
Understanding and Finding System Setting-Related Defects in
Android Apps

Jingling Sun
East China Normal University

China
jingling.sun910@gmail.com

Ting Su
East China Normal University

China
tsu@sei.ecnu.edu.cn

Junxin Li
East China Normal University

China
leejuniorxin@gmail.com

Zhen Dong
National University of Singapore

Singapore
zhen.dong@comp.nus.edu.sg

Geguang Pu∗

East China Normal University
China

ggpu@sei.ecnu.edu.cn

Tao Xie
Peking University

China
taoxie@pku.edu.cn

Zhendong Su
ETH Zurich
Switzerland

zhendong.su@inf.ethz.ch

ABSTRACT

Android, the most popular mobile system, offers a number of user-

configurable system settings (e.g., network, location, and permis-

sion) for controlling devices and apps. Even popular, well-tested

apps may fail to properly adapt their behaviors to diverse setting

changes, thus frustrating their users. However, there exists no effort

to systematically investigate such defects. To this end, we conduct

the first empirical study to understand the characteristics of these

setting-related defects (in short as łsetting defectsž), which reside

in apps and are triggered by system setting changes. We devote sub-

stantial manual effort (over three person-months) to analyze 1,074

setting defects from 180 popular apps on GitHub. We investigate

their impact, root causes, and consequences. We find that setting

defects have a wide, diverse impact on apps’ correctness, and the

majority of these defects (≈70.7%) cause non-crash (logic) failures,

and thus could not be automatically detected by existing app testing

techniques due to the lack of strong test oracles.

Motivated and guided by our study, we propose setting-wise

metamorphic fuzzing, the first automated testing approach to ef-

fectively detect setting defects without explicit oracles. Our key

insight is that an app’s behavior should, in most cases, remain con-

sistent if a given setting is changed and later properly restored, or

exhibit expected differences if not restored. We realize our approach

in SetDroid, an automated, end-to-end GUI testing tool, for de-

tecting both crash and non-crash setting defects. SetDroid has

been evaluated on 26 popular, open-source apps and detected 42
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unique, previously unknown setting defects in 24 apps. To date,

33 have been confirmed and 21 fixed. We also apply SetDroid

on five highly popular industrial apps, namely WeChat, QQMail,

TikTok, CapCut, and AlipayHK, all of which each have billions

of monthly active users. SetDroid successfully detects 17 previ-

ously unknown setting defects in these apps’ latest releases, and all

defects have been confirmed and fixed by the app vendors. The ma-

jority of SetDroid-detected defects (49 out of 59) cause non-crash

failures, which could not be detected by existing testing tools (as

our evaluation confirms). These results demonstrate SetDroid’s

strong effectiveness and practicality.
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· Software and its engineering → Software testing and de-
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1 INTRODUCTION

Android supports the running of millions of apps nowadays. Specif-

ically, a number of user-configurable system settings are offered

by the (preinstalled) system app Settings on Android for control-

ling devices and apps. For example, users can change the system

language, switch to another network connection, grant or revoke

app permissions, or adjust the screen orientation. When these set-

tings change, an app is expected to correctly adapt its behavior, and

behave consistently and reliably.
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Figure 1: Overview of our study, including three steps: (a) data collection, (b) data analysis, and (c) application.

However, achieving the preceding goal is challenging. Even pop-

ular, well-tested apps may be unexpectedly affected due to inade-

quate considerations of diverse setting changes. For example,Word-

Press [59], a popular website and blog management app (which has

50,000,000 installations on Google Play and 2,400 stars on GitHub),

suffered from two defects triggered by switching to the airplane

mode (a commonly-used setting during traveling). One defect was

triggered when a user turned on the airplane mode when publishing

a new blog post; WordPress was stuck at the post uploading status

even after the user later turned off the airplane mode and connected

to the network [28]. The other defect was triggered when a post

draft was created under the airplane mode;WordPress constantly

crashed at the next startup [24]. Both defects were labeled as critical

but escaped from pre-release developer testing.

Moreover, these setting defects can be frustrating. For example,

NextCloud [50] is a popular on-premise file-sharing app (which has

5,000,000 installations on Google Play and 2,200 stars on GitHub).

A user reported that he could not use the auto-upload functionality

for unknown reasons [11]. After extended discussion, the develop-

ers finally found that the auto-upload functionality failed because

the power saving mode was turned on. The user complained that

he preferred keeping the power saving on all day to save battery.

To make sure that the auto-upload functionality would work, he al-

ready added NextCloud into the whitelist of the power saving mode

(which allows NextCloud to use battery without any restrictions),

but the functionality still did not work.

Despite these setting defects’ real-world occurrences and impact,

there exists no effort to systematically investigate these defects

in Android apps. For example, prior work studies only very lim-

ited types of system settings (e.g., app permissions [32] and screen

orientation [3]). On the other hand, state-of-the-art generic app

testing techniques [17, 60] cannot effectively detect these setting

defects for two major reasons. First, these techniques usually con-

strain the testing within the app under test and thus have no or

little chance to detect these defects, which require interacting with

the system app Settings. Second, these techniques are limited to

detecting crash failures [6, 63] due to the lack of strong test ora-

cles [62], while many setting defects are logical ones that lead to

app freezing, functionality failures, or GUI display failures.

To fill this gap, we conduct the first systematic study to under-

stand the characteristics of these setting defects. Specifically, we

aim to investigate the following research questions:

• RQ1 (impact): Do settings defects have a wide impact on the

correctness of apps in the wild?

• RQ2 (root causes): What are their major root causes?

• RQ3 (consequences): What are their common consequences?

How do they manifest?

Specifically, Figure 1 shows the overview of this study. We first

carefully inspect the Android documentation [39, 40], and system-

atically summarize the set of system setting categories and options

(see Section 2.1). This summarization leads to nine main setting

categories and over 50 setting options. Based on the keywords of

these settings, we mine 1,074 bug reports of setting defects from the

issue repositories of 180 popular Android apps on GitHub (see Sec-

tion 2.2.2). Finally, we carefully study these defects by reviewing the

bug reports and analyzing the root causes, fixes, and consequences

(see Section 2.3) to answer RQ1∼RQ3 in Section 3.

Our study reveals that setting defects have a wide, diverse impact

on the correctness of apps. Specifically, out of the 180 apps, 171 apps

(=95%) use at least one setting option in their code, and 162 apps

(=90%) have been affected by setting defects. Further, we distill five

major root causes. Specifically, incorrect callback implementations

and lack of setting checks are the most common. We also note that

only a few setting defects (≈2%) are caused by the mutual influ-

ence between two settings. On the other hand, setting defects lead

to diverse consequences, including crashes, functionality failures,

problematic GUI display, and disrespect of setting changes. Specifi-

cally, the majority of these defects (≈70.7%) cause non-crash failures,

highlighting the necessity of new, effective testing techniques.

Guided by our study findings, we design and introduce setting-

wise metamorphic fuzzing, the first automated testing technique

to detect setting defects (causing crash and non-crash failures, re-

spectively) for Android apps. We implement this technique as an

end-to-end, automated GUI testing tool, SetDroid, and apply it on

26 popular, open-source Android apps. SetDroid has successfully

discovered 42 unique, previously-unknown setting defects. So far,

33 have been confirmed and 21 fixed by the developers. We further

apply SetDroid on five highly popular industrial apps that each

have billions of monthly active users worldwide, i.e., WeChat [58]

and QQMail [53] from Tencent, TikTok [57] and CapCut [43] from

ByteDance, and AlipayHK [38] from Alibaba. In these apps’ lat-

est releases, SetDroid successfully finds 17 setting defects, all of

which have been confirmed and fixed by the app vendors. The

majority of all these setting defects (49 out of 59) cause non-crash

failures, which cannot be detected by existing automated testing

tools (corroborated by our evaluation in Section 4.3). These results

demonstrate SetDroid’s effectiveness and practicality.

In summary, this paper makes the following main contributions:

• We conduct the first systematic study on setting defects to assess

their impact, root causes, consequences, and manifestations.

• Informed by this study, we design and introduce setting-wise

metamorphic fuzzing, the first automated GUI testing technique

to effectively detect setting defects in Android apps.

• Our SetDroid tool implemented for our technique has revealed

42 setting defects in 26 open-source apps (33 confirmed, and 21
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Figure 2: Characteristics of the 180 apps under study.

fixed) and 17 defects in five industrial apps (all confirmed and

fixed). Themajority of these defects (49 out of 59) cause non-crash

failures and could not be detected by existing testing tools.

2 EMPIRICAL STUDY METHODOLOGY

2.1 Summarizing Setting Categories

To systematically summarize the setting categories, we inspect

the Android documentation [39, 40] and the mainstream Android

systems (Android 7.1, 8.0, 9.0, and 10.0). We finally identify 9 major

setting categories. Further, we summarize (1) the commonly used

keywords to denote the settings in these categories; these keywords

are used by the bug-report collection in Section 2.2.2; and (2) the

specific Android SDK APIs (including classes, methods, or variables)

used by or related to these setting categories; these APIs are used

by the impact analysis in Section 2.3. Table 1 lists these 9 major

setting categories. The column łSetting Categoriesž lists the category

names of these settings as classified by Android, łKeywordsž gives

the commonly used keywords to denote the settings within these

categories, and łDescriptionž summarizes their main functionalities.

