation contains misleading documents. In summary,
revisions in API documentation are important for both client code development and
library development.

As API documentation contains documents for hundreds or even thousands of API
elements, revisions in API documentation could also be quite large in size. Due to the
pressure of software development, it is difficult for programmers and library developers
to analyze these revisions systematically and comprehensively. A quantitative study
on evolution of API documentation can help programmers and library developers better
understand the evolution, so there is a strong need of such a quantitative study. However,
to the best of our knowledge, no previous work presents such a study, since textual
revisions across versions are typically quite large, and analyzing these revisions requires
a large amount of human effort and a carefully designed analysis methodology.

In this paper, we present an analysis methodology to analyze API documentation
evolution quantitatively. Based on the methodology, we conduct a quantitative study on
documentation provided by five widely used real-world libraries.

The main contributions of this paper are as follows:
– We highlight the importance of API documentation evolution, and propose a method-

ology to analyze the evolution quantitatively.
– Based on our methodology, we provide the first quantitative analysis on API docu-

mentation evolution. The results show various aspects of API documentation evo-
lution. The results allow programmers and library developers to better understand
API documentation evolution quantitatively.
The rest of this paper is organized as follows. Section 2 presents our analysis method-

ology. Section 3 presents our empirical results. Section 4 discusses issues and future
work. Section 5 introduces related work. Section 6 concludes.

2 Analysis Methodology

To conduct a systematic and quantitative study on API documentation, we present a
methodology to analyze documentation evolution. Given API documentation of two
versions of an API library, we classify their revisions into various categories.



Table 1. Versions of selected libraries
Library v1 v2 v3 v4 v5

J2SE 1.2.2 1.3.1 1.4.2 1.5 1.6
ActiveMQ 5.0.0 5.1.0 5.2.0 5.3.0 5.3.1

lucene 2.9.0 2.9.1 2.9.2 3.0.0 3.0.1
log4j 1.2.12 1.2.13 1.2.14 1.2.15 1.2.16
struct 2.0.14 2.1.2 2.1.6 2.1.8 2.1.8.1

Step 1: Identifying revisions. In this step, we first compare API documents of the
two versions to find their revisions. In API documentation, we refer to a collection of
words that describe an API element as a document. During evolution, an API element
may be added, removed, and modified (see Section 3.3 for our results). As we focus on
API documentation, we consider an API element modified when its declaration changes
or its document changes. For a changed document, we refer to a pair of two associated
sentences with differences as a revision. We divide a revision into one of the three
categories: (1) an addition: a newly added sentence; (2) a deletion: a deleted sentence;
(3) a modification: a modified sentence. Finally, we extract various characteristics such
as word appearances and change locations from identified revisions.

Step 2: Classifying revisions based on heuristic rules. In this step, we first an-
alyze a few hundred randomly selected sample revisions, and extract characteristics
for various categories manually. For each category, we define heuristic rules according
to these characteristics. For example, we find that different types of annotations (e.g.,
@see and @version) are associated with different key words with specific fonts, so
we define a corresponding heuristic rule to classify revisions by their annotations. With
these heuristic rules, we classify revisions into various clusters by our heuristic rules.
Revisions in the same cluster share similar characteristics.

Step 3: Refining and analyzing classified revisions. In this step, we tune our clas-
sifiers iteratively. In each iteration, we analyze inappropriately classified results to refine
existing heuristic rules or to implement new rules for better classification. When clas-
sified results are accurate enough, we further fix remaining inappropriately classified
results, and analyze results for insights on the evolution of API documentation (see
Sections 3.1 and 3.2 for our results).

3 Empirical Study
In our empirical study, we focus on three research questions as follows:

RQ1: Which parts of API documentation are frequently revised?
RQ2: To what degree do such revisions indicate behavioral differences?
RQ3: How frequently are API elements and their documentation changed?
We use five widely used real-world libraries as subjects. The five libraries have

9,506,580 words of API documentation in total. For each library, we analyze the latest
five stable versions as shown in Table 1. For J2SE, we do not choose some end-of-life
versions (i.e., J2SE 1.4.1, J2SE 1.4.0, and J2SE 1.3.0)5. We still choose J2SE 1.2.2 (an
end-of-life version), since existing stable versions of J2SE do not have five releases.
For ActiveMQ, we analyze its core API elements only. More details can be found on

5 http://java.sun.com/products/archive/j2se-eol.html



our project site: https://sites.google.com/site/asergrp/projects/
apidocevolution.

3.1 RQ1: Which parts of API documentation are frequently revised?

In this section, we present proportions of all types and some examples of these types.
In total, we compared 2,131 revisions that cover the java.util package of J2SE, and
all the other four libraries. We identify three primary categories of API documentation
evolution, and for each category, we further identify detailed revision types, as shown
in Figure 2. The vertical axis shows the three primary categories of revisions, and the
horizontal axis shows the proportion for each category over the 2,131 revisions.

