
Inferring Method Specifications from Natural Language API Descriptions
Rahul Pandita∗, Xusheng Xiao∗, Hao Zhong†, Tao Xie∗, Stephen Oney‡, and Amit Paradkar§

∗Department of Computer Science, North Carolina State University, Raleigh, USA
†Laboratory for Internet Software Technologies, Institute of Software, Chinese Academy of Sciences, Beijing, China

‡Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, USA
§I.B.M. T. J. Watson Research Center, Hawthorne, NY, USA

{rpandit, xxiao2, txie}@ncsu.edu, zhonghao@itechs.iscas.ac.cn, soney@cs.cmu.edu, paradkar@us.ibm.com

Abstract—Application Programming Interface (API) docu-
ments are a typical way of describing legal usage of reusable
software libraries, thus facilitating software reuse. However,
even with such documents, developers often overlook some
documents and build software systems that are inconsistent
with the legal usage of those libraries. Existing software
verification tools require formal specifications (such as code
contracts), and therefore cannot directly verify the legal usage
described in natural language text in API documents against
code using that library. However, in practice, most libraries
do not come with formal specifications, thus hindering tool-
based verification. To address this issue, we propose a novel
approach to infer formal specifications from natural language
text of API documents. Our evaluation results show that our
approach achieves an average of 92% precision and 93%
recall in identifying sentences that describe code contracts from
more than 2500 sentences of API documents. Furthermore, our
results show that our approach has an average 83% accuracy
in inferring specifications from over 1600 sentences describing
code contracts.

I. INTRODUCTION
Software reuse is commonly practised since the advent

of software development [9]. Software reuse facilitates de-
velopment of larger, more complex, and timely-delivered
software systems [10]. To determine what and how to
reuse, specifications of reusable software libraries play an
important role. In the absence of specifications, developers
may write code that is inconsistent with the expectations
of libraries. As a result, not only such code is of inferior
quality and contains faults, the added cost of debugging and
correcting such faulty code could also defeat the purpose of
reusing software.

Code contracts [4], [20] have emerged as a popular way
of formalizing method specifications close to the imple-
mentation level. Code contracts unambiguously capture the
expectations of a method in terms of what is required (pre-
conditions) and what to expect after method execution (post-
conditions). Furthermore, code contracts can be subjected
to formal verification by existing state-of-the-art verification
tools such as Spec# [1], JML1, and Code Contracts for
.NET2. Additionally, code contracts can be used for formal
proofs and automated code correction [38].

Despite being highly desirable, code contracts do not exist
in a formalized form in most existing software systems
in practice [24]. In contrast, library developers commonly
describe legal usage in natural language text in Application

1http://www.eecs.ucf.edu/∼leavens/JML/
2http://research.microsoft.com/en-us/projects/contracts/

Programming Interface (API) documents. Typically, such
documents are provided to client-code developers through
online access, or are shipped with the API code. For exam-
ple, J2EE’s API documentation3 is one of the most popular
API documents.

Even with such documents, client-code developers often
overlook some API documents and use methods in API
libraries incorrectly [22]. Since these documents are written
in natural language, existing tools cannot verify legal usage
described in a library’s API documents against the client
code of that library. One possible solution is to manually
write code contracts based on the specifications described
in API documents. However, due to a large number of
sentences in API documents, manually hunting for contract
sentences and writing code contracts for the API library
is prohibitively time consuming and labor intensive. For
instance, the File class of the C# .NET Framework has
around 800 sentences. Moreover, not all of these sentences
describe code contracts, requiring extra effort to first locate
the sentences describing code contracts and then translate
them.

To address the preceding problem, we propose a novel
approach to facilitate verification of legal usage described in
natural language text of API documents against client code
of those libraries. We propose new techniques that apply
Natural Language Processing (NLP) on method descriptions
in API documents to automatically infer specifications. In
particular, our techniques address the following challenges
to infer specifications automatically.

Ambiguity. Existing linguistic analysis techniques focus
on well-written documents such as news articles [30]. In
contrast, method descriptions are often not well-written. For
instance, consider the sentence from the File class in the
C# .NET Framework: “true if path is an absolute path;
otherwise false”. This sentence does not have the main
subject and the verb.

To address this challenge, we use meta-data such as posi-
tion information of description as well as method signatures.
In particular, in this example, the sentence is placed under
the return descriptions and the method signature describes
the return type as boolean. We use this information to infer
that words “true” and “false” describe the return value of
the method.

3http://download.oracle.com/javaee/1.6/api/

Programming Keywords. Method descriptions often con-
tain programming keywords (e.g., true, null, buffer),
which have a different meaning in the context of programs,
in contrast to general linguistics. For instance, consider this
sentence from the Path class in the C# .NET Framework:
“This method also returns false if path is null”. In this
sentence, words ‘false’ and ‘null’ are nouns in the context
of object-oriented languages such as Java and C#, whereas
in general linguistics these words are adjectives. Thus, these
keywords need to be handled differently.

For those keywords, we propose a new technique called
Noun Boosting to distinguish keywords from the other
words.

Semantic Equivalence. A legal usage in natural language
can be described in different words and semantic struc-
tures. For instance, consider the following two fragments
that describe the same specification: “name can contain
numbers, underscores...’’ and “name consists of numbers
and/or underscores...”. Thus, there is a need to identify the
semantic equivalence of legal usage described in different
ways.

To address this challenge, we propose a new technique
called equivalence analysis based on identified grammatical
structures (main nouns and verbs) of a sentence.

In summary, our approach infers specifications from
existing API documents, thus facilitating verification of
client code of an API library against the natural language
descriptions of the library. As our approach analyzes API
documents in natural language, it can be reused independent
of the programming language of the library. Additionally,
our approach complements existing approaches [5], [21],
[37] that infer code contracts from source code or binaries.
To the best of our knowledge, ours is the first approach that
analyzes API documents to extract specifications targeted
towards generating code contracts.

Our paper makes the following major contributions:
• A technique that effectively identifies natural language

sentences (in the API documents for a library) that
describe code contracts, hereby referred to as contract
sentences, and a technique to infer specifications from
the identified contract sentences.

• A prototype implementation of our approach based
on extending the Stanford Parser [17], [30], which is
a natural language parser to derive the grammatical
structure of sentences. An open source implementation
of our prototype can be found at our website4.