2.2 Collecting Bug Reports of Setting Defects

We use three steps to collect valid bug reports of setting defects.

2.2.1 Step 1: App Collection. We choose open-source Android apps

on GitHub as our study subjects because we can view their source

code, failure/defect descriptions, reproducing steps, fix patches, and

discussions. Specifically, we collect the app subjects as follows.

• We use GitHub’s REST API [47] to crawl all the Android projects

on GitHub. We focus on the apps that are released on Google

Play and F-Droid, the two popular Android app markets. Because

these apps can receive feedback from real users and thus are

usually well maintained. We attain 1,728 Android projects.

• To focus on those projects that contain enough bug reports for

our study, we keep only the projects with more than 200 closed

issues/bug reports. We then attain 215 Android projects.

• We manually inspect each project and exclude the ones that are

not real apps (e.g., some projects are in fact third-party Android

libraries, and release simple demo apps on the markets). Finally,

we attain 180 Android apps as our study subjects.

Figure 2 shows the characteristics of the 180 apps in terms of the

numbers of stars and issues/bug reports on GitHub, installations

on Google Play, and app categories. We can see that these apps are

popular and diverse, serving as a solid basis for our analysis.

2.2.2 Step 2: Bug-report Collection. From the 180 apps, we attain

177,769 bug reports in total. To collect bug reports for our study, we

use three sets of keywords to filter bug reports. When a bug report

contains at least one keyword from each of these three keyword

sets, we select the bug report to include in our study.

• Setting keywords: A bug report within our study scope should

contain at least one of the setting keywords listed in Table 1. For

each keyword, we consider the possible forms that users may

use (e.g., capitalization, abbreviations, and tenses). For example,

users may use łpower savingž to represent łpower savež.

• Defect/failure keywords: We focus on the bug reports that describe

real app defects/failures rather than feature requests or documen-

tation issues. Thus, we use the keywords of łcrashž, łexceptionž,

łbugž, and łissuež to filter bug reports.

• Reproducing keywords: To facilitate bug-report analysis, we focus

on the bug reports that contain the reproducing steps. We use

the keywords of łreprož, łSTRž, and łrecordž to filter bug reports.

These reproducing steps are important, helping us understand

and confirm whether a bug report indeed reflects a setting defect.

Finally, we attain 11,656 bug reports within our study scope.

2.2.3 Step 3: Dataset Construction. To answer RQ1, RQ2, and RQ3,

we manually inspect the 11,656 bug reports from the previous step,

and keep only the valid bug reports by the following rules:

• We retain only the bug reports where the reporters or devel-

opers make clear statements that changing system settings is a

necessary condition for triggering the failures.

• When we do not have clear clues from bug reports, we reproduce

the failures to confirm whether they reflect setting defects. For

example, we exclude the bug reports that just mention settings.

Finally, we successfully attain 1,074 valid bug reports as the dataset

for our subsequent analysis. Among these bug reports, 482 are

closed with explicitly-linked code fixing commits.

2.3 Analysis Methods for Research Questions

This section details the analysis methods used to answer the re-

search questions. Note that, to avoid omissions and misclassifica-

tions in answering RQ1, RQ2, and RQ3, four co-authors participate

in the process for data collection, classification, manual analysis,

and cross-checking.

2.3.1 Analysis Method of RQ1. To answer RQ1, we focus on the

180 apps collected from GitHub and investigate (1) the usage of

settings in the apps, i.e., which apps use which setting categories;

and (2) the impact of setting defects against the apps, i.e., which

apps are ever affected by which setting defects.

To investigate the usage of settings, we use static analysis to

analyze whether an app uses specific APIs (classes, methods, or

variables) of each setting category (summarized in Section 2.1) in

their code. We observe that this method is feasible and reliable be-

cause using these specific APIs is the only way for an app to access

settings. For example, apps use the class ConnectivityManager to

query the network connectivity, and get notified when the network

connectivity changes. Thus, we use these classes, methods, or vari-

ables to determine which setting category is used by an app. We

give the complete list of these APIs of each setting category used

in this study on the web page of our supplementary materials [33].
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Table 1: List of 9 major setting categories summarized by our study including their levels, keywords, and brief descriptions.

Setting
Categories

Keywords Description

Network and
connect

Bluetooth,WLAN, NFC, internet, network, hot-spot, mobile,
wifi, airplane

Manage the device’s network mode (WiFi, mobile data or airplane mode), and the connection with other devices
(such as Bluetooth).

Location and
security

location, device only, phone only, GPS, high accuracy, screen
lock, fingerprint

Manage the device’s security settings (e.g., how to unlock screen), location setting (turning on/off device location)
and three location modes: high accuracy (using the network and GPS), battery saving (using the network), and
device only (using GPS).

Sound vibrate, ringtone, do not disturb, slient Manage the device’s sound-related options (e.g., the łdo not disturbž mode can completely mute the device).

Battery power save, battery
Manage the power saving mode and the list of apps that are not restricted by the power saving mode (the power
saving whitelist).

Display
orientation, vertical, horizontal, split screen, Multi-window,
screen resulotion, brightness, landscape, portrait, rotate

Manage the device’s display settings (e.g., screen brightness and font size) and screen orientation settings (e.g.,
whether to allow the device to rotate the screen).

Apps and
notifications

permission, disable, notification Manage the runtime permissions of apps and whether they can push notifications to users.

Developer developer option, keep activity
A number of advanced settings to simulate specific running environment (e.g., enable łForce RTL (right to left)
layout directionž).

Accessibility
accessibility, talkback, text-to-speech, color correction,
color inversion, high contrast text

Customize the device to bemore accessible, e.g., adjusting the contrast of UI interface and opening the screen reader.

Other
Settings

setting, preference, date, time, time zone, hour format,
date&time, readingmode, car mode, one-handedmode, dark
mode, game mode, night mode, theme, language

Users can change the languages, the way that they input, the system time, the time zone and hour format (24-hour
or 12-hour format), and the themes.

Table 2: Statistics of the impact of settings on the apps.

Setting Categories #Apps using
settings

#Apps were
affected

#Setting
Defects

Network and connect 86 68 326
Location and security 47 10 14
Sound 67 16 50
Battery 57 10 18
Display 109 78 226
Apps and notification 134 49 121
Others - - 319

#Total 171 162 1,074

2.3.2 Analysis Method of RQ2. To answer RQ2, we focus on analyz-

ing the setting defects in the 482 fixed bug reports out of the 1,074

valid bug reports. We study the fixed bug reports, including devel-

oper comments and code fixes, to understand the setting defects’

root causes. If necessary, we also refer to Android documentation

or Stack Overflow to find more clues.

Specifically, two co-authors first work on a common set of bug re-

ports to identify the root causes based on (1) the causes behind these

setting defects and (2) the defect fixing strategies. Then, the two

co-authors discuss together with the other co-authors to reach the

consensus on the initial categories. After that, the four co-authors

work separately on the remaining bug reports to classify the root

causes. They discuss and cross-check together when the categories

need to be updated (e.g., add, merge, or modify categories).

2.3.3 Analysis Method of RQ3. To answer RQ3, we focus on all the

1,074 valid bug reports. We study these bug reports to determine

the consequences. When necessary, we also reproduce the failures

to observe the consequences.

3 STUDY RESULTS AND ANALYSIS

3.1 RQ1: Impact of Settings Defects

To understand the impact of setting defects, we investigate two

aspects: (1) the usage of settings in the apps; (2) the impact of

setting defects against the apps. Table 2 (column ł#Apps using

settingsž) lists the number of apps that use APIs related to each set-

ting category. The result is based on the list of setting-related APIs

summarized in Section 2.1. Note that the numbers in Table 2 may

overlap because one app may use or be affected by multiple settings.

Row ł#Totalž gives the unique number of apps or setting defects.

In addition, we have not counted the usage of some settings (e.g.,

łDeveloperž, łAccessibilityž, denoted by ł-ž in łOthersž in Table 2)

because they do not export explicit APIs. Thus, the current result is

in fact a lower bound of setting usage by apps. In Table 2, we can see

that 95% (171/180) of the apps use at least one setting-related API.

Among all the setting categories, łApps and notification" is the most

commonly used one because most non-trivial apps use dynamic

permissions and notifications. The setting category łNetwork and

connectž is also commonly used.

Table 2 (column ł#Apps were affectedž) counts which apps are

ever affected by setting defects according to the 1,074 bug reports

in our dataset. We find that most apps have ever been affected by at

least one setting defect. Specifically, 162 apps have setting defects,

which account for 90% (162/180) of the 180 apps under study. The

three categories łDisplayž, łNetwork and connectž, and łApps and

notificationsž have the widest impact on the app’s correctness.

Table 2 (column ł#Setting Defectsž) classifies the defects reflected

by the 1,074 bug reports in our dataset according to the defects’

setting categories. Similar to the observation from column ł#Apps

were affectedž, we can see that the three categories łDisplayž, łNet-

work and connectž, and łApps and notificationsž lead to themajority

(701/1,074 ≈65.2%) of setting defects. This result indicates that the

settings in these categories are more likely to cause setting defects

than the other ones.