Finding 1: 45.99% of revisions are about annotations as follows.
In the official guidance of Java documentation6, tags and annotations are different.

By using tags, library developers can add structures and contents to the documentation
(e.g., @since), whereas annotations are used to affect the way API elements are treated
by tools and libraries (e.g., @Entity). In this paper, we do not distinguish the two
definitions and use annotation to represent both of them for simplicity.

Version 19.25% A version consists of numbers and dates that indicate when an API
element is created or changed, and a version is marked by the @version annotation or
the @since annotation. With either annotation, the version of an API element is updated
automatically when API code changes. As the two annotations cause to automatically
modify documents, they cause a large proportion of revisions. It is still an open question
on whether such version numbers are useful, since we notice that library developers
systematically deleted the two annotations in the documentation of lucene 3.0.0.

Exception 8.21% Exception handling plays an important role in the Java language,
and the exceptions of an API method can be marked by the @throws annotation or the
@exception annotation. Revisions on exceptions often indicate behavioral differences,
and Finding 4 in Section 3.2 presents more such examples.

Reference 7.60% The document of one API element may refer programmers to
other API elements since these API elements are related. The reference relations can
be marked by the @see annotation or the @link annotation. We find that at least two
factors drive library developers to modify reference relations. One factor is that the
names of referred API elements are modified. The other factor is that it is difficult
even for library developers to decide reference relations among API elements. Besides
other API elements, one document may even refer to some Internet documents using
URLs. Library developers may also modify URLs across versions. For example, in
the java.util.Locale.getISO3Language() method of J2SE 1.5, the URL of ISO
639-2 language codes is updated from one7 to another8.

Using the annotations such as @see or @link, one document may refer to other
code elements or documents, and these code elements or documents may get updated

6 http://www.oracle.com/technetwork/java/javase/documentation/
index-137868.html

7 ftp://dkuug.dk/i18n/iso-639-2.txt
8 http://www.loc.gov/standards/iso639-2/englangn.html



0.00% 10.00% 20.00% 30.00% 40.00% 50.00%

A t ti

Version
Exception
Reference
Parameter
Return value

0.00% 10.00% 20.00% 30.00% 40.00% 50.00%

Annotation

Literal polish

Version
Exception
Reference
Parameter
Return value
Inheritance
Deprecation
Rephrasing
Syntax
Typo
Format

0.00% 10.00% 20.00% 30.00% 40.00% 50.00%

Annotation

Literal polish

Programming tip

Version
Exception
Reference
Parameter
Return value
Inheritance
Deprecation
Rephrasing
Syntax
Typo
Format
Notice
Code Example
New description

Fig. 2. Categories of revisions.

across versions. Code refactoring [15] is a hot research topic, but most of existing refac-
toring approaches address the problem of refactoring code partially, and its impacts on
documents are less exploited.

Parameter 3.94% For each API method, the document of its parameters can be
marked by the @param annotation, and library developers may add parameter docu-
ments to describe parameters. For example, in J2SE 1.3.1, library developers add a doc-
ument to the comp parameter of the java.util.Collections.max(Collection,
Comparator) method: “comp the comparator with which to determine the maximum
element. A null value indicates that...”.

Return value 2.86% The return value of an API method can be marked by the
@return annotation, and library developers may add return-value documents to better
describe return values. For example, in J2SE 1.4.2, library developers add a document
to the java.util.ArrayList.contains(Object) method: “Return: true if the
specified element is present; false otherwise”.

Inheritance 2.39% Inheritances among classes and interfaces cause similar docu-
ments across them, and also their methods and fields. The document of a class often
needs to be modified, when the document of its superclass is modified. Although li-
brary developers can use the @inheritDoc annotation to deal with similar documents
caused by inheritance relations, we notice that only a small proportion of such similar
documents are marked by the annotation.

Deprecation 1.74% An API element may become deprecated, and its document can
be marked by the @deprecated annotation. When the document of an API element is
marked as deprecated, some IDEs such as the Eclipse IDE explicitly warn that program-
mers should be careful to use the API element. When an API element becomes depre-
cated, library developers sometimes may suggest programmers to use alternative API
elements. Although a deprecated API element is assumed to be deleted in later versions,
we find that some deprecated API elements can become undeprecated again. For exam-
ple, we find that eight API elements (e.g., the org.apache.lucene.search.func-
tion.CustomScoreQuery.customExplain()method) get updated from deprecated
to undeprecated in lucene 3.0.0.

Implication 1: Library developers take much effort to write annotations, and some
annotations (e.g., @see) are difficult to maintain. Some tools may be beneficial if they
can help library developers write and update these annotations. Researchers may borrow
ideas from existing research on code refactoring when implementing these tools.