• An evaluation of our approach on 2717 sentences (for
333 methods) in five different classes from the .NET
Framework and Facebook API for C#. Our evaluation
results show that our approach effectively identifies
contract sentences with an average of 92% precision
and 93% recall. Additionally, our approach infers spec-

4http://research.csc.ncsu.edu/ase/projects/pint/

ifications from around 1700 contract sentences with an
average accuracy of 83%.

II. BACKGROUND
A. Code Contracts

Code contracts, based on the Design by Contracts
(DbC) [4] methodology, are typically in the form of method
pre-conditions, post-conditions, and class invariants. They
are used to specify what a method accomplishes without
giving details of how the method is implemented. Pre-
conditions for a method describe what is expected by the
method in terms of inputs. Post-conditions for a method
describe what to expect when the method has finished
execution in terms of output. Class invariants describe what
conditions on receiver objects of the class are true before
and after the execution of each method in the interface of
the class. Furthermore, code contracts are useful for soft-
ware reuse, software testing, formal proofs, and automated
correction of code [38].

B. NLP Preliminaries
Due to the inherent “ambiguous” nature of natural lan-

guage, it is very difficult to “understand” and convert the
natural language text into precise and unambiguous speci-
fications that can be processed by computers. In contrast,
existing NLP techniques have been shown to be fairly ac-
curate in highlighting the grammatical structure of a natural
language sentence [17], [19] . We next present two of the
NLP techniques that have been used in this work.

Word Tagging/Parts Of Speech (POS) tagging [17]
aims to identify the part of speech (such as nouns and verbs)
that a particular word within a sentence belongs to. The most
commonly known technique is to train a classification parser
over a manually labelled dataset [36]. Current state-of-the-
art approaches can achieve around 97% accuracy over well
written news articles [30].

Phrase and clause parsing (Chunking) [17] divides a
sentence into a set of words that are logically related such
as a Noun Phrase and Verb Phrase. Chunking thus further
brings forth the syntax of a sentence after POS tagging has
been done. Current state-of-the-art approaches can achieve
around 90% accuracy in classifying phrases and clauses [30]
over well written news articles.

III. MOTIVATING EXAMPLES
We next present two examples where developers wrote

faulty code because they overlooked legal usage in method
descriptions. We collected these examples from online de-
veloper forums. These examples highlight the importance of
our approach, since the defects shown in them could have
been easy to fix with our inferred code contracts.

NullPointerException. As shown in Figure 1, a developer
asked a question (on 06-30-2010) in one of the Java
forums5 regarding java.lang.NullPointerException.

5http://www.java-forums.org/java-servlet/
30289-download-file-nullpointerexception.html

Figure 1. Description of a question posed in a Java forum

Figure 1 shows the code snippet. After going through the
suggestions from the contributing forum members, the au-
thor of this question was finally able to resolve the problem
to a path issue occurring in the underlined line, a month
(07-30-2010) after he initially posted the question.

The associated API documents reveal that there are many
ways to throw java.lang.NullPointerException, thus
making the task of debugging non-trivial. The problem
caused due to invoking the read method on a null

object of InputStream. The method description for the
getResourceAsStream method in the ServletContext

interface states that “This method returns null if no resource
exists at the specified path.”. The sentence, once translated
into a formal specification, can be verified statically, or at
runtime to pinpoint the problem. For instance, given the
specification that the method can return null, advanced
Integrated Development Environments (IDEs) can raise a
warning after the developer attempts to perform an operation
on the return value of the getResourceAsStream method,
thus asking the developer to put the necessary checks in
place.

Path format not supported. Another developer posted a
44-line code snippet in a forum6. The developer reported that
he/she was noticing exceptions while moving a file. After
a brief exchange of messages, the issue was traced to the
moveTo method in the FileInfo class in C# .NET. Further
exchanges revealed that the developer was attempting to
move and rename the file to “11-19-2009 5:48:27.txt”. The
method description for the moveTo method in FileInfo

states that the method throws an ArgumentException if
the new file name consists of invalid characters defined in
Path.getInvalidCharacters() (including‘:’ character).
After our approach infers a code contract from the descrip-
tion, the problem can be identified and reported by static
checkers that are usually built into IDEs.

6http://www.dreamincode.net/forums/topic/
140470-elusive-error-while-renaming-file/

Figure 2. Overview of our approach

IV. APPROACH
We next present our approach for inferring code contracts

from method descriptions. Figure 2 gives an overview of our
approach. Our approach uses a parser, a pre-processor, a text
analysis engine, a post-processor, and a code contract gen-
erator. The parser accepts the API documents and extracts
intermediate contents from the method descriptions. The pre-
processor augments the sentences in an intermediate repre-
sentation with meta-data. The text analysis engine accepts
the intermediate representation of the sentences, and then
based on our semantic templates, generates specifications in
the form of First-Order Logic (FOL) expressions. The post-
processor refines the FOL expressions. The code contract
generator accepts the FOL expressions and generates code
contracts by using a mapping relation to the constructs of
the target programming language.
A. Parser

Our parser accepts API documents and extracts interme-
diate contents from the method descriptions. In particular,
from the method descriptions, our parser extracts the fol-
lowing contents: (1) summary description: the summary of
the method; (2) argument description: the descriptions of the
method’s arguments; (3) return description: the descriptions
of the method’s return value; (4) exception description: the
descriptions of exceptions explicitly thrown by the method;
(5) remark description: additional descriptions about the
functionality of the method.
B. Pre-processor

Our pre-processor accepts extracted contents of the
method descriptions, and performs three major tasks.

Meta-data augmentation. For each identified method,
our pre-processor collects the following meta-data infor-
mation and associates it with respective sentences: (1) the
names and data types of method arguments; (2) the types of
the return value and exceptions; (3) the names of the classes,
namespaces, and methods. For example, for the method
description shown in Figure 4, the meta-data information
associated with the sentences in Line 03 is as follows: (1)
Sentence Type: Argument Description; (2) Argument Name:
prop_name; (3) Argument Type: String.

This information is used in code contract generation by
substituting the name of the variable with its place-holder
and matching a template for code contracts using the data

type of the variable. In particular, the pre-processor uses
method signatures and their associated tags for meta-data
augmentation. From the method signatures, our approach
extracts the name of the method arguments, the data types
of the method arguments, and the exceptions thrown by the
method.