Answer to RQ1: Our study reveals that 95% (171/180) of apps in

our dataset use system settings according to the setting-related

APIs used in the app code. 90% (162/180) of apps are ever affected

by setting defects. Thus, setting defects indeed have a wide

impact on the app correctness.

3.2 RQ2: Root Causes of Setting Defects

To analyze the root causes, we focus on investigating 482 fixed bug

reports with explicitly-linked code fixing commits. Table 3 summa-

rizes these root causes ordered by their corresponding numbers of

bug reports from the most to least. We next explain and illustrate

these root causes.

3.2.1 Incorrect Callback Implementations. To properly handle set-

tings, developers are required to properly implement the callback

methods, which are called by the Android system when some set-

tings change. For example, when users grant or deny permissions,

the callback onRequestPermissionsResult() is called; when users
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Table 3: Major root causes of setting defects

Root Causes #Bug Reports

Incorrect callback implementations 164
Lack of setting checks 143
Fail to adapt user interfaces 103
Lack of considering Android versions 27
Mutual influence between settings 12
Other minor reasons 33

change the system language, specific Activity lifecycle callbacks

(e.g., onCreate()) are called. If these callbacks are not correctly

implemented, setting defects may occur. Thus, these defects are

usually fixed in specific callback methods.

For example, in AnkiDroid [41]’s Issue #4951, when a user grants

the storage permission from the permission request dialog, the

original 3-dot menu icon disappears from the top-right corner of

the screen. The reason is that the developers do not properly handle

the app logic in the callback. Figure 3 shows the patch. When the

user responds to the permission request, the system invokes the

callback onRequestPermissionsResult() (Line 1). After the user

grants the storage permission, the original menu should be redrawn

because its content is changed. However, the developers forget to

call invalidateOptionsMenu() to redraw the menu (Line 5).

3.2.2 Lack of Setting Checks. Many apps could be affected when

specific settings (e.g., network) change. If developers fail to properly

check the status of these settings or do not monitor the status while

using related setting APIs, some serious failures may occur. These

defects are usually fixed by adding conditional checks.

For example, in NextCloud’s Issue #2889, the user complains

that some app functionalities are affected even if she whitelists

the app from the power saving. As shown in Figure 4, the de-

velopers check only whether the device is in the power saving

mode by PowerManager#isPowerSaveMode() (Line 3), but do not

check whether the app is in the whitelist of the power saving mode

by PowerManager# IsIgnoringBatteryOptimizations(). In the

end, the developers fix the defect by adding this check (Lines 5-6).

3.2.3 Fail to Adapt User Interfaces. Some settings, e.g., multi-window

display, font size, languages, and dark mode, affect the user inter-

faces (UIs) of apps. If an app fails to properly adapt its UIs when

these settings change, some display defects may exist. We observe

that such setting defects are usually fixed by modifying the resource

files (e.g., XML layouts) rather than the app code.

For example, because the UI layouts are not properly designed,

Status [55]’s Issue #914 leads to the disappearance of some UI el-

ements when the app adapts itself to the multi-window display

mode. In Frost [46]’s Issue #1659, when users change the system

language from German to Russian, the texts overlap or cannot be

displayed completely within the screen, because the translation

from German to Russian leads to much longer texts.

3.2.4 Mutual Influence Between Settings. Some settings have ex-

plicit or implicit mutual influence, which many app developers

are unaware of. This factor may lead to some unexpected setting

defects. The fixes of such defects usually involve multiple settings.

One typical example of explicit mutual influence is that the

positioning in Android can be affected by the settings of both net-

work and location. Because Android supports positioning via either

GPS or network or both. In Commons [45]’s Issue #1735, the app

Figure 3: Patch for AnkiDroid’s Issue #4951

Figure 4: Patch for NextCloud’s Issue #2889

Figure 5: Patch for Openlauncher’s Issue #67

crashes if it is opened offline. The root cause is that the app calls

locationManager#getlastknownlocation to get the current ge-

ographic location via network. When the network is closed, this

call returns a NULL value, which is later used by getLatitude().

As a result, the app crashes by a NullPointerException.

One typical example of implicit mutual influence is that when

the power saving mode is enabled, some settings such as location,

network, and animation are affected. This factor may make the

failure diagnosis quite difficult. For example, in Clover [44]’s Issue

#360, the app is always stuck for unknown reasons and then forced

closed. The developers finally locate the culprit: the animation is

automatically disabled when the power saving mode is on. The app

is stuck because the startup animation cannot be played.

3.2.5 Lack of Considering Android Versions. The Android system

evolves fast, and some setting mechanisms may change. This factor

may lead to some device-specific setting defects. For example, in

Openlauncher [52]’s Issue #67: when a user changes the volume

while the łdo not disturbž (DND) mode is enabled (in the notifi-

cation setting category), the app crashes. The root cause is that

since Android’s Nougat version, if an app is in the DND mode, the

app needs to get the ACCESS_NOTIFICATION_POLICY) permission

before it can use AudioManager to change the volume. As shown

in Figure 5, the developers fix this defect by checking whether the

the system version is above Android 7.0 (Line 1) before calling the

AudioManager#setStreamVolume() (Line 7).

Answer to RQ2: Our study distills 5 major root causes of setting

defects. Among these causes, incorrect callback implementations,

lack of setting checks, and fail to adapt user interfaces are respon-

sible for the majority (410/482 ≈85.1%) of setting defects.Mutual

influence between settings and lack of considering Android versions

could lead to setting defects, despite only a few (39/482 ≈8%).

3.3 RQ3: Consequences of Setting Defects

This section summarizes the four major consequences of the de-

fects reflected by the 1,074 bug reports in our dataset. RQ3 aims

to understand whether these defects have any common failure
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manifestations. We detail the four major consequences w.r.t. their

numbers of defects from the most to least. The remaining 59 defects’

consequences are very specific (e.g., slaggy GUIs, delayed updates

of app data on GUIs), so we do not discuss them in detail.

3.3.1 Crash. 315 of the 1,074 setting defects lead to app crash.

In most cases, users can recover the app by restoring the setting

changes and restarting the app. But in some cases, users cannot

restore the settings changes, and the app is totally broken. For

example, in OpenFoodFacts [51]’s Issue #1118, when users switch

to the Hindi language, the app preference page anymore cannot be

opened and just crashes. The users have to reinstall the app.

3.3.2 Disrespect of Setting Changes. 285 setting defects disrespect

the changes of settings, i.e., setting changes do not take effect. The

main reason is that developers fail to consider some settings, and

thus the app does not adapt itself to these setting changes. For

example, in Signal [54]’s Issue #6411, even if users turn on the łDo

not disturbž mode, Signal is still making the sound from time to

time when notifications come in, annoying the users. Other failure

manifestations include untranslated texts or incomplete translations

when the system language is changed.

3.3.3 Problematic UI Display. 218 setting defects lead to problem-

atic UI display. Some settings, e.g., languages and themes, may affect

UI display if the corresponding resource files are not correctly im-

plemented. For example, in the email client app K-9 [48], users can

see the quoted texts from the last reply when writing an email. But

when the app’s theme is changed to the dark mode, the quoted

texts from the last reply become invisible. Because the developers

forget to adjust the color of the quoted texts (which are in black)

according to the current theme.

3.3.4 Functionality Failure. 197 setting defects lead to functionality

failure, i.e., the original app functionality cannot work as expected

when some setting changes happen. In most cases, the affected

apps do not alert users that the functionality fails due to the set-

ting changes; in some cases, the apps may give a wrong alert and

mislead the users. For example, in syncthing [56]’s Issue #727, the

background synchronization functionality does not work for un-

known reasons. After a long discussion, the developers find that

the functionality fails because the power saving mode is enabled.

In this case, syncthing does not alert the users that the power sav-

ing mode is affecting the synchronization functionality, and thus

confuses the users. Other failure manifestations include app stuck,

black screen, infinite loading, and unable to refresh.

Answer to RQ3: Our study reveals that setting defects lead to

diverse consequences. The majority (759/1,074 ≈70.7%) of them

cause non-crash failures and manifest only as GUI defects, which

are hard to be automatically detected by existing testing tools.

4 DETECTING SETTING DEFECTS

4.1 Setting-wise Metamorphic Fuzzing

4.1.1 High-level Idea. Our key insight is that, in most cases, the

app behaviors should keep consistent if a given setting is changed

and later properly restored, or show expected differences if not

restored. Otherwise, a likely setting defect is found. For example,

an app’s functionalities should not be affected if the network is

closed but immediately opened; or an app should show the texts in

a different language if the default language is changed. Thus, based

on the preceding observation, we are inspired to leverage the idea

of metamorphic testing [5] to tackle the oracle problem.

4.1.2 Approach. Our approach, setting-wise metamorphic fuzzing,

randomly injects a pair of events ⟨𝑒𝑐 , 𝑒𝑢⟩ into a given seed GUI test

𝐸 to obtain a mutant test 𝐸 ′, where 𝑒𝑐 changes a given setting, while

𝑒𝑢 properly restores the setting or does nothing. By comparing the

GUI consistency between the seed test 𝐸 and the mutant test 𝐸 ′,

we can tell whether the app behaviors have been affected.