Finding 2: 29.14% of revisions are literal polishes as follows.
Rephrasing 21.26% We find that library developers often rephrase documents to

improve their accuracies. For example, in J2SE 1.2.2, the document of the java.util.
GregorianCalendar class includes a sentence: “Week 1 for a year is the first week
that ...”, and the document is modified in J2SE 1.3.1: “Week 1 for a year is the earliest
seven day period starting on getFirstDayOfWeek() that...”.

In many cases, a modified document has trivial revisions. While in other cases, revi-
sions are non-trivial, and modified documents may indicate behavioral differences. For
example, in ActiveMQ 5.3.0, the document of the org.apache.activemq.broker.
region.cursors.PendingMessageCursor.pageInList(int) method is “Page
in a restricted number of messages”. In ActiveMQ 5.3.1, the document is changed to
“Page in a restricted number of messages and increment the reference count”. Based
on the revision, the behavior of the method may change, and the changed method can
increase the reference count. We further discuss this issue in Section 3.2.

Syntax 3.57% Library developers may produce a document with syntax errors, and
fix them in a later version. For example, in J2SE 1.5, the document of the java.util.
ArrayList.remove(int) method includes a sentence: “index the index of the ele-
ment to removed”. Library developers fix this syntax error in J2SE 1.6, and the modified
document is “index the index of the element to be removed”.

Typo 3.47% Library developers may produce some typos, and fix them in a later
version (e.g., possble → possible).

Format 0.84% Library developers may modify formats of some words for better
presentation. For example, in J2SE 1.5, the document of the java.util.Vector.set-
ElementAt(E,int) method includes a sentence: “the set method reverses ...”. In J2SE
1.6, library developers change the font of one word, and the modified document is “the
set method reverses ...”. For better readability, a code element within a document is
marked by the @code annotation in J2SE 1.6.

Implication 2: Many literal polishes such as those for fixing typos, syntax errors,
and format issues can be avoided if researchers or practitioners propose an appropri-
ate editor to library developers. It is challenging to implement such an editor for three
reasons. (1) Many specialized terms and code names may be detected as typos. For
example, although the Eclipse IDE can find some typos, it wrongly identifies “applet”
as a typo since it is a specialized term of computer science. (2) Code examples may be
detected to include syntax errors. To check these code examples, an editor should under-
stand corresponding programming languages. (3) Specific styles of API documentation
may not be well supported by existing editors, and one such style is defined by the of-
ficial guidance of Java documentation: “library developers should use ‘this’ instead of
‘the’ when referring to an object created from the current class”.

Finding 3: 22.62% of revisions are about programming tips as follows.
Notice 16.24% Library developers may add notices to describe API usages. Many

notices start with the labeling word “Note”, but following this style is not a strict re-
quirement. For example, in lucene 3.0.0, library developers add two sentences to the
document of the org.apache.lucene.util.CloseableThreadLocal class with-
out any labels: “We can not rely on ThreadLocal.remove()... You should not call
close until all threads are done using the instance”. In some cases, notices even have no



modal verbs such as must and should. For example, in J2SE 1.5, a notice is added to the
document of the java.util.Observable.deleteObserver(Observer) method:
“Passing null to this method will have no effect”.

Library developers may also modify a notice. For example, in J2SE 1.3.1, the doc-
ument of the java.util.AbstractCollection.clear() method has a sentence:
“Note that this implementation will throw an UnsupportedOperationException if
the iterator returned by this collection’s iterator method does not implement the remove
method”. In J2SE 1.4.2, the modified document includes another condition: “... not im-
plement the remove method and this collection is non-empty”. Library developers may
even delete notice. For example, in lucene 3.0.0, library developers delete a notice of
the org.apache.lucene.index.IndexWriter.getReader() method: “You must
close the IndexReader returned by this method once you are done using it”. It seems
that programmers do not have to close the reader explicitly any more.

Code Example 4.36% Library developers may add code examples to illustrate API
usages, and later fix defects in code examples. For example, in J2SE 1.5, the docu-
ment of the java.util.List.hashCode() method has a code sample: “hashCode
= 1;...”, and in J2SE 1.6, a defect is fixed: “int hashCode = 1;...”.

As pointed out by Kim et al. [12], API documentation in Java typically does not con-
tain as many code examples as API documentation in other languages (e.g., MSDN9).
Still, library developers of Java libraries are reluctant to add code examples to API doc-
uments. Although code examples are useful to programmers, some library developers
believe that API documentation should not contain code examples. In particular, the of-
ficial guidance of Java documentation says “What separates API specifications from a
programming guide are examples,...”, so adding many code examples to documentation
is against the guidance.

New Description 2.02% Some API elements may not have any documents, or have
only automatically generated documents without any true descriptions of usages. In
some cases, an API element is found not straightforward to use, so library developers
add new descriptions for the API element. For example, in J2SE 1.5, the document of
the java.util.ListResourceBundle.getContents() method has only one sen-
tence: “See class description”. However, in J2SE 1.6, library developers add detailed
explanations to the method: “Returns an array in which each item is a pair of objects
in an Object array. The first element of each pair is the key, which must be a String,
and the second element is the value associated with that key. See the class description
for details”.