Noun Boosting. Since our text analysis engine uses the
Parts-Of-Speech (POS) tags provided by a POS-tagger, the
accuracy of the inferred specifications is dependent on the
accuracy of the POS-tagger. However, there are specific
words that represent nouns in the context of programs,
in contrast to adjectives or verbs in the context of gen-
eral linguistics. For example, consider the statement “This
method also returns false if path is null”. In this sentence,
“false” and “null” should be treated as nouns since they
are constructs of programming languages, but a typical POS
tagger would incorrectly classify them as adjectives.

Our pre-processor identifies these words from the sen-
tences based on a domain specific dictionary, and thus forces
the underlying POS tagger to identify them as nouns. In
particular, our pre-processor uses a predefined list of words
for noun boosting. We manually collected these words by
looking into the method descriptions in the Data class of the
Facebook API and the Path class of the .NET Framework
API. A list of these words is available on our project website.

Programming Constructs and Jargon Handling. In
English grammar, the “.” character represents the end of
a sentence. However, in programming languages, the “.”
character is used as a separator character as well. For
example, in the Facebook.Data namespace, the “.” char-
acter represents that the Facebook.Data namespace exists
within the Facebook namespace. Our pre-processor identi-
fies these separators, and replaces “.” with “ ”. For example,
"Facebook.Data" is replaced with "Facebook_Data".

Additionally, developers tend to use abbreviations for
specific words (e.g., max. for maximum and min. for mini-
mum). Our pre-processor identifies these words, and replaces
abbreviations with their full names. For example, “max.” is
replaced with “maximum”.

These techniques increase the accuracy of the underlying
POS tagger, and thus increase the accuracy of our text
analysis engine. Furthermore, our pre-processor maintains
mapping relations of the place-holder words from the pro-
gramming language constructs to the original words and
locations, and these relations are used by our post-processor
later to infer specifications.

Methods and namespaces have a well-defined lexical
structure in a programming language. Our pre-processor uses
this structural information, and builds regular expressions to
identify these words. For handling jargons and abbreviations
such as “max.”, we manually built a list of such words. In
future work, we plan to adapt Hill et al.’s technique [16] to
generate the list automatically.

Although a POS tagger can be retrained to achieve these
pre-processing steps, we prefer annotations to make our
approach independent of any specific NLP infrastructure,
thus ensuring interoperability with various POS taggers.
C. Text Analysis Engine

Our text analysis engine parses pre-processed sentences,
and builds specifications in the form of FOL expressions.
We chose FOL, since previous research [28], [29] shows
that FOL is an adequate representation for natural language
analysis.

We first use a POS tagger to annotate POS tags in a
sentence. We then use an NLP technique, called shallow
parsing [2]. A shallow parser accepts the lexical tokens
generated by the POS tagger and attempts to classify sen-
tences based on pre-defined semantic templates. Shallow
parsing is implemented as a sequence of cascading finite
state machines. Research [2], [13], [28], [32] has shown the
effectiveness of using finite state machines in different areas
of linguistic analysis such as morphological lookup, POS
tagging, phrase parsing, and lexical lookup.

Table I shows frequently used semantic templates for
identification of specifications. Column “Description” de-
scribes what is inferred from the sentence if a semantic
pattern holds. For example, for the template described in
the first row in Table I, the FOL expression is constructed
as can not be (path, null), where “path” and “null” are terms
to the predicate “can not be”. The specification is interpreted
as: “can not be” predicate should be evaluated to be true over
terms “path” and “null”.

As another example, our text analysis engine uses the
semantic pattern, transitive predicate, described in the fourth
row in Table I to analyze the sentence in Line 3 of Figure 4.
Figure 3 shows the graphical FOL expression. Each internal
node (shaded grey) represents a predicate and the children
of these nodes represent the terms to that predicate.

We implemented a configurable infrastructure to accept a
POS tagger to annotate a sentence with POS tags. In partic-
ular, for our evaluation, we used the Stanford Parser [17],
which is a natural language parser to work out the gram-
matical structure of sentences. The Stanford Parser parses
a natural language sentence and determines POS tags asso-
ciated with different words/phrases. We also implemented
a generic and extensible framework that accepts semantic
patterns based on the functions of POS tags and converts
them into a series of cascading FSMs. Once POS tags have
been determined by a POS tagger, the sentences along with
tags are passed as an input to the shallow parser, which
generate FOL expressions based on the FSMs.
D. Post-processor

Our post-processor accepts the FOL expressions produced
by the previous component and performs three types of se-
mantic analysis: removing irrelevant modifiers in predicates,
classifying predicates into a semantic class based on domain
dictionaries, and augmenting expressions.

Table I
CATEGORIES OF SHALLOW PARSING SEMANTIC TEMPLATES.

Name Example Description
1. Predicate (Name) The (path)subject (can not be)verb The subject and object form the terms of the

nullobject predicate represented by verb.
2. Conditional followed or If (path does not have extension)conditional, The subject-verb-object forms specification

preceded nominal (GetExtension)subject (returns)verb as described in row 1, which is true when the
predicate (System.String.Empty)object condition highlighted by conditional is true.

The condition is further resolved using one of
the templates.

3. Prepositional predicate (Path)subject (is)verb (not null The verb forms the partial predicate and the subject
or empty String)preposition forms one of the terms. The second term

and the remaining of the predicate are extracted
by resolving the preposition.

4. Transitive predicate (Name)subject (is)verb a (valid , The sentence is broken down into two sentences.
identifier)object−subject, which (is no The first sentence ends with the phrase labeled
longer than 32 characters)clause object−subject, and the second sentence begins

with the phrase labeled object−subject. Each sentence
is further resolved and the resulting specifications
are joined using the logical AND operator.