Formally, let 𝐸 be a seed GUI test that is a sequence of events,

i.e., 𝐸 = [𝑒1, . . . , 𝑒𝑖 , . . . , 𝑒𝑛], where 𝑒𝑖 is a user event (e.g., click,

edit, swipe, screen rotation). 𝐸 can be executed on an app 𝑃 to

obtain a sequence of GUI layouts (pages) 𝐿 = [ℓ1, . . . , ℓ𝑖 , . . . , ℓ𝑛+1],

where ℓ𝑖 is a GUI layout (which consists of a number of GUI wid-

gets). Specifically, if we view the execution of 𝑒𝑖 as a function, then

ℓ𝑖+1 = 𝑒𝑖 (ℓ𝑖 ), 𝑖 ≥ 1. By injecting a pair of new events ⟨𝑒𝑐 , 𝑒𝑢⟩ into

𝐸, we can obtain a mutant GUI test 𝐸 ′ = [𝑒 ′
1
, . . . , 𝑒𝑐 , . . . , 𝑒𝑢 , . . . , 𝑒

′
𝑛]

that can be executed on 𝑃 to obtain a sequence of GUI layouts

(pages) 𝐿′ = [ℓ ′
1
, . . . , ℓ𝑐 , . . . , ℓ𝑢 , . . . , ℓ

′
𝑛+1]. We compare the GUI con-

sistency between the GUI layouts of 𝐸 (i.e., 𝐿) and those of 𝐸 ′ (i.e.,

𝐿′), respectively, to find defects. In practice, we check the GUI con-

sistency by comparing the differences of executable GUI widgets

between 𝐿 and 𝐿′. Let 𝑒.𝑤 be the GUI widget𝑤 that 𝑒 targets.

Oracle checking rule I. Rule I is coupled with the following two

strategies that inject ⟨𝑒𝑐 , 𝑒𝑢⟩ into 𝐸 to obtain 𝐸 ′. Conceptually, in

most cases, the app behaviors should keep consistent.

• Immediate setting mutation. We inject 𝑒𝑐 followed immediately

by 𝑒𝑢 . For example, 𝑒𝑐 turns on the power saving mode, and 𝑒𝑢
immediately adds the app into the whitelist of power saving.

• Lazy setting mutation. We inject 𝑒𝑐 first and inject 𝑒𝑢 only when

it is necessary (e.g., the app prompts an alert dialog or a request

message). For example, 𝑒𝑐 revokes app permission, and 𝑒𝑢 grants

the permission only when the app requests that permission. Note

that our study justifies the rationale of the lazy mutation strategy

because prompting proper alerts to users is demanded by Android

design guidelines to improve user experience [42].

The preceding figure illustrates Rule I: under these two injection

strategies, if there exists one GUI event 𝑒𝑖 ∈ 𝐸 ′ and its target widget

𝑒𝑖 .𝑤 cannot be located on the corresponding layout ℓ ′
𝑖
∈ 𝐿′ (ℓ ′

𝑖

corresponds to ℓ𝑖 ∈ 𝐿), then a likely setting defect is found. Because

it likely indicates that the app’s behaviors are affected. Formally,

∃𝑒𝑖 .𝑒𝑖 .𝑤 ∈ ℓ𝑖 ∧ 𝑒𝑖 .𝑤 ∉ ℓ
′
𝑖

(1)

Oracle checking rule II . Under Rule II, we inject only 𝑒𝑐 into 𝐸 (𝑒𝑢 is

ignored). This rule aims to confirm that changing a given setting,

e.g., languages, hour format (12-hour or 24-hour format), indeed

leads to some GUI changes. For example, when the default language
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Figure 6: Workflow of SetDroid to find setting defects.

is changed, we check whether the texts in ℓ𝑖 and ℓ ′
𝑖
are indeed in

the expected different languages while no other inconsistencies

appear. In practice, we use the language identification tool named

langid [19] to determine the language of each text.

Thus, Rule I does equal checking on GUI consistency and applies

to three common consequences of setting defects, i.e., crash (a spe-

cial case of GUI inconsistency), functionality failure, and problematic

UI display. Rule II does inequality checking on GUI consistency and

applies to the checking of disrespect of setting changes.

4.2 Design and Implementation of SetDroid

We implement our approach as an automated GUI testing tool

named SetDroid. Figure 6 depicts the workflow. It has four main

modules: (a) test executor, (b) setting change injector, (c) oracle checker,

and (d) bug report reducer. We detail the four modules as follows.

Test executor. The test executor runs the same app under test

(AUT) on two identical devices A and B in parallel. During testing,

the executor generates a seed test on-the-fly on device A and replays

the same seed test injectedwith setting changes (i.e., themutant test)

on device B at the same time. The executor works in a loop: (1) get

the current GUI layout of the AUT on device A, (2) randomly choose

an executable widget from the layout and generate an event, (3)

execute the event on both devices A and B. This on-the-fly strategy

offers the flexibility for injecting setting changes at runtime. We use

random seed tests because they are diverse, practical, and scalable

to obtain. In practice, we use the UI Automator test framework [61]

to execute events and obtain GUI layouts.

Setting change injector. Informed by our study, we adopt two key

insights in designing this module. First, we find that many setting

defects (211/486≈43.4%) in our study are triggered by changing set-

tings at runtime rather than before starting the apps. Guided by the

first insight, SetDroid randomly injects the pair of events ⟨𝑒𝑐 , 𝑒𝑢⟩

at any position of a seed test rather than only at its beginning.

Moreover, if one pair of ⟨𝑒𝑐 , 𝑒𝑢⟩ is injected and no setting defect

is found, the next same pair of ⟨𝑒𝑐 , 𝑒𝑢⟩ is injected again later. This

process continues until the seed test ends. Second, we find that only

a few setting defects (10/486≈2%) are caused by explicitly changing

two settings (i.e., two settings are changed to non-default values at

the same time), and no defects are caused by changing more than

two settings. Guided by the second insight, the setting change injec-

tor randomly injects one single pair of events ⟨𝑒𝑐 , 𝑒𝑢⟩ at one time,

which does not interleave with others. Only the screen orientation

(which is viewed as a normal user event) may be interleaved with

other setting changes. Specifically, the injector decides whether

to inject 𝑒𝑐 after each GUI event in the seed test by coin-flipping

and later injects 𝑒𝑢 according to the mutation strategy. Table 4 lists

Table 4: List of pairs of events for setting changes

Setting
Oracle
Rule

Injection
Strategy

Pair of events for setting changes

Network I Immediate ⟨turn on airplane, turn off airplane⟩
Network I Lazy ⟨turn on airplane, turn off airplane⟩
Network I Lazy ⟨switch to mobile data, switch to Wi-Fi⟩
Location I Lazy ⟨turn off location, turn on location⟩

Location I Lazy ⟨switch to "device only",
switch to "high accurancy"⟩

Sound I Lazy ⟨turn on "do not disturb",
turn off "do not disturb"⟩

Battery I Immediate ⟨turn on the power saving mode,
add the app into the whitelist⟩

Battery I Lazy ⟨turn on the power saving mode,
turn off the power saving mode⟩

Display I Immediate ⟨switch to landscape, switch to portrait⟩

Display I Immediate ⟨turn on multi-window,
turn off multi-window⟩

Permission I Lazy ⟨turn off permission, turn on permission⟩
Language II - ⟨change system language, -⟩
Time II - ⟨change hour format, -⟩

the supported pairs of events for setting changes and the corre-

sponding injection strategies (defined in Section 4.1). These events

are designed based on our empirical study, which can manifest

the majority of setting defects and cover the other possible forms

of related setting changes. Before testing, the two devices 𝐴 and

𝐵 are initialized with the same default setting environment: air-

plane mode off, Wi-Fi on, mobile data on, location (high accuracy) on,

battery saving mode off, multi-window off, screen orientation in the

landscape, DND mode off, language is English, and 12-hour format.

Oracle checker. After each event is generated by the test execu-

tor, the oracle checker checks whether the layout of device B is

consistent with that of device A (i.e., Rule I), or shows expected

differencesw.r.t. that of device A (i.e., Rule II), while also monitoring

app crashes. If a defect is found, the checker generates a bug report

that includes the executed events, GUI layouts, and screenshots.

Bug report reducer. The bug report reducer removes any bug

report that is duplicated or cannot be faithfully reproduced. Specif-

ically, it replays the recorded GUI tests that trigger setting defects

for multiple runs to decide reproducibility. It uses the GUI incon-

sistencies between the two layouts as the hash key to remove any

duplicated bug report. This step does not incur any false negatives.

4.3 Evaluation of SetDroid

We evaluate SetDroid and the usefulness of the insights gained

from the study by answering RQ4 and RQ5:

• RQ4: Can SetDroid detect unknown setting defects in real-

world Android apps (both open-source and industrial apps)?

• RQ5: Do the insights gained from the study help SetDroid detect

some setting defects that cannot be detected by existing tools?