Implication 3: Dekel and Herbsleb [7] show that programming tips such as notices
are quite valuable to programmers, but we find that programming tips are challenging
to identify since Java does not provide any corresponding annotations. If such annota-
tions are available, tools (e.g., the one proposed by Dekel and Herbsleb [7]) may assist
programmers more effectively. In addition, although many programmers complain that
API documentation in Java lacks code examples, some library developers are still re-
luctant to add more code samples partially because doing so violates the principle of
writing Java documentation. Some tools (e.g., the tool proposed by Kim et al. [12]) may
help bridge the gap between programmers and library developers.

9 http://msdn.microsoft.com/



Besides the preceding findings (Findings 1–3), other 2.25% revisions cannot be put
into the preceding categories. Some of such revisions are still valuable. For example,
in lucene 2.9.1, the document of the org.apache.lucene.analysis.standard.

StandardTokenizer class includes a sentence that describes a fixed defect and its
related bug report: “As of 2.4, Tokens incorrectly identified as acronyms are corrected
(see LUCENE-1608)”. Tools can use this clue to build relations between bug reports
and API code automatically.

3.2 RQ2: To what degree do such revisions indicate behavioral differences?

In this paper, we refer to differences in input/output values, functionalities, and call
sequences between two versions of an API library as behavioral differences of API
elements. Some behavioral differences can be reflected from revisions of API docu-
mentation. In this section, we analyze behavioral differences based on textual revisions
of exceptions, parameters, returns, rephrasing, notices, and example code, since these
revisions can often indicate behavioral differences as shown in Section 3.1. In total, we
find that 18.44% revisions indicate behavioral differences. We classify found behavioral
differences into three primary categories, and Figure 3 shows the results. The vertical
axis shows the primary categories, and the horizontal axis shows their proportions.

Finding 4: 41.99% of behavioral differences are about exceptions as follows.
Addition 39.19% Library developers may re-implement API methods to throw new

exceptions, and add exception documents for these API methods. For example, in J2SE
1.3, library developers re-implement the java.util.ResourceBundle.getObject
(String) method to throw a new exception (NullException), and add a correspond-
ing document. In total, we find that NullException, ClassCastException, and
IllegalArgumentException are the top three added exceptions.

Modification 2.04% Library developers may change thrown exceptions of API
methods, and modify corresponding documents. For example, in J2SE 1.3, the Vector.
addAll(Collection) method throws ArrayIndexOutOfBoundsException. The
thrown exception is changed to NullPointerException in J2SE 1.4, and its docu-
ment is also modified.

Deletion 0.76% Library developers may delete exceptions from API methods, and
delete corresponding documents. For example, in ActiveMQ 5.1.0, the org.apache.
activemq.transport.tcp.SslTransportFactory.setKeyAndTrustManagers

(KeyManager[],TrustManager[],SecureRandom) method throws KeyManage-
mentException. In ActiveMQ 5.2.0, library developers deprecate this method and
delete its exception.

Implication 4: Library developers can add, modify, and delete exception docu-
ments, and these modifications indicate behavioral differences. In addition, we find that
similar API methods often have similar revisions, and such a similarity could potentially
be leveraged to better maintain API documentation.

Finding 5: 29.77% of behavioral differences are about API usage as follows.
Notice 24.68% As discussed in Finding 3, modifications of notices can reflect be-

havioral differences. For example, in J2SE 1.5, the document of the java.util.Ran-
dom.setSeed(long) method has one notice: “Note: Although the seed value is an
AtomicLong, this method must still be synchronized to ensure correct semantics of



0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00% 35.00% 40.00% 45.00%

Exception

Addition

Modification

Deletion

Notice

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00% 35.00% 40.00% 45.00%

Exception

API usage

Addition

Modification

Deletion

Notice

Code Example

Alternative

Call sequence

New functionality

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00% 35.00% 40.00% 45.00%

Exception

API usage

Functionality

Addition

Modification

Deletion

Notice

Code Example

Alternative

Call sequence

New functionality

Input value

Default value

Output value

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00% 35.00% 40.00% 45.00%

Exception

API usage

Functionality

Addition

Modification

Deletion

Notice

Code Example

Alternative

Call sequence

New functionality

Input value

Default value

Output value

Fig. 3. Categories of behavioral differences.

haveNextNextGaussian”. In J2SE 1.6, the notice is deleted. The revision indicates that
the latter version does not have to be synchronized as the former version does.

Code example 2.29% Code examples explain API usages, so their revisions very
likely reflect behavioral differences. For example, in lucene 2.9.0, the example code of
keys in the org.apache.lucene.search.Hits class is as follow:

TopScoreDocCollector collector = new TopScoreDocCollector(hitsPerPage);
searcher.search(query, collector);
ScoreDoc[] hits = collector.topDocs().scoreDocs;
for (int i = 0; i < hits.length; i++) {
...