Figure 3. Specifications in format of FOL expressions extracted by our
NLP Parser for DefineObjectProperty method in Facebook API

01:/// <summary>
02:
03:/// <param name=‘‘prop_name’’> This name

needs to be a valid identifier, which
is no longer than 32 characters, starting
with a letter (a-z) and consisting of only
small letters (a-z) numbers (0-9), and/or
underscores.</param>

04:
05:public void DefineObjectProperty(string

obj_type, string prop_name,
int prop_type)

Figure 4. The method description of the DefineObjectProperty
method in Facebook API

Equivalence analysis. Consider the predicate, ‘needs to
be’, in FOL representation shown in Figure 3. The words,
“needs to”, are modal modifiers to the verb ’be’. Such modal
modifiers are identified and eliminated. Furthermore, our
post-processor classifies predicates into pre-defined semantic
classes based on domain dictionaries. This classification
addresses the challenge of inferring semantic equivalence.
For instance, the predicate, “starting with”, in Figure 3 can
also be represented as “begins with”. Our post-processor
identifies and classifies all semantically equivalent predicates
into a single category, and thus reduces the effort to indi-
vidually write mappings for every predicate in inferred FOL
expressions even when they represent same the semantic
function. We have identified the following seven major
semantic categories for predicates: (1) Greater, (2) Lesser,
(3) Begin, (4) End, (5) Consist, (6) Equal, and (7) Action
with respect to expressions dealing with code contracts.

The negative semantic categories are represented using a
negation operator preceding the identified semantic class.

In the preceding semantic analysis, our post-processor
uses an NLP technique called lemmatization [30]. Lemma-
tization involves full morphological analysis to accurately
identify the lemma for each word. Extracting lemmas re-
duces the various operational forms of a word to its root.
For example, “am”, “are”, and “is” are all reduced to
“be”. Once the lemma of a word is identified, our post-
processor uses the lemma to query a synonym from the
WordNet [7] database for a suitable replacement. From the
implementation perspective, we maintain a list of modifier
words to identify and discard them. We have also collected
synonyms from WordNet to classify a predicate in one of the
semantic classes. If a match is not found, our post-processor
places the predicate in the unknown category.

Intermediate Term Elimination. The intermediate term
elimination attempts to remove intermediate terms, if they
are found in the extracted expressions. For example, con-
sider the statement in Line 3 of Figure 4. Here, Valid

Identifier is used as the intermediate term to establish
the "no longer" relationship between "name" and "32

characters". Since a shallow parser is independent of
the semantics of the words used in a sentence, our text
analysis engine picks up these intermediate terms as valid
arguments to the predicate using them, as shown in Figure 3.
These terms are of no inherent importance in code contract
generation.

Our post-processor identifies such terms and eliminates
them by replacing their usage with their definition. In
particular, our post-processor eliminates intermediate terms
by parsing FOL expressions. We specifically watch out for
terms that are involved in an equality operator with a variable
name followed by the same term being used as an input to
another predicate in the representation.

Expression Augmentation. The sentences in return de-
scriptions and exception descriptions in an API document are

Figure 5. FOL expression after synonym analysis and compaction for the
DefineObjectProperty method in Facebook API

Algorithm 1 Expression Augmentation generator
Input: Expr e, Meta-data d
Output: Expr e′

1: Expr e′ = e
2: if (d.description == return) then
3: if (e′.root == “→ ”)&&(e′.right is variable) then
4: Term t = e′.right
5: if findType(t) == d.returnType then
6: Predicate p = new Predicate(“returns”)
7: p.term = t
8: e′.right = p
9: end if

10: end if
11: end if
12: if (d.description == exception) then
13: if (e′.root == “→ ”)&&(e′.right is empty) then
14: Term t = d.exception name
15: Predicate p = new Predicate (“throw”)
16: p.term = t
17: e′.right = p
18: end if
19: if (e′.root! == “→ ”) then
20: Term t = d.exception name
21: Predicate p = new Predicate (“throw”)
22: p.term = t
23: Expr e′′ = new Expr(“→ ”)
24: e′′.left = e′

25: e′′.right = p
26: e′ = e′′

27: end if
28: end if

29: return e′

often not well written. For example, consider the following
sentences:

1) “true if path is an absolute path; otherwise false.”—
the return descriptions for theIsPathRooted method
in the Path class in the C# .NET Framework. The
main subject and verb are missing as in what is true
and false.

2) “If path is null.”— one of the exception descriptions
repeated in many methods in the File class in the C#
.NET Framework. The action is missing as in what
happens if the path is null.

3) “IO error occurs while accessing specified direc-
tory.”— one of the exception descriptions repeated
in many methods in the Directory class in the C#
.NET framework. While the sentence describes a code
contract, the sentence omits important information in
terms under what specific condition the exception is
thrown.

Our expression augmentation attempts to augment these
expressions. In particular, for each method, we use meta-data
collected in the pre-processor augment to complete the FOL
expressions involving return and exception descriptions.
Here, we propose Algorithm 1 to achieve our expression
augmentation. The algorithm accepts an FOL expression
and the meta-data of a sentence. The algorithm returns an
augmented expression if successful, and otherwise returns
the original expression. The algorithm first checks whether
the expression corresponds to a return description statement
(Line 2). If the expression is a conditional expression and
the right hand side of the expression is a variable term, the
algorithm checks whether the type of the variable matches
the return type described in the meta-data. Literals, ‘true’,
and ‘false’, are identified as boolean; ‘numeric values’ are
identified as numeric that matches integer, float, and double.
If a match is found, we construct the right hand side of the
original predicate as returns.

For the descriptions of exceptions, our expression aug-
mentation does a similar check except that there is no need to
match the type of a variable term. We construct the predicate
as throws. Additionally, for the expressions in exception
descriptions where no conditional expression is identified,
we explicitly construct a conditional FOL expression (Line
23-25) and associate the expression to the left hand side and
the throws predicate to the right hand side.

E. Code Contract Generator

Our code-contract generator generates code contracts from
the extracted FOL expressions. The generator uses the
predefined mapping of semantic classes of the predicates to
the programming constructs to produce valid code contracts.
Our current implementation supports the mapping relations
for the String class, Integer class, null checks, return
and throws constructs. With more mapping relations, our
generator can easily produce code contracts involving com-
plex objects.

For example, consider the FOL expression in Figure 5.
The “greater” predicate is mapped to the length method
of the String class. Thus, the resulting code contract
is requires(!(name.length()>32)). In contrast, “be-
gins” is mapped to the startswith and substring(0,1)

methods of the String class. Our generator resolves which
methods to choose by taking into account the argument for
the method. If the argument is a character (characterized
by a single character in quotes) or string (characterized by
a string in quotes), our generator uses the startswith

method, and if the argument is a range (characterized by
expression ‘a–z’), our generator uses the substring(0,1)

method by converting the range to a regular expression.
Thus, the final contract is requires(name.substring(0,
1).matches("[a-z]+")).