4.3.1 Evaluation Setup of RQ4. For our evaluation subjects, we

consider the 30 apps from prior work [22], because most of these

apps are selected from popular open-source apps on GitHub [30]. In

the end, our evaluation subjects include 26 apps because the other

4 apps are obsolete. We run SetDroid on a 64-bit Ubuntu 18.04

machine (64 cores, AMD 2990WX CPU, and 64GB RAM), Android

emulators (Android 8.0, Pixel XL). SetDroid applies the 13 pairs

of setting changing events (in Table 4) separately on each app. For

each pair, SetDroid randomly generates 20 seed tests (each seed

contains 100 events) for fuzzing, which takes about 1 hour. Thus, the

whole evaluation for 26 apps takes 1*13*26=338 CPU hours (nearly
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Table 5: List of the 42 setting defects found by SetDroid and the detailed statistics of true positives and false positives.

App ID App name #Installations #Stars Issue ID Issue state Cause setting Consequence #FP𝐼 #TP𝐼 #FP𝐼 𝐼 #TP𝐼 𝐼

1 APhotoManager - 162 #175 Confirmed Permission Crash 0 3 0 0
2 A2DP Volume 100K-500K 71 #295 Fixed Display Crash 0 10 0 0

#294 Fixed Display Data lost
#291 Fixed Display Crash
#290 Fixed Display & Permission Data lost
#289 Confirmed Developer Crash

3 Always On 10M-50M 121 #2476 Confirmed Language Disrespect of Settings 3 0 3 6
#2475 Confirmed Language Incomplete translation(5)

4 AnkiDroid 5M-10M 3.2K #5407 Fixed Permission Stuck 0 4 7 0
5 AntennaPod 500K-1M 3.3K #4227 Fixed Network Lack of refresh 1 2 7 1
6 Commons 50K-100K 649 #3906 Discussion Location Infinite loading 0 9 30 0

#3134 Confirmed Permission Crash
7 ConnectBot 1M-5M 1.6K 1 8 8 0
8 FillUp 100K-500K 29 3 0 0 0
9 Forecastie 10K-50K 609 #505 Fixed Permission Lack of prompt 1 3 1 5

#504 Fixed Language Incomplete translation(5)
#358 Confirmed Display Data lost

10 Good Weather 5K-10K 196 #62 Waiting Network Infinite loading 0 6 4 51
#61 Waiting Location Lack of prompt
#55 Waiting Language Language confusion

11 Notepad 100K-500K 156 0 3 4 1
12 Omni Notes 100K-500K 2.2K #776 Fixed Permission Lack of prompt 0 9 3 3

#775 Fixed Location Functionality failure
#764 Fixed Language Disrespect of Settings
#695 Fixed Language Incomplete translation(2)

13 Opensuduku 10K-50K 209 #93 Confirmed Language Incomplete translation(7) 1 2 1 7
14 RedReader 50K-100K 1.1K #783 Discussion Network Infinite loading 0 4 291 41

#749 Confirmed Language Incomplete translation(23)
15 Timber 100K-500K 6.4K #459 Confirmed Display Data lost 0 4 0 9

#458 Waiting Permission Crash
#454 Waiting Permission Incomplete translation(9)

16 Vanilla Music 500K-1M 777 #1048 Waiting Display Crash 1 7 0 0
17 Wikipedia 50M-100M 1.3K 0 6 4 0
18 OpenBikeSharing 1K-5K 58 #55 Confirmed Display Functionality failure 3 8 0 0
19 Suntimes - 134 #420 Fixed Location Infinite loading 1 2 0 0
20 RadioBeacon - 43 #249 Confirmed Network Stuck 3 2 10 1

#234 Confirmed Permission Crash
21 RunnerUp 10K-50K 511 #923 Fixed Permission Lack of prompt 0 1 0 0
22 Amaze 1M-5M 3K #1965 Fixed Display & Permission Black screen 4 21 18 0

#1964 Fixed Display & Permission Data lost
#1920 Fixed Network Lack of prompt
#1919 Fixed Display & Permission Crash
#1885 Fixed Permission Crash

23 Habits 1M-5M 3.6K #620 Fixed Display Data lost 2 2 0 1
#599 Fixed Language Incomplete translation(2)

24 Materialistic 100K-500K 2.1K #1429 Waiting Network Lack of refresh 1 8 144 1

14 CPU days). For each bug report, SetDroid provides the failure-

triggering event trace and the screenshots. With this information,

we manually inspect all bug reports and count the true positives

(TP for short) and false positives (FP for short). We validate each

TP on real Android devices before reporting these TPs. When the

triggering trace and consequences of a TP are different from those

of each of all bug reports submitted by us so far, we submit a new

bug report in the issue repositories. For each bug report, we provide

the developers with the failure-reproducing steps and videos to

ease failure diagnosis. If the bug report is not marked as a duplicate

one by the developers, we regard it as a unique defect.

We also evaluate SetDroid on five industrial apps from Tecent,

ByteDance and Alibaba, i.e., WeChat [58], QQMail [53], TikTok [57],

CapCut [43], and AlipayHK [38], all of which each have billions of

monthly active users. We allocate 2-day testing time for each app

and run on two real devices (Galaxy A6s, Android 8.1.0). Then, we

inspect any found defects and report them to the developers.

4.3.2 Evaluation Setup of RQ5. Existing automated testing tools

for Android can be divided into two categories. The first category

includes generic testing tools [4, 7, 12, 23, 25, 27, 29, 37, 49]. These

tools focus on only the app under test and do not interact with

the system app Settings to change settings. The second category

includes tools for detecting specific failures [15, 22, 31, 32]. Specifi-

cally, Prefest [22] and PATDroid [32] are relevant to SetDroid.

Prefest does app preference-wise testing but also considers some

system settings (i.e., WiFi, Bluetooth, mobile data, GPS locating, and

network locating), while PATDroid considers permissions. Note

that in principle all these existing tools cannot detect non-crash

failures that SetDroid targets. But we still do the comparison.

Specifically, we build two baselines for comparison:

• Baseline A (random testing): This baseline mimics one typical

generic testing tool, Monkey [49], which randomly explores the

app under test without explicitly changing settings. This baseline

follows the same testing strategy of Monkey but generates tests

based on widgets (and thus the tests are easier to reproduce and

much more understandable). In practice, Baseline A just runs

Module a in Figure 6.

• Baseline B (random testing+setting changes): This baseline mim-

ics the testing strategies of Prefest and PATDroid, which change

settings before starting an app and then randomly explore the

app. Baseline B considers all the setting changes in Table 4, in-

cluding all the settings in Prefest and PATDroid. In practice,

Baseline B just runs Modules a and b in Figure 6.

• We also run Prefest and PATDroid for direct comparison.

211



Understanding and Finding System Setting-Related Defects in Android Apps ISSTA ’21, July 11ś17, 2021, Virtual, Denmark

We allocate 13 hours (the same time for SetDroid) for the two

baselines, Prefest, and PATDroid to test each of 26 open-source

apps on one emulator, and check the generated bug reports to

confirm whether they could find setting defects.

4.3.3 Results for RQ4. Effectiveness of SetDroid. Table 5 shows the

evaluation results of SetDroid. Columns 2-4 give the app name,

the number of installations on Google Play (ł-ž indicates that the

app is not released on Google Play), and the number of stars on

GitHub; Columns 5-8 give the issue ID, issue state (fixed, confirmed,

under discussion with developers, or waiting for the reply), cause

setting, and consequence. Out of the 26 apps, SetDroid finds 42

unique and previously-unknown setting defects from 24 apps. So

far, 33 have been confirmed and 21 have been fixed. The result

demonstrates SetDroid’s effectiveness. Further, we receive positive

feedback from developers. For example, one developer of Forecastie

comments that łYep, good spot. Cheers for posting this bugž; one

developer of Omni Notes responds łThanks for pointing my attention

to thatž; łWell spotted. Cheers for the bug report.ž. These comments

show that SetDroid can find setting defects cared by developers.

Usability of SetDroid. During testing, SetDroid reports 811

defects. Among them, 149 defects are reported by oracle checking

rule I, 124 of which are TPs (124/149≈83.2%); the remaining 662

defects are reported by oracle checking rule II, 127 of which are

TPs (127/662≈19.2%). In Table 5, Columns 9-12 give the detailed

numbers of true positives (TPs) and false positives (FPs) of oracle

checking rules I and II, respectively, for each app. We analyze the

FPs of these two rules and identify some major reasons.

• FP𝐼 of oracle checking rule I. Rule I in fact has very low false-

positive rate (16.8%). We find that all these FPs are caused by

specific app features triggered by setting changes. For example,

when the screen orientation setting is changed, the Always on

app pops up animation on top of the screen, leading to some GUI

inconsistencies between the two devices.

• FP𝐼 𝐼 of oracle checking rule II. From Table 5, we can see ma-

terialistic and RedReader incur the majority of false positives

(435/477≈91.2%) of Rule II. These two apps are news readers

in English. When SetDroid changes the default language, the

texts of these news readers do not get translated. But SetDroid

assumes that these behaviors violate Rule II , i.e., disrespect of set-

ting changes. SetDroid reports one defect when a news article is

detected, thus finally leading to a large number of false positives.

For other apps, FPs are caused by some reserved keywords that

do not get translated when the language is changed.