In lucene 2.9.1, the code example is modified as follows:

TopDocs topDocs = searcher.search(query, numHits);
ScoreDoc[] hits = topDocs.scoreDocs;
for (int i = 0; i < hits.length; i++) {
...

The version shows that programmers should follow a different way to attain a
ScoreDoc[] object.

Alternative 1.78% When an API element becomes deprecated, library developers
may refer to another API element for the deprecated one as alternatives. Revisions on
alternatives very likely reflect behavioral differences. For example, the document of the
deprecated org.apache.lucene.analysis.StopAnalyzer.StopAnalyzer(Set)
constructor is “Use StopAnalyzer(Set,boolean) instead” in lucene 2.9.0. In lucene
2.9.1, library developers change the document to “Use StopAnalyzer(Version,Set)
instead”. The revision indicates that another API method should be used to replace the
deprecated API method.

Call sequence 1.02% The revisions of API call sequences very likely reflect be-
havioral differences. For example, in lucene 2.9.2, the document of the org.apache.
lucene.search.Scorer.score() method has a sentence: “Initially invalid, until
DocIdSetIterator.next() or DocIdSetIterator.skipTo(int) is called the
first time”. In lucene 3.0.0, library developers modify this sentence: “Initially invalid,
until DocIdSetIterator.nextDoc() or DocIdSetIterator.advance(int) is
called the first time”. The revision indicates that programmers should call different API
methods in the latter version from those in the former version.

Implication 5: As API usages are quite important to programmers, library develop-
ers take much effort to improve related documents. However, we find that Java has quite
limited annotations to support API-usage documents. If such annotations are available,



Table 2. Percentages of overall API differences
Library 1-2 2-3 3-4 4-5

J2SE 26.05% 59.04% 40.02% 22.60%
ActiveMQ 5.51% 4.95% 5.52% 1.64%

lucene 1.17% 0.51% 13.81% 0.55%
log4j 0.02% 0.00% 13.13% 5.47%
struct 28.17% 8.41% 4.60% 0.20%

library developers can improve readability of API documentation, and programmers
can better understand API evolution.

Finding 6: 26.71% of behavioral differences are about functionalities as follows.
New functionality 14.50% Library developers may implement new functionalities

for some API elements, and revise corresponding documents. For example, generic is
a new functionality introduced in J2SE 1.5, and many related documents are modified
(e.g., the document of the java.util.Collections class).

Input value 7.89% Library developers may change input ranges of some API meth-
ods, and revise corresponding documents. For example, in J2SE 1.3.1, the document
of the java.util.Properties.store(OutputStream,String) method includes
“The ASCII characters ∖, tab, newline, and carriage return are written as ∖∖, ∖t, ∖n,
and ∖r, respectively”. In J2SE 1.4.2, library developers add a new ASCII translation for
“form feed”, and the sentence is modified to “The ASCII characters ∖, tab, form feed,
newline, and carriage return are written as ∖∖, ∖t, ∖f ∖n, and ∖r, respectively”. The re-
vision indicates that the latter version can accept more characters (e.g., form feed) as
inputs than the former version does.

Default value 2.54% Library developers may change default values of some API
methods, and revise corresponding documents. For example, in J2SE 1.3.1, the docu-
ment of the java.util.Hashtable(Map t) method informs that “The hashtable is
created with a capacity of twice the number of entries in the given Map or 11 (whichever
is greater)”. In J2SE 1.4.2, library developers delete the words about default values, and
change the sentence to “The hashtable is created with an initial capacity sufficient to
hold the mappings in the given Map”. The revision indicates that the capacity of the
latter version is different form the former version.

Output value 1.78% Library developers may change output values of some API
methods, and revise corresponding documents. In some cases, library developers may
find that some output values are not straightforward, so they add documents to these
output values. For example, in log4j 1.2.15, the document of the org.apache.log4j.
Appender.getName() method does not have any sentences about return values. In
log4j 1.2.16, library developers add one sentence about return values: “return name,
may be null”. The sentence explains that the return value can be null. The revision
indicates that the latter version can return null values, whereas the former version may
not. Still, it is difficult to fully determine whether such a revision indicates behavioral
differences or not, and we further discuss the issue in Section 4.