01:requires(!prop_name.length()>32)
02:requires(prop_name.substring(0,1).

matches([a-z]+))
03:requires(prop_name.matches(([a-z][0-9][_])*))

Figure 6. The inferred specifications for the prop_name variable of
the DefineObjectProperty method in Facebook API

V. EVALUATION
We conducted an evaluation to assess the effectiveness

of our approach. In our evaluation, we address three main
research questions:

• RQ1: What are the precision and recall of our approach in
identifying contract sentences (i.e., sentences that describe
code contracts)?

• RQ2: What is the accuracy of our approach in inferring
specifications from contract sentences in the API documents?

• RQ3: How do the specifications inferred by our approach
compare with the human written code contracts?

A. Subjects

We used the API documents of the following two libraries
as subjects for our evaluation.

C# File System API documents. These documents de-
scribe correct usage of methods for manipulating files in the
.NET environment. However, developers still post a lot of
questions regarding their usage. Because of the importance
of the File API, we chose these API documents as the
first set of subject documents for inferring specifications.
In particular, we use three key classes (File, Path, and
Directory) in our evaluations.

Facebook API documents. Facebook is a popular social
networking site, which allows developers to write their own
third-party applications. According to Facebook statistics,
people on Facebook install 20 million applications every-
day7. Due to the sheer popularity of Facebook and a huge
number of developers developing third-party applications,
we chose the Facebook API 8for C# as another set of subject
documents for our evaluation. In particular, we use four key
classes (Data, Friends, Events, and Comments) within
the Facebook API for our evaluations.

Table II shows the statistics of the subject documents used
in our evaluations. Column “Class[API Library]” lists the
name of classes and their corresponding libraries. Column
“#M” lists the number of methods in each class. Column
“#S” lists the number of natural language sentences in
method descriptions of each class.

B. Evaluation Results

1) RQ1: Precision and Recall in Identifying Contract
Sentences: In this section, we quantify the effectiveness of
our approach in identifying contract sentences by answering
RQ1. We first manually measured the number of contract
sentences in the API documents. We considered a sentence
as a contract sentence if it contains a clause that is either a
pre-condition or post-condition. Two authors independently

7https://www.facebook.com/press/info.php?statistics
8http://facebooktoolkit.codeplex.com.

labeled sentences as contract sentences by discussing itera-
tively until they reached a consensus. We then applied our
approach on the API documents and manually measured
the number of true positives (TP), false positives

(FP), and false negatives (FN) produced by our ap-
proach as follows:

• TP. A sentence that is a contract sentence and is identified
by our approach as a contract sentence.

• FP. A sentence that is not a contract sentence and is identified
by our approach as a contract sentence.

• FN. A sentence that is a contract sentence and is identified
by our approach as not a contract sentence.

In statistical classification [23], Precision is defined as the
ratio of the number of true positives to the total number of
items reported to be true, and Recall is defined as the ratio
of the number of true positives to the total number of items
that are true. F-score is defined as the weighted harmonic
mean of Precision and Recall. Higher values of Precision,
Recall, and F-Score indicate higher quality of the contract
statements inferred using our approach. Based on the total
number of TP, FP, and FN, we calculated the Precision,
Recall, and F-score of our approach in identifying contract
sentences as follows:

Precision = TP
TP + FP

Recall = TP
TP + FN

F -score = 2 X Precision X Recall
Precision + Recall

Table II shows the effectiveness of our approach in identi-
fying contract sentences. Column “Class[API Library]” lists
the names of the classes. Column “#S” lists the number
of sentences in each class, and Column “SC” lists the
number of sentences manually identified as contract sen-
tences. Columns “TP”, “FP”, and “FN” represent the num-
ber of true positives, false positives, and false

negatives, respectively. Columns “P”, “R”, and “FS” list
values of precision, recall, and f-scores, respectively.
Our results show that, out of 2717 sentences, our approach
effectively identifies contract sentences based on average
Precision, Recall and F-score of 91.8%, 93% and 92.4%
respectively.

We next present an illustrative example of how our
approach incorrectly identifies a sentence as a contract sen-
tence. Consider the sentence from the getLastWriteTime

method description in the Directory API for C#: “The
file or directory for which to obtain write date and time
information.” The sentence describes the input parameter
path. Ideally, a POS tagger should parse the statement as
a noun-phrase statement, i.e., a sentence including just a
noun-phrase. However, the POS tagger incorrectly annotates
this sentence as including a subject, object, and predicate,
where the predicate is “write”. Since our shallow parser is
dependent on the POS tagger to correctly annotate POS tags,
our approach incorrectly identifies this sentence as a contract
sentence. The FP produced by our approach are primarily
due to the incorrect POS tags annotated by the POS tagger.

Table II
STATISTICS OF SUBJECT CLASSES AND EVALUATION RESULTS

Class [API Library] #M #S SC TP FP FN P R FS SI Acc SD C Q

Data[Facebook.Rest] 133 810 320 288 55 32 84.0 90.0 86.9 244 76.3 102 21 0.75
Friends[Facebook.Rest] 37 215 126 96 10 30 90.6 76.3 82.8 84 66.7 17 0 0.83
Events[Facebook.Rest] 29 194 122 110 12 12 90.2 90.2 90.2 84 68.9 15 0 0.85
Comments[Facebook.Rest] 16 96 33 33 19 0 63.5 100.0 77.7 28 84.9 12 0 0.70
File[System.IO(.NET)] 56 795 647 627 15 20 97.7 97.0 97.3 599 92.6 NA NA NA
Path[System.IO(.NET)] 18 99 63 48 11 15 81.4 76.2 78.7 44 69.8 NA NA NA
Directory[System.IO(.NET)] 44 508 380 371 18 9 95.4 97.6 96.5 327 86.1 NA NA NA
Total 333 2717 1691 1573 140 118 91.8∗ 93.0∗ 92.4∗ 1410 83.4∗ 146 21 0.79∗

∗ Column average

The FN in our approach are also primarily due to incorrect
POS tags annotated by the POS tagger. Overall, a significant
number of FP and FN can be further reduced by improving
the existing underlying NLP infrastructure.