Although the false-positive rate of Rule II is high, the efforts of

checking these cases are still affordable. In practice, SetDroid

highlights the untranslated texts on the screenshots, and thus tool

users can quickly locate and check the GUI inconsistencies. For

example, SetDroid reports 332 defects in RedReader, and we are

able to identify all 41 true positives within 20 minutes. On the other

hand, we believe that this problem of high false-positive rate can

be easily resolved by specifying that some GUI elements should be

ignored during oracle checking.

Diversity of defects found by SetDroid. From Table 5, we can see

that the setting defects found by SetDroid are diverse: the apps

are affected by different settings with different consequences.

Table 6: Setting defects found in the five industrial apps.

ID App Setting Consequence

1 QQMail Permission Functionality failure
2 QQMail Permission Crash
3 Wechat Permission Functionality failure
4 Wechat Permission Functionality failure
5 Wechat Language Problematic UI display
6 Wechat Language Incomplete translation
7 Wechat Network Stuck
8 Wechat Network Functionality failure
9 CapCut Network Infinite loading
10 CapCut Permission Functionality failure
11 CapCut Display&Permission Problematic UI display
12 CapCut Network Functionality failure
13 TikTok Network Functionality failure
14 TikTok Permission Functionality failure
15 TikTok Locaion Functionality failure
16 AlipayHK Language Functionality failure
17 AlipayHK Location Functionality failure

In terms of root causes, we inspect these 21 fixed defects and find

that most of them are due to the lack of setting checks. Some de-

fects are due to incorrect callback implementations (e.g., AnkiDroid

has one defect that fails to properly handle permission callbacks),

while some defects are due to mutual influence between settings

(e.g., Suntimes has one defect that fails to properly handle network

connection and location positioning). On the other hand, most of

the language defects are due to incomplete translation.

These setting defects also lead to different consequences. For

example, based on Rule I, SetDroid detects one defect in Omni

Notes. When the device-only mode is turned on, the app cannot

insert the current location into the notes and prompts the user with

a wrong, confusing message łlocation not foundž. Based on Rule

II, SetDroid detects a defect in Always On. When we change the

default system language to another language, Always On indeed

adjusts to the new language. But when Always On is closed and

reopened, the language setting gets lost and Always On returns

back to the default language.

Practicality of SetDroid on industrial apps. Our tool SetDroid

detects 17 unique setting defects, all of which have been confirmed

and fixed by Tencent, ByteDance, and Alibaba. Table 6 shows the

details of these defects. According to our observation, these defects

affect different modules and lead to different consequences. Some

defects are severe and quickly fixed by the vendors.

Answer to RQ.4: SetDroid can effectively detect setting de-

fects in popular, real-world Android apps. These defects are

diverse in terms of root causes and consequences, and are of

developers’ concern. SetDroid also shows reasonable usability.

Oracle checking rule I incurs very few false positives.

4.3.4 Results for RQ5. Table 7 shows the comparison results. We

can see that SetDroid can detect more crash and non-crash setting

defects than the other approaches. Baseline A does not detect any

defect because it does not explicitly change settings like existing

automated app testing tools, while Baseline B detects only 3 crashes

(which are also detected by SetDroid) because it only changes set-

tings before running tests. Because Prefest and PATDroid cover

only limited types of settings, we compare the number of defects

detected by Prefest/PATDroid and a restricted SetDroid (focus-

ing on only those types of settings covered by Prefest/PATDroid),

respectively (shown in the last eight columns of Table 7). Prefest

does not detect any setting defect while PATDroid detects two

crashes related to permissions. Note that the crashes detected by
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Table 7: Comparisonwith existing tools and the baselines. C andNC represent crash and non-crash consequences, respectively.
Setting All settings Bluetooth, network and location Permission

Tool Baseline A Baseline B SetDroid Prefest SetDroid PATDroid SetDroid

Consequence C NC C NC C NC C NC C NC C NC C NC

#Defects 0 0 3 0 9 33 0 0 0 10 2 0 6 8

PATDroid and SetDroid do not overlap, likely caused by the ran-

domness in test generation.

In summary, (1) SetDroid detects 33 non-crash setting defects,

none of which can be detected by other approaches under com-

parison. (2) SetDroid is designed to change settings at random

events, indeed exposing more (crash) setting defects, compared to

Baseline B. (3) Prefest and PATDroid focus on the combinations

of setting changes, but do not detect any defects caused by multiple

settings in our subjects, conforming to our findings that most of

the setting defects can be manifested by one single setting. These

results indicate the superiority of SetDroid over existing tools and

usefulness of our study insights in designing SetDroid.

Answer to RQ.5: Inspired by the insights of our study,

SetDroid is designed to be able to detect non-crash setting

defects that cannot be detected by existing automated testing

tools. Moreover, by changing and restoring settings randomly,

SetDroid can detect more crashes caused by setting changes.

5 THREATS TO VALIDITY

A main threat to validity is likely insufficient representativeness

of app subjects used in our study. To alleviate this threat, for our

systematic study, we collect 180 apps from 1,728 Android apps

on GitHub. As shown in Section 2.2.2, these 180 apps are popular

and cover diverse app categories. For the evaluation of SetDroid,

besides highly popular industrial apps, we use all the non-obsolete

app subjects from recent prior work [22].

Anothermain threat is likely incompleteness of setting keywords,

causing incomprehensiveness of the setting defects collected by us.

To alleviate this threat, we study the official Android documentation

and collect as many keywords as possible for each setting, and we

also consider different possible forms that users may use in bug

reports. The final main threat is likely incorrectness of manual

inspection. Our manual analysis may introduce errors. To alleviate

this threat, the four co-authors cross-check each other’s analysis

results to ensure correctness.

6 RELATED WORK

Configuration testing for traditional software. Prior work investi-

gatesmisconfiguration defects for traditional software. Yin et al. [65]

conduct a study on a commercial storage system (COMP-A) and

four widely used open-source systems (CentOS, MySQL, Apache,

and OpenLDAP) to study the main reasons of configuration defects.

Multiple studies [14, 26, 34] focus on effective configuration combi-

nation strategies for testing and show that simple algorithms such

as most-enabled-disabled are the most effective. Efforts [21, 64, 66]

also exist to automatically detect configuration defects in traditional

software. In contrast, our work is the first to systematically study

setting defects in Android apps.

Empirical studies for Android app defects. A number of empirical

studies investigate different types of Android app defects [2, 9, 15].

For example, Hu et al. [15] study the WebView defects, while Fan

et al. [8, 9] and Su et al. [36] study the framework-specific crash

defects. But they do not cover setting defects addressed by our work.

Some studies investigate Android configurations [10, 16, 18], but

these configurations denote different Android SDK versions, device

screen sizes, or configuration files (e.g., AndroidManifest.xml) of

Android apps. These configurations are different from the system

settings considered in our work.

Automated Android app testing. A number of automated GUI

testing techniques have been proposed [4, 7, 12, 13, 20, 23, 25, 27,

29, 35, 37, 49]. However, these testing techniques are limited to

crash defects due to lack of strong test oracles. In contrast, our

testing technique, informed by our study, leverages the idea of

metamorphic testing to detect both crash and non-crash setting

defects. Adamsen et al. [1] also use specific metamorphic relations

to enhance existing test suites for Android, but they do not tar-

get setting defects. Some previous work explores limited types of

setting defects. Sadeghi et al. [32] propose PATDroid, which uses

combinatorial testing to automatically detect permission defects.

Similarly, Lu et al. [22] propose Prefest, which uses symbolic ex-

ecution and combinatorial testing to detect crashes induced by

changing app-specific preferences and some system settings. How-

ever, our work has two significant differences from theirs. First,

we systematically explore different system settings (typically pro-

vided by the system app Settings), while they explore only limited

types of settings. Second, SetDroid can detect non-crash setting de-

fects, while PATDroid and Prefest can detect only crash ones. Our

evaluation in Section 4.3.4 also shows these differences. Riganelli

et al. [31] use screen rotations to detect data loss defects. However,

they can detect only the setting defects induced by screen rotations,

while SetDroid can detect many different setting defects.

7 CONCLUSION

We have conducted the first empirical analysis of setting defects

in Android apps and found that most apps are affected by set-

ting defects. We have identified five major root causes and four

types of consequences of these defects. The study results guide

our design of setting-wise metamorphic fuzzing for finding set-

ting defects, realized in the SetDroid tool. SetDroid finds 59

previously-unknown setting defects from 26 open-source and 5

industrial apps. These defects have diverse root causes and conse-

quences; the majority (49 out of 59) cause non-crash failures and

could not be detected by existing tools. We have open-sourced

both SetDroid and our dataset to facilitate replication and future

research at https://github.com/setting-defect-fuzzing/home.

ACKNOWLEDGMENTS

This work is partially supported by the National Key R&D Pro-

gram of China No.2020AAA0107800, NSFC Project No. 62072178,

NSFC Project No. 61632005, and the project of STC of Shanghai No.

19511103602. Ting Su and Zhendong Su are partially supported by

a Google Faculty Research Award. Tao Xie is with the Key Labora-

tory of High Confidence Software Technologies (Peking University),

Ministry of Education, China.