Implication 6: Besides adding new functionalities, library developers also change
functionalities by modifying default values and input/output values of some API meth-
ods. Although some annotations (e.g., @param and @return) are provided to describe
input and output parameters, value ranges are difficult to identify since they are usually



Table 3. Percentages of API differences by types
(1) J2SE

V A R M
1-2 10.37% 0.61% 89.02%
2-3 15.02% 0.83% 84.15%
3-4 20.12% 4.55% 75.33%
4-5 12.68% 1.40% 85.92%

(2) ActiveMQ
V A R M

1-2 56.80% 5.78% 37.42%
2-3 67.60% 2.23% 30.17%
3-4 42.84% 4.91% 52.25%
4-5 41.61% 7.42% 50.97%

(3) lucene
V A R M

1-2 22.89% 1.21% 75.90%
2-3 7.89% 0.00% 92.11%
3-4 8.71% 41.41% 49.88%
4-5 14.71% 2.94% 82.35%

(4) log4j
V A R M

1-2 50.00% 0.00% 50.00%
2-3 n/a n/a n/a
3-4 42.11% 6.57% 51.32%
4-5 38.74% 0.00% 61.26%

(5) struct
V A R M

1-2 26.88% 39.13% 33.99%
2-3 39.13% 12.32% 48.55%
3-4 52.05% 11.06% 36.89%
4-5 0.00% 0.00% 100.00%

mixed with names and descriptions of parameters. In addition, other revisions (e.g., re-
visions of default values) even have no corresponding annotations. If such annotations
are supported, it may be easier to analyze those revisions for behavioral differences.

Besides the preceding findings (Findings 4–6), other 1.53% revisions of behavioral
differences cannot be put into the preceding categories.

3.3 RQ3: How frequently are API elements and their documentation changed?

Sections 3.1 and 3.2 have investigated detailed revisions in API documentation. In this
section, we present an overall evolution frequency of API differences over versions of
all the libraries listed in Table 1. Given two library versions 𝐿1 and 𝐿2, we define the
API difference between the two versions of the API library as follows:

𝐷𝑖𝑓(𝐿1, 𝐿2) =
𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑠+ 𝑟𝑒𝑚𝑜𝑣𝑎𝑙𝑠+ 2×𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

𝑠𝑢𝑚 𝑜𝑓 𝑝𝑢𝑏𝑙𝑖𝑐 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝐿1 𝑎𝑛𝑑 𝐿2
(1)

In Equation 1, additions denote newly added API elements; removals denote deleted
API elements; and modifications denote API elements whose declarations or documents
are modified. We count the number of modifications twice, since each modification can
be considered as a removal and an addition.

Finding 7: Contrary to normal expectations, API libraries between two nearby ver-
sions are typically quite different. The API differences between two library versions are
largely proportional to the differences between the version numbers of the two versions,
and additions and modifications account for most of the proportions by evolution types.

Table 2 shows the overall API differences. Each column denotes the API difference
between the two versions of a library. For example, Column “1-2” lists the API differ-
ences between a v1 version and a v2 version. From Table 2, we find that two versions
of a library typically provide different API elements, and only two versions of log4j
have exactly the same API elements. For each library, API differences are largely pro-
portional to differences of version numbers. For example, API differences of ActiveMQ
are proportional to the differences of its version numbers shown in Table 1.

Table 3 shows the proportions of evolution types. For each library, Column “V”
lists versions. For example, Row “1-2” shows the proportions between a v1 version
and a v2 version. Column “A” denotes proportions of additions. Column “R” denotes



proportions of removals. Column “M” denotes proportions of modifications. From the
results of Table 3, we find that additions and modifications account for the most of the
proportions of evolution types. It seems that library developers are often reluctant to
remove API elements, possibly for the consideration of compatibility across versions.

Implication 7: Based on our results, the API differences between two versions of
an API library increase with the differences between their version numbers, so analysis
tools for API evolution should deal with more API differences between versions with
more different version numbers. Modifications account for the largest proportions. As
modifications keep signatures of API methods unchanged, they typically do not cause
compilation errors. Thus, analysis tools need to identify and deal with modifications
carefully to ensure that the process of API evolution does not introduce new defects
into client code.

3.4 Summary

Overall, we find that API documentation between two nearby versions can be quite dif-
ferent, and API differences between versions are proportional to differences of version
numbers (Finding 7). Our findings are valuable to better understand API documentation
evolution by highlighting the following aspects:

Evolution distribution. Most revisions occur in annotations, but some of annota-
tions are difficult to maintain (Finding 1). Literal polishes account for the second place,
and about 30% effort can be saved when an appropriate editor is available (Finding 2).
Programming tips account for the third place, and documents on programming tips are
challenging to identify since there are no corresponding annotations (Finding 3).

Behavioral differences. Most behavioral differences occur in revisions of excep-
tions (Finding 4). Although various revisions can indicate behavioral differences, no
corresponding annotations exist to support these revisions (Findings 5 and 6).

3.5 Threats to Validity

The threats to external validity include the representativeness of the subjects in true
practice. Although we choose five widely used real-world libraries as subjects, our em-
pirical study investigated limited libraries with limited versions, so some findings (e.g.,
percentages) may not be general. This threat could be reduced by investigating more
versions of more libraries. The threats to internal validity include the human factors
within our methodology. Although we tried our best to reduce the subjectivity by using
double verification, to further reduce this threat, we need to invite more participants to
verify our results.