2) RQ2: Accuracy in Inferring Specifications from Con-
tract Sentences: To address RQ2, we apply our approach on
sentences that were manually identified as contract sentences
to infer FOL expressions. We then manually verify the
correctness of the inferred specifications. We define the
accuracy of our approach as the ratio of the contract
sentences with correctly inferred expressions to the total
number of contract sentences.

Table II shows the effectiveness of our approach in
inferring specifications (FOL expressions) from contract
sentences. Column “Class[API Library]” lists the name of
the classes. Column “SC” lists the number of sentences
manually identified as contract sentences. Column “SI” lists
the number of specifications that were correctly inferred
from contract sentences. Column “Acc” lists the accuracy
of our approach in inferring specifications from the contract
sentences. Our results show that, out of 1691 contract sen-
tences, our approach correctly inferred specifications from
1410 contract sentences, with the accuracy of 83.4%.

We next present an illustrative example of how our
approach infers an incorrect specification from a contract
sentence. Consider the sentence from the Friends class in
the Facebook API for .NET: “The first array specifies one
half of each pair, the second array the other half; therefore,
they must be of equal size.”. The sentence describes the two
input parameters. Our approach successfully identifies the
sentence as a contract sentence. However, while inferring
the specification, our approach faces difficulty in accurately
inferring the semantic relations. In particular, the complexity
of the sentence (involving both code contracts and generic
descriptions) makes it difficult for the POS tagger to cor-
rectly annotate POS tags, thus causing a semantic pattern
to be incorrectly applied to the sentence. This sentence
appears 20 times across different method descriptions in the
Friends class where our approach performed the worst. If
our approach would have correctly inferred specifications
from the sentence, the accuracy of our approach for the
Friends API would have been 82.5% instead of 66.7%.

3) RQ3: Comparison with Human Written Contracts: To
answer RQ3, we compared the specifications inferred from
contract sentences by our approach with the human written
code contracts. The Facebook API for C# is equipped with
code contracts that were written by Rubinger et al. [26] as a
part of their experience report on applying the Microsoft
Code Contract system for the .NET framework. We first
manually calculated SI as the number of specifications
correctly inferred by our approach for a class. We then
calculated SD as the number of code contracts written by
Rubinger et al. for that class, and C as the number of
specifications in common.

Table II shows the comparison of the specifications in-
ferred by our approach to the human written contracts.
Column “Class[API Library]” lists the name of the classes.
Column “SI” lists the number of specifications correctly
inferred by our approach. Column “SD” lists the number
of human written code contracts. Column “C” lists the
number of the specifications that are common between
“SI” and “S′D”. Our results show that out of 440 inferred
specifications and 146 human written contracts only 21 are
in common. We next discuss some of the implications of the
results.

Before carrying out this evaluation, we had hoped that
the specifications inferred by our approach would largely
be a superset of the human written contracts, as Rubinger
et al. claimed to have written these contracts as a “direct
translation of the method descriptions and some as their
own interpretation of the API” [26]. However, the results
suggest that not to be the case. We were intrigued by
the outcome and manually investigated the nature of the
human written contracts and the specifications inferred by
our approach. Interestingly, we found that all of the human
written code contracts are assertions categorized as follows:
(1) Null Checks, (2) Range Checks, and (3) Size Checks.
Furthermore, around 80% of these are simplistic not null

and length>0 checks. For instance, for the example method
description in Figure 4, the human written code contracts
are:

Contract.Requires(name!=null&&name.Length>0);

Although the contract holds true, it is a simplistic not

null and length>0 check, since it fails to capture lim-
itations of the first character and size restrictions (<32).
In contrast, our approach is capable of inferring detailed
specifications as shown in Figure 6. Furthermore, there is
no direct text (in the method description) that corresponds to
some of human written contracts. Since our approach infers
specifications from only method descriptions, we do not
produce such specifications for these contracts. Additionally,
of the 22 instances of the same description as shown in
Figure 4 for input parameter name across the methods in
the Data class for the Facebook API, we found only 2 (9%)
instances where the specifications inferred by our approach
completely matched the code contracts written by Rubinger
et al. The remaining 20 (91%) instances were translated as
described earlier. Logically, specifications produced by our
approach imply the corresponding human written code con-
tracts. In future work, we plan to explore techniques to infer
these implied contracts. On manual examination of other
human written contracts, we concluded that, despite valid,
several contracts are deemed to be implied and hence there
is no corresponding textual description in the API method
descriptions, including all the contracts in the Friends,
Comments, and Events classes and more than 70% of the
contracts in the Data class of the Facebook API. These
contracts are the ones that Rubinger et al. claimed to have
written as their own understanding of the API. In addition,
none of the human written contracts capture post-conditions.
In contrast, our approach is able to infer both pre- and post-
conditions from the method descriptions.

From our evaluation, we conclude that our approach
systematically infers specifications from the method descrip-
tions in API documents. However, there are cases where
method descriptions do not completely describe specifica-
tions. In such cases, our approach can work in conjunction
with either human written contracts or approaches that
statically or dynamically infer code contracts from API
implementation [5], [21].

4) Summary: In summary, our evaluation shows that our
approach effectively identifies contract sentences from the
method descriptions in API documents, demonstrated by
the high values in Columns “Precision”, “Recall”, and “F-
score” in Table II from over 2500 sentences. Our evaluation
also shows that our approach infers specifications from the
contract sentences with high accuracy (averagely 83.4%), as
shown by the values in column “Accu” in Table II from over
1600 contract sentences. Furthermore, our evaluation results
show that our approach can infer detailed specifications than
human written contracts.

C. Threats to Validity

Threats to external validity primarily include the degree
to which the subject documents used in our evaluations
are representative of true practice. To minimize the threat,

we used API documents of two representative projects: one
commercial and the other open source. The C# File System
API documents describe one of the most commonly used
and mature APIs. We also used the Facebook API for C#,
which is relatively new (introduced in 2008). Furthermore,
the difference in the functionalities provided by the two
projects also address the issue of over fitting our approach to
a particular type of API. The threat can be further reduced by
evaluating our approach on more subjects. Additionally, to
represent human written code contracts, we used the human
written code contracts for the Facebook API for C# [26],
and did not use any code contracts written by ourselves.
Threats to internal validity include the correctness of our
implementation in extracting code contracts and labelling a
statement as a contract statement. To reduce the threat, we
manually inspected all the specifications inferred against the
API method descriptions in our evaluation. Furthermore, we
ensured that the results were individually verified and agreed
upon by two authors.