213

https://github.com/setting-defect-fuzzing/home


Understanding and Finding System Setting-Related Defects in Android Apps ISSTA ’21, July 11ś17, 2021, Virtual, Denmark

REFERENCES
[1] Christoffer Quist Adamsen, Gianluca Mezzetti, and Anders Mùller. 2015. System-

atic execution of android test suites in adverse conditions. In Proceedings of the
2015 International Symposium on Software Testing and Analysis (ISSTA). 83ś93.
https://doi.org/10.1145/2771783.2771786

[2] Abdulaziz Alshayban, Iftekhar Ahmed, and Sam Malek. 2020. Accessibility
issues in Android apps: state of affairs, sentiments, and ways forward. In 2020
IEEE/ACM 42nd International Conference on Software Engineering (ICSE). 1323ś
1334. https://doi.org/10.1145/3377811.3380392

[3] Domenico Amalfitano, Vincenzo Riccio, Ana CR Paiva, and Anna Rita Fasolino.
2018. Why does the orientation change mess up my Android application? From
GUI failures to code faults. In Software Testing, Verification and Reliability (STVR).
e1654. https://doi.org/10.1002/stvr.1654

[4] Tanzirul Azim and Iulian Neamtiu. 2013. Targeted and depth-first exploration
for systematic testing of android apps. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages &
Applications (OOPSLA). 641ś660. https://doi.org/10.1145/2509136.2509549

[5] Tsong Y. Chen, Shing C. Cheung, and Shiu Ming Yiu. 1998. Metamorphic testing:
a new approach for generating next test cases. Technical Report. HKUST-CS98-01,
Hong Kong University of Science and Technology. https://arxiv.org/abs/2002.
12543

[6] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. 2015. Auto-
mated test input generation for Android: are we there yet? (E). In 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE). 429ś440.
https://doi.org/10.1109/ASE.2015.89

[7] Zhen Dong, Marcel Böhme, Lucia Cojocaru, and Abhik Roychoudhury. 2020.
Time-travel testing of Android apps. In Proceedings of the 42nd International
Conference on Software Engineering (ICSE). 1ś12. https://doi.org/10.1145/3377811.
3380402

[8] Lingling Fan, Ting Su, Sen Chen, GuozhuMeng, Yang Liu, Lihua Xu, and Geguang
Pu. 2018. Efficiently manifesting asynchronous programming errors in Android
apps. In Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering (ASE). 486ś497. https://doi.org/10.1145/3238147.3238170

[9] Lingling Fan, Ting Su, Sen Chen, Guozhu Meng, Yang Liu, Lihua Xu, Geguang Pu,
and Zhendong Su. 2018. Large-scale analysis of framework-specific exceptions
in Android apps. In 2018 IEEE/ACM 40th International Conference on Software
Engineering (ICSE). 408ś419. https://doi.org/10.1145/3180155.3180222

[10] Mattia Fazzini and Alessandro Orso. 2017. Automated cross-platform inconsis-
tency detection for mobile apps. In 2017 32nd IEEE/ACM International Conference
on Automated Software Engineering (ASE). 308ś318. https://doi.org/10.1109/ASE.
2017.8115644

[11] fpernice518. 2018. NextCloud issue #2979. Retrieved 2021-1 from https://github.
com/nextcloud/android/issues/2979.

[12] Tianxiao Gu, Chengnian Sun, Xiaoxing Ma, Chun Cao, Chang Xu, Yuan Yao,
Qirun Zhang, Jian Lu, and Zhendong Su. 2019. Practical GUI testing of An-
droid applications via model abstraction and refinement. In 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE). 269ś280. https:
//doi.org/10.1109/ICSE.2019.00042

[13] Wunan Guo, Liwei Shen, Ting Su, Xin Peng, and Weiyang Xie. 2020. Improving
Automated GUI Exploration of Android Apps via Static Dependency Analysis.
In 2020 IEEE International Conference on Software Maintenance and Evolution
(ICSME). 557ś568. https://doi.org/10.1109/ICSME46990.2020.00059

[14] Axel Halin, Alexandre Nuttinck, Mathieu Acher, Xavier Devroey, Gilles Perrouin,
and Benoit Baudry. 2019. Test them all, is it worth it? Assessing configura-
tion sampling on the JHipster Web development stack. In Empirical Software
Engineering (EMSE). 674ś717. https://doi.org/10.1145/3382025.3414985

[15] Jiajun Hu, Lili Wei, Yepang Liu, Shing-Chi Cheung, and Huaxun Huang. 2018.
A tale of two cities: how WebView induces bugs to Android applications. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering (ASE). 702ś713. https://doi.org/10.1145/3238147.3238180

[16] Ajay Kumar Jha, Sunghee Lee, and Woo Jin Lee. 2017. Developer mistakes
in writing Android manifests: an empirical study of configuration error. In
IEEE/ACM 14th International Conference on Mining Software Repositories (MSR).
25ś36. https://doi.org/10.1109/MSR.2017.41

[17] Pingfan Kong, Li Li, Jun Gao, Kui Liu, Tegawendé F Bissyandé, and Jacques Klein.
2018. Automated testing of android apps: a systematic literature review. In IEEE
Transactions on Reliability. 45ś66. https://doi.org/10.1109/TR.2018.2865733

[18] Emily Kowalczyk, Myra B. Cohen, and Atif M. Memon. 2018. Configurations in
Android testing: they matter. Proceedings of the 1st International Workshop on
Advances in Mobile App Analysis (A-Mobile) (2018), 1ś6. https://doi.org/10.1145/
3243218.3243219

[19] langid Team. 2021. langid. Retrieved 2021-1 from https://github.com/saffsd/
langid.py.

[20] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2017. DroidBot: a
lightweight UI-guided test input generator for Android. In 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion (ICSE-C). 23ś26.
https://doi.org/10.1109/ICSE-C.2017.8

[21] Max Lillack, Christian Kästner, and Eric Bodden. 2014. Tracking load-time config-
uration options. In Proceedings of the 29th ACM/IEEE International Conference on
Automated Software Engineering (ASE). 445ś456. https://doi.org/10.1145/2642937.
2643001

[22] Yifei Lu, Minxue Pan, Juan Zhai, Tian Zhang, and Xuandong Li. 2019. Preference-
wise testing for Android applications. In Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (FSE). 268ś278. https://doi.org/10.1145/
3338906.3338980

[23] Riyadh Mahmood, Nariman Mirzaei, and Sam Malek. 2014. Evodroid: segmented
evolutionary testing of android apps. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE). 599ś609.
https://doi.org/10.1145/2635868.2635896

[24] malinajirka. 2019. WordPress issue #10096. Retrieved 2021-1 from https:
//github.com/wordpress-mobile/WordPress-Android/issues/10096.

[25] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: multi-objective automated
testing for Android applications. In Proceedings of the 25th International Sympo-
sium on Software Testing and Analysis (ISSTA). 94ś105. https://doi.org/10.1145/
2931037.2931054

[26] Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Rohit Gheyi, and Sven Apel.
2016. A comparison of 10 sampling algorithms for configurable systems. In
Proceedings of the 38th International Conference on Software Engineering (ICSE).
643ś654. https://doi.org/10.1145/2884781.2884793

[27] Nariman Mirzaei, Hamid Bagheri, Riyadh Mahmood, and Sam Malek. 2015. Sig-
droid: automated system input generation for android applications. In 2015 IEEE
26th International Symposium on Software Reliability Engineering (ISSRE). 461ś471.
https://doi.org/10.1145/2509136.2509549

[28] mzorz. 2017. WordPress issue #6026. Retrieved 2021-1 from https://github.com/
wordpress-mobile/WordPress-Android/issues/6026.

[29] Minxue Pan, An Huang, Guoxin Wang, Tian Zhang, and Xuandong Li. 2020.
Reinforcement learning based curiosity-driven testing of Android applications
(ISSTA). In Proceedings of the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis. 153ś164. https://doi.org/10.1145/3395363.3397354

[30] pcqpcq. 2021. opensource-android-apps. Retrieved 2021-1 from https://github.
com/pcqpcq/open-source-android-apps/.

[31] Oliviero Riganelli, Simone Paolo Mottadelli, Claudio Rota, Daniela Micucci, and
Leonardo Mariani. 2020. Data loss detector: automatically revealing data loss
bugs in Android apps. In Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA). 141ś152. https://doi.org/10.
1145/3395363.3397379

[32] Alireza Sadeghi, Reyhaneh Jabbarvand, and Sam Malek. 2017. PATDroid:
permission-aware gui testing of android. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering (FSE). 220ś232. https://doi.org/
10.1145/3106237.3106250

[33] setting-defect fuzzing. 2021. Dataset. Retrieved 2021-1 from https://github.com/
setting-defect-fuzzing/home.