4 Discussion and Future Work

In this section, we discuss issues and our future work.
Variance across version changes. As shown in Table 2, percentages of changes

between versions are not fully uniform with variances. To investigate such variances, we
plan to use finer-grained analysis in future work. In particular, we plan to investigate the



distribution of those variances, their associations, and their styles of common changes
for better understanding API evolution.

Determining behavioral differences. It is challenging to automatically determine
behavioral differences through only documentation analysis or only code analysis (e.g.,
code refactoring typically does not cause any behavioral differences). In future work,
we plan to combine documentation analysis with code analysis to better determine be-
havioral differences than with individual techniques.

Benefits of our findings. Our findings are beneficial to programmers, library de-
velopers, IDE developers, and researchers. For example, for IDE developers, as our
findings reveal that many revisions (e.g., revisions of version numbers) are of little in-
terest, it can be ineffective if IDE developers design an IDE where library developers
are required to manually make all types of revisions of API documentation. As another
example, for researchers, Mariani et al. [14] can also improve their approach that iden-
tifies anomalous events, if they consider modified notices and code examples that may
lead to anomalous events. Furthermore, we released our results on our project website,
so others can analyze benefits of our findings under their contexts.

5 Related Work
Our quantitative study is related to previous work as follows.

Natural language analysis in software engineering. Researchers have proposed
approaches to analyze natural language documents in software engineering. Tan et
al. [21] proposed an approach to infer rules and to detect defects from single sentences
of comments. Zhong et al. [26] proposed an approach that infers resource specifica-
tions from descriptions of multiple methods. Tan et al. [22] proposed an approach
that infers annotations from both code and comments to detect concurrency defects.
Dekel and Herbsleb [7] proposed an approach that pushes rule-containing documents
to programmers. Horie and Chiba [11] proposed an extended Javadoc tool that provides
new tags to maintain crosscutting concerns in documentation. Buse and Weimer [3, 4]
presented various automatic techniques for exception documentation and synthesizing
documentation for arbitrary programme differences across versions. Sridhara et al. [20]
proposed an approach that infers comments of Java methods from API code. Würsch et
al. [23] proposed an approach that supports programmers with natural language queries.
Kof [13] used POS tagging to identify missing objects and actions in requirement doc-
uments. Instead of proposing a new approach, we conducted an empirical study that
motivates future work on analyzing API documentation in natural languages.

API translation. Researchers have proposed approaches to translate APIs from one
API library to another. Henkel and Diwan [10] proposed an approach that captures
and replays API refactoring actions to update the client code. Xing and Stroulia [24]
proposed an approach that recognizes the changes of APIs by comparing the differ-
ences between two versions of libraries. Balaban et al. [2] proposed an approach to
migrate client code when mapping relations of libraries are available. Dagenais and
Robillard [5] proposed an approach that recommends relevant changes of API elements
based on comparing API code. Zhong et al. [25] proposed an approach that mines API
mapping relations for translating APIs in one language to another. Our empirical study
reveals various findings and implications on API documentation evolution, and these
findings are valuable to improve exiting API translation approaches.



Empirical studies on software evolution or API libraries. Researchers have con-
ducted various empirical studies on software evolution or API libraries. Ruffell and
Selby’s empirical study [19] reveals that global data is inherent and follows a wave
pattern during software evolution. Geiger et al.’s empirical study [9] reveals that the re-
lation between code clones and change couplings is statistically unverifiable, although
they find many such cases. Bacchelli et al.’s empirical study [1] reveals that the dis-
cussions of an artifact in email archives and the defects of the artifact are significantly
correlated. Novick and Ward’s empirical study [16] reveals that many programmers are
reluctant to seek help from documentation. Robillard and DeLine [18] conducted an
empirical study to understand obstacles to learn APIs, and present many implications to
improve API documentation. Padioleau et al. [17] presented an empirical study on tax-
onomies of comments in operating system code. Dagenais and Robillard [6] conducted
a qualitative study on creation and evolution of documentation, whereas we conducted a
quantitative study on the evolution. Dig and Johnson’s empirical studies [8] reveal that
refactoring plays an important role in API evolution, and some breaking changes may
cause behavioral differences or compilation errors in client code. Our empirical study
focuses on the evolution of API documentation, complementing their studies.

6 Conclusion
A quantitative study on API documentation evolution is quite valuable for both pro-
grammers and library developers to better understand evolution, and it is difficult to
conduct such a study due to various challenges. In this paper, we present an analysis
methodology to analyze the evolution of API documentation. We conduct a quantita-
tive study on API documentation evolution of five real-world Java libraries. The results
show that API documentation undergoes frequent evolution. Understanding these re-
sults helps programmers better learn API documentation evolution, and guides library
developers better in maintaining their documentation.