VI. DISCUSSION AND FUTURE WORK

Our approach serves as a way to formalize the description
of specifications in the natural language texts of API doc-
uments (targeted towards generating code contracts), thus
facilitating existing tools to process these specifications. We
next discuss the benefits of our approach in other areas
of software engineering, followed by a description of the
limitations of the current implementation and our approach.

Code Searching. Code searching [25], [34] for reuse
is a classic problem [9] in software engineering. Among
previous approaches, a recent approach by Riess [25] pro-
vides promising results by using semantics such as code
contracts as input-output relationships for code searching.
Our approach can be used for generating specifications from
API documents in a code repository and thus assisting such
approaches in producing better results.

Program Synthesis. Automated program synthesis holds
potential for easing the task of a developer by taking
care of program generation and allowing the developer to
concentrate on design tasks. Recent work by Srivastava et
al. [31] addresses the problem by leveraging specifications
in the form of pre/post-conditions and invariants to achieve
synthesis. Our approach can work in conjunction with such
approaches to extract specifications from natural language
text to achieve better synthesis.

We next present some of the limitations of our approach.
Information flow analysis. Our approach currently takes

into account the specifications described in a single sen-
tence. However, there are instances when a specification is
distributed across several sentences. Consider the sentences
below:

“parameter values:Id-value pairs of preferences to set. Each id is
an integer between 0 and 200 inclusively. Each value is a string

with maximum length of 128 characters.”

The first sentence describes the data structure used for the
variable values. The sentences following the first sentence
describe the specification on each item in the data structure.
Since currently our approach works on individual sentences,
it is not possible to establish the relationship between
the specifications described in later sentences to the first
sentence. In future work, we plan to investigate techniques to
facilitate information flow analysis to handle such situations.

Contextual Information. Some API documents are not
comprehensive. Method descriptions omit certain specifica-
tions that have already been described in another closely
related method. Currently, our approach does not deal with
such scenarios as we do not consider contextual information.
In future work, we plan to explore techniques to infer
specifications in such scenarios.

Validation of Method Descriptions. API documents can
sometimes be misleading [27], [33], thus causing developers
to write faulty client code. In future work, we plan to
extend our approach to find documentation-implementation
inconsistencies.

Elimination of Predefined Lists. The current implemen-
tation of our approach uses predefined lists for domain dic-
tionaries. There are approaches [41] that facilitate building
domain dictionaries from source code. We plan to extend our
implementation to use these approaches. Furthermore, we
rely on pre-defined templates for code contract generation.
While such a strategy serves our purpose of prototyping, ad-
vanced techniques such as keyword programming [18] have
shown promising results in building programming statements
using keywords. We plan to explore such techniques and
evaluate the overall effectiveness of our approach after
augmenting it with such techniques.

VII. RELATED WORK

Design by contracts has been an influential concept in
the area of software engineering in the past decade. A
significant amount of work has been done in automated
inference of code contracts. There are existing approaches
that statically or dynamically extract code contracts [5],
[21], [35]. However, a combination of developer written
and automatically inferred contracts seems to be the most
effective approach [8], [24]. Since developers describe the
specifications in the method descriptions, we believe that our
approach can work in conjunction with existing approaches
towards extracting a comprehensive set of code contracts for
a method. Furthermore, Wei et al. [37] demonstrated that
dynamic contract inference performed better when provided
with an initial set of seed contracts.

There are existing approaches that infer code-contract-like
specifications (such as behavioral model, algebraic specifica-
tions, and exception specifications) either dynamically [12],
[14], [15] or statically [3], [8] from source code and binaries.
In contrast, our approach infers specifications from the
natural language text in API documents, thus complementing

these existing approaches when the source code or binaries
of the API library is not available.

NLP techniques are increasingly applied in the software
engineering domain. NLP techniques have been shown to be
useful in requirements engineering [11], [28], [29], usability
of API documents [6], and other areas [18], [41]. We next
describe most relevant approaches.

Xiao et al. [39] use shallow parsing techniques to infer
Access Control Policy (ACP) rules from natural language
text in use cases. The use of shallow parsing techniques
works well on natural language texts in use cases, owing
to well formed nature of sentences in use case descriptions.
In contrast, often the sentences in API documents are not
well formed. Additionally, their approach does not deal with
programming keywords or identifiers, which are often mixed
within the method descriptions in API documents.

Zhong et al. [40] employ NLP and ML techniques to
infer resource specifications from API documents. Their ap-
proach uses machine learning to automatically classify such
rules. In contrast, we attempt to parse sentences based on
semantic templates and demonstrate that such an approach
preforms reasonably well. Tan et al. [33] applied an NLP
and Machine Learning (ML) based approach to test Javadoc
comments against implementations. However, their approach
specifically focuses on null values and related exceptions,
thus limiting the application scope. In contrast, our approach
infers generic specifications from API documents. In partic-
ular, our approach already produces FOL representation of
the specifications that can be used to test implementations.
Furthermore, the performance of the preceding ML-based
approaches is dependent on the quality of the training sets
used for ML. In contrast, our approach is independent of
such training set and thus can be easily extended to target
respective problems addressed by these approaches.

VIII. CONCLUSION

Specifications described in natural language in API doc-
uments are not amenable to formal verification by exist-
ing verification tools. In this paper, we have presented a
novel approach for inferring formal specifications from API
documents targeted towards code contract generation. Our
evaluation results show that our approach has an average
of 92% precision and 93% recall in identifying sentences
describing code contracts from over 2500 sentences. Further-
more, our results also show that our approach has an average
of 83.4% accuracy in inferring specifications from sentences
describing code contracts out of over 1600 sentences.

ACKNOWLEDGMENTS

This work is supported in part by NSF grants CCF-
0845272, CCF-0915400, CNS-0958235, and ARO grant
W911NF-08-1-0443. Hao Zhong is sponsored by the Na-
tional Science Foundation of China under Grant No.
61100071.

REFERENCES
[1] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec#

programming system: An overview. In Proc. CASSIS, LNCS
vol. 3362, pages 49–69, Springer, 2004.

[2] B. K. Boguraev. Towards finite-state analysis of lexical
cohesion. In Proc. 3rd FSMNLP, 2000.

[3] R. P. Buse and W. R. Weimer. Automatic documentation
inference for exceptions. In Proc. 17th ISSTA, pages 273–
282, 2008.