Acknowledgments

We appreciate anonymous reviewers for their supportive and constructive comments.
The authors from Chinese Academy of Sciences are sponsored by the National Ba-
sic Research Program of China (973) No. 2007CB310802, the Hi-Tech Research and
Development Plan of China (863) No. 2007AA010303, the National Natural Science
Foundation of China No. 90718042, 60803023, 60873072, and 60903050, and the
CAS Innovation Program ISCAS2009-GR. Tao Xie’s work is supported in part by NSF
grants CNS-0716579, CCF-0725190, CCF-0845272, CCF-0915400, CNS-0958235, an
NCSU CACC grant, ARO grant W911NF-08-1-0443, and ARO grant W911NF-08-1-
0105 managed by NCSU SOSI.

References

[1] A. Bacchelli, M. DAmbros, and M. Lanza. Are popular classes more defect prone? In
Proc. 13th FASE, pages 59–73, 2010.

[2] I. Balaban, F. Tip, and R. Fuhrer. Refactoring support for class library migration. In Proc.
20th OOPSLA, pages 265–279, 2005.



[3] R. Buse and W. Weimer. Automatic documentation inference for exceptions. In Proc.
ISSTA, pages 273–282, 2008.

[4] R. Buse and W. Weimer. Automatically documenting program changes. In Proc. 26th ASE,
pages 33–42, 2010.

[5] B. Dagenais and M. Robillard. Recommending adaptive changes for framework evolution.
In Proc. 30th ICSE, pages 481–490, 2009.

[6] B. Dagenais and M. P. Robillard. Creating and evolving developer documentation: Un-
derstanding the decisions of open source contributors. In Proc. 18th ESEC/FSE, pages
127–136, 2010.

[7] U. Dekel and J. D. Herbsleb. Improving API documentation usability with knowledge
pushing. In Proc. 31st ICSE, pages 320–330, 2009.

[8] D. Dig and R. Johnson. How do APIs evolve? a story of refactoring. Journal of software
maintenance and evolution: Research and Practice, 18(2):83–107, 2006.

[9] R. Geiger, B. Fluri, H. Gall, and M. Pinzger. Relation of code clones and change couplings.
In Proc. 9th FASE, pages 411–425, 2006.

[10] J. Henkel and A. Diwan. CatchUp!: capturing and replaying refactorings to support API
evolution. In Proc. 27th ICSE, pages 274–283, 2005.

[11] M. Horie and S. Chiba. Tool support for crosscutting concerns of API documentation. In
Proc. 8th AOSD, pages 97–108, 2010.

[12] J. Kim, S. Lee, S. Hwang, and S. Kim. Adding examples into Java documents. In Proc.
24th ASE, pages 540–544, 2009.

[13] L. Kof. Scenarios: Identifying missing objects and actions by means of computational
linguistics. In Proc. 15th RE, pages 121 – 130, 2007.

[14] L. Mariani, F. Pastore, and M. Pezze. A toolset for automated failure analysis. In Proc.
31st ICSE, pages 563–566, 2009.

[15] T. Mens and T. Tourwe. A survey of software refactoring. IEEE Transactions on software
engineering, 30(2):126–139, 2004.

[16] D. G. Novick and K. Ward. Why don’t people read the manual? In Proc. 24th SIGDOC,
pages 11–18, 2006.

[17] Y. Padioleau, L. Tan, and Y. Zhou. Listening to programmers–Taxonomies and character-
istics of comments in operating system code. In Proc. 31st ICSE, pages 331–341, 2009.

[18] M. P. Robillard and R. DeLine. A field study of API learning obstacles. Empirical Software
Engineering, to appear, 2011.

[19] F. Ruffell and J. Selby. The pervasiveness of global data in evolving software systems. In
Proc. 9th FASE, pages 396–410, 2006.

[20] G. Sridhara, E. Hill, D. Muppaneni, L. L. Pollock, and K. Vijay-Shanker. Towards automat-
ically generating summary comments for Java methods. In Proc. 25th ASE, pages 43–52,
2010.

[21] L. Tan, D. Yuan, G. Krishna, and Y. Zhou. /* iComment: Bugs or bad comments? */. In
Proc. 21st SOSP, pages 145–158, 2007.

[22] L. Tan, Y. Zhou, and Y. Padioleau. aComment: Mining annotations from comments and
code to detect interrupt-related concurrency bugs. In Proc. 33rd ICSE, to appear, 2011.

[23] M. Würsch, G. Ghezzi, G. Reif, and H. Gall. Supporting developers with natural language
queries. In Proc. 32nd ICSE, pages 165–174, 2010.

[24] Z. Xing and E. Stroulia. API-evolution support with Diff-CatchUp. IEEE Transactions on
Software Engineering, 33(12):818–836, 2007.

[25] H. Zhong, S. Thummalapenta, T. Xie, L. Zhang, and Q. Wang. Mining API mapping for
language migration. In Proc. 32nd ICSE, pages 195–204, 2010.

[26] H. Zhong, L. Zhang, T. Xie, and H. Mei. Inferring resource specifications from natural
language API documentation. In Proc. 24th ASE, pages 307–318, 2009.