[4] P. Chalin. Are practitioners writing contracts? The RODIN
Book LNCS, 4157(7):100, 2006.

[5] C. Csallner, N. Tillmann, and Y. Smaragdakis. DySy: Dy-
namic symbolic execution for invariant inference. In Proc.
30th ICSE, pages 281–290, 2008.

[6] U. Dekel and J. D. Herbsleb. Improving API documentation
usability with knowledge pushing. In Proc. 31st ICSE, pages
320–330, 2009.

[7] Fellbaum et al. WordNet: an electronic lexical database.
Cambridge, Mass: MIT Press, 1998.

[8] C. Flanagan and K. R. M. Leino. Houdini, an annotation
assistant for ESC/Java. In Proc. 10th FME, pages 500–517,
2001.

[9] W. Frakes and K. Kang. Software reuse research: status
and future. IEEE Transactions on Software Engineering,
31(7):529 – 536, 2005.

[10] J. Gaffney and R. Cruickshank. A general economics model
of software reuse. In Proc. 14th ICSE, pages 327 – 337, 1992.

[11] V. Gervasi and D. Zowghi. Reasoning about inconsistencies
in natural language requirements. ACM Transactions Software
Engineering Methodologies, 14:277–330, 2005.

[12] C. Ghezzi, A. Mocci, and M. Monga. Synthesizing intensional
behavior models by graph transformation. In Proc. 31st ICSE,
pages 430–440, 2009.

[13] G. Gregory. Light Parsing as Finite State Filtering. Cam-
bridge University Press, 1999.

[14] J. Henkel, C. Reichenbach, and A. Diwan. Discovering
documentation for Java container classes. IEEE Trans. on
Software Engineering, 33:526–543, 2007.

[15] J. Henkel, C. Reichenbach, and A. Diwan. Developing and
debugging algebraic specifications for Java classes. ACM
Trans. Softw. Eng. Methodol., 17(3):14:1–14:37, 2008.

[16] E. Hill, Z. P. Fry, H. Boyd, G. Sridhara, Y. Novikova, L. L.
Pollock, and K. Vijay-Shanker. AMAP: automatically mining
abbreviation expansions in programs to enhance software
maintenance tools. In Proc. MSR, pages 79–88, 2008.

[17] D. Klein and C. D. Manning. Accurate unlexicalized parsing.
In Proc. 41st ACL, pages 423–430, 2003.

[18] G. Little and R. C. Miller. Keyword programming in Java.
In Proc. 22nd ASE, pages 84–93, 2007.

[19] C. Manning and H. Schutze. Foundations of statistical natural
language processing. The MIT Press, 2001.

[20] B. Meyer. Applying ‘design by contract’. IEEE Transactions
on Computer, 25(10):40 –51, oct 1992.

[21] J. W. Nimmer and M. D. Ernst. Automatic generation of
program specifications. In Proc. ISSTA, pages 232–242, 2002.

[22] D. G. Novick and K. Ward. Why don’t people read the
manual? In Proc. 24th ACM, SIGDOC, pages 11–18, 2006.

[23] D. Olson. Advanced data mining techniques. Springer Verlag,
2008.

[24] N. Polikarpova, I. Ciupa, and B. Meyer. A comparative study
of programmer-written and automatically inferred contracts.
In Proc. 18th ISSTA, pages 93–104, 2009.

[25] S. P. Reiss. Semantics-based code search. In Proc. 31st ICSE,
pages 243–253, 2009.

[26] B. Rubinger and T. Bultan. Contracting the Facebook API.
In Proc. 4th TAV-WEB, pages 61–72, 2010.

[27] C. Rubino-González and B. Liblit. Expect the unexpected:
Error code mismatches between documentation and the real
world. In Proc. 9th PASTE, pages 73–80, 2010.

[28] A. Sinha, A. M. Paradkar, P. Kumanan, and B. Boguraev.
A linguistic analysis engine for natural language use case
description and its application to dependability analysis in
industrial use cases. In Proc. DSN, pages 327–336, 2009.

[29] A. Sinha, S. M. SuttonJr., and A. Paradkar. Text2test:
Automated inspection of natural language use cases. In Proc.
ICST, pages 155–164, 2010.

[30] The Stanford Natural Language Processing Group, 1999. http:
//nlp.stanford.edu/.

[31] S. Srivastava, S. Gulwani, and J. S. Foster. From program
verification to program synthesis. In Proc. 37th POPL, pages
313–326, 2010.

[32] M. Stickel and M. Tyson. FASTUS: A Cascaded Finite-state
Transducer for Extracting Information from Natural-language
Text. MIT Press, 1997.

[33] S. H. Tan, D. Marinov, L. Tan, and G. T. Leavens. @tCom-
ment: Testing Javadoc comments to detect comment-code
inconsistencies. In Proc. 5th ICST, 2012.

[34] S. Thummalapenta and T. Xie. PARSEWeb: A programmer
assistant for reusing open source code on the web. In Proc.
22nd ASE, pages 204–213, 2007.

[35] N. Tillmann, F. Chen, and W. Schulte. Discovering likely
method specifications. In Proc. 8th ICFEM, pages 717–736,
2006.

[36] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer.
Feature-rich part-of-speech tagging with a cyclic dependency
network. In Proc. HLT-NAACL, pages 252–259, 2003.

[37] Y. Wei, C. A. Furia, N. Kazmin, and B. Meyer. Inferring
better contracts. In Proc. 33rd ICSE, pages 474–484, 2011.

[38] Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, C. Buchholz,
B. Meyer, and A. Zeller. Automated fixing of programs with
contracts. In Proc. 19th ISSTA, pages 61–72, 2010.

[39] X. Xiao, A. Paradkar, and T. Xie. Automated extraction
and validation of security policies from natural-language
documents. Technical Report TR-2011-7, North Carolina
State University Department of Computer Science, Raleigh,
NC, March 2011.

[40] H. Zhong, L. Zhang, T. Xie, and H. Mei. Inferring resource
specifications from natural language API documentation. In
Proc. 24th ASE, pages 307–318, November 2009.

[41] H. Zhou, F. Chen, and H. Yang. Developing application
specific ontology for program comprehension by combining
domain ontology with code ontology. In Proc. 8th QSIC,
pages 225 –234, 2008.