[34] Sabrina Souto, Marcelo d’Amorim, and Rohit Gheyi. 2017. Balancing soundness
and efficiency for practical testing of configurable systems. In Proceedings of the
39th International Conference on Software Engineering (ICSE). 632ś642. https:
//doi.org/10.1109/ICSE.2017.64

[35] Ting Su. 2016. FSMdroid: guided GUI testing of android apps. In Proceedings
of the 38th International Conference on Software Engineering (ICSE). 689ś691.
https://doi.org/10.1145/2889160.2891043

[36] Ting Su, Lingling Fan, Sen Chen, Yang Liu, Lihua Xu, Geguang Pu, and Zhendong
Su. 2020. Why my app crashes? Understanding and benchmarking framework-
specific exceptions of Android apps. IEEE Transactions on Software Engineering
(TSE). https://doi.org/10.1109/TSE.2020.3013438

[37] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao, Geguang
Pu, Yang Liu, and Zhendong Su. 2017. Guided, stochastic model-based GUI testing
of Android apps. In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering (FSE). 245ś256. https://doi.org/10.1145/3106237.3106298

[38] AlipayHK Team. 2021. AlipayHK. Retrieved 2021-1 from https://www.alipayhk.
com.

214

https://doi.org/10.1145/2771783.2771786
https://doi.org/10.1145/3377811.3380392
https://doi.org/10.1002/stvr.1654
https://doi.org/10.1145/2509136.2509549
https://arxiv.org/abs/2002.12543
https://arxiv.org/abs/2002.12543
https://doi.org/10.1109/ASE.2015.89
https://doi.org/10.1145/3377811.3380402
https://doi.org/10.1145/3377811.3380402
https://doi.org/10.1145/3238147.3238170
https://doi.org/10.1145/3180155.3180222
https://doi.org/10.1109/ASE.2017.8115644
https://doi.org/10.1109/ASE.2017.8115644
https://github.com/nextcloud/android/issues/2979
https://github.com/nextcloud/android/issues/2979
https://doi.org/10.1109/ICSE.2019.00042
https://doi.org/10.1109/ICSE.2019.00042
https://doi.org/10.1109/ICSME46990.2020.00059
https://doi.org/10.1145/3382025.3414985
https://doi.org/10.1145/3238147.3238180
https://doi.org/10.1109/MSR.2017.41
https://doi.org/10.1109/TR.2018.2865733
https://doi.org/10.1145/3243218.3243219
https://doi.org/10.1145/3243218.3243219
https://github.com/saffsd/langid.py
https://github.com/saffsd/langid.py
https://doi.org/10.1109/ICSE-C.2017.8
https://doi.org/10.1145/2642937.2643001
https://doi.org/10.1145/2642937.2643001
https://doi.org/10.1145/3338906.3338980
https://doi.org/10.1145/3338906.3338980
https://doi.org/10.1145/2635868.2635896
https://github.com/wordpress-mobile/WordPress-Android/issues/10096
https://github.com/wordpress-mobile/WordPress-Android/issues/10096
https://doi.org/10.1145/2931037.2931054
https://doi.org/10.1145/2931037.2931054
https://doi.org/10.1145/2884781.2884793
https://doi.org/10.1145/2509136.2509549
https://github.com/wordpress-mobile/WordPress-Android/issues/6026
https://github.com/wordpress-mobile/WordPress-Android/issues/6026
https://doi.org/10.1145/3395363.3397354
https://github.com/pcqpcq/open-source-android-apps/
https://github.com/pcqpcq/open-source-android-apps/
https://doi.org/10.1145/3395363.3397379
https://doi.org/10.1145/3395363.3397379
https://doi.org/10.1145/3106237.3106250
https://doi.org/10.1145/3106237.3106250
https://github.com/setting-defect-fuzzing/home
https://github.com/setting-defect-fuzzing/home
https://doi.org/10.1109/ICSE.2017.64
https://doi.org/10.1109/ICSE.2017.64
https://doi.org/10.1145/2889160.2891043
https://doi.org/10.1109/TSE.2020.3013438
https://doi.org/10.1145/3106237.3106298
https://www.alipayhk.com
https://www.alipayhk.com


ISSTA ’21, July 11ś17, 2021, Virtual, Denmark Jingling Sun, Ting Su, Junxin Li, Zhen Dong, Geguang Pu, Tao Xie, and Zhendong Su

[39] Android Team. 2021. Android Developers Documentation. Retrieved 2021-1
from https://developer.android.com.

[40] Android Team. 2021. Android Help. Retrieved 2021-1 from https://support.
google.com/android.

[41] AnkiDroid Team. 2021. AnkiDroid. Retrieved 2021-1 from https://github.com/
ankidroid/Anki-Android.

[42] Android Team. 2021. Request App Permissions. Retrieved 2021-1 from https:
//developer.android.com/training/permissions/requesting#perm-check.

[43] CapCut Team. 2021. CapCut. Retrieved 2021-1 from https://lv.faceueditor.com.

[44] Clover Team. 2021. Clover. Retrieved 2021-1 from https://github.com/chandevel/
Clover.

[45] Commons Team. 2021. Commons. Retrieved 2021-1 from https://github.com/
commons-app/apps-android-commons.

[46] Frost Team. 2021. Frost. Retrieved 2021-1 from https://github.com/AllanWang/
Frost-for-Facebook.

[47] GitHub Team. 2021. GitHub REST API. Retrieved 2021-1 from https://docs.
github.com/en/rest/.

[48] K-9 Team. 2021. K-9. Retrieved 2021-1 from https://github.com/k9mail/k-9.

[49] Monkey Team. 2021. Android Monkey. Retrieved 2021-1 from https://developer.
android.com/studio/test/monkey.

[50] NextCloud Team. 2021. NextCloud. Retrieved 2021-1 from https://github.com/
nextcloud/android.

[51] OpenFoodFacts Team. 2021. OpenFoodFacts. Retrieved 2021-1 from https:
//github.com/openfoodfacts/openfoodfacts-androidapp.

[52] Openlauncher Team. 2021. Openlauncher. Retrieved 2021-1 from https://github.
com/OpenLauncherTeam/openlauncher.

[53] QQMail Team. 2021. QQMail. Retrieved 2021-1 from https://en.mail.qq.com.

[54] Signal Team. 2021. Signal. Retrieved 2021-1 from https://github.com/signalapp/
Signal-Android.

[55] Status Team. 2021. Status. Retrieved 2021-1 from https://github.com/status-
im/status-react.

[56] Syncthing Team. 2021. Syncthing. Retrieved 2021-1 from https://github.com/
syncthing/syncthing-android.

[57] TikTok Team. 2021. TikTok. Retrieved 2021-1 from https://www.tiktok.com.

[58] WeChat Team. 2021. WeChat. Retrieved 2021-1 from https://www.wechat.com.

[59] WordPress Team. 2021. WordPress. Retrieved 2021-1 from https://github.com/
wordpress-mobile/WordPress-Android.

[60] Porfirio Tramontana, Domenico Amalfitano, Nicola Amatucci, and Anna Rita
Fasolino. 2019. Automated functional testing of mobile applications: a systematic
mapping study. In Software Quality Journal (SQJ). 149ś201. https://doi.org/10.
1007/s11219-018-9418-6

[61] uiautomator2 Team. 2021. uiautomator2. Retrieved 2021-1 from https://github.
com/openatx/uiautomator2.

[62] Mario Linares Vásquez, Kevin Moran, and Denys Poshyvanyk. 2017. Continuous,
evolutionary and large-scale: a new perspective for automated mobile app testing.
In International Conference on Software Maintenance and Evolution (ICSME). https:
//doi.org/10.1109/ICSME.2017.27

[63] Wenyu Wang, Dengfeng Li, Wei Yang, Yurui Cao, Zhenwen Zhang, Yuetang
Deng, and Tao Xie. 2018. An empirical study of Android test generation tools in
industrial cases. In Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering (ASE). https://doi.org/10.1145/3238147.3240465

[64] Tianyin Xu, Xinxin Jin, Peng Huang, Yuanyuan Zhou, Shan Lu, Long Jin, and
Shankar Pasupathy. 2016. Early detection of configuration errors to reduce
failure damage. In 12th {USENIX} Symposium on Operating Systems Design and
Implementation (OSDI). 619ś634. https://dl.acm.org/doi/10.5555/3026877.3026925

[65] Zuoning Yin, XiaoMa, Jing Zheng, Yuanyuan Zhou, Lakshmi N Bairavasundaram,
and Shankar Pasupathy. 2011. An empirical study on configuration errors in
commercial and open source systems. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles (SOSP). 159ś172. https://doi.org/10.
1145/2043556.2043572

[66] Sai Zhang and Michael D Ernst. 2014. Which configuration option should I
change?. In Proceedings of the 36th International Conference on Software Engineer-
ing (ICSE). 152ś163. https://doi.org/10.1145/2568225.2568251

215

https://developer.android.com
https://support.google.com/android
https://support.google.com/android
https://github.com/ankidroid/Anki-Android
https://github.com/ankidroid/Anki-Android
https://developer.android.com/training/permissions/requesting#perm-check
https://developer.android.com/training/permissions/requesting#perm-check
https://lv.faceueditor.com
https://github.com/chandevel/Clover
https://github.com/chandevel/Clover
https://github.com/commons-app/apps-android-commons
https://github.com/commons-app/apps-android-commons
https://github.com/AllanWang/Frost-for-Facebook
https://github.com/AllanWang/Frost-for-Facebook
https://docs.github.com/en/rest/
https://docs.github.com/en/rest/
https://github.com/k9mail/k-9
https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey
https://github.com/nextcloud/android
https://github.com/nextcloud/android
https://github.com/openfoodfacts/openfoodfacts-androidapp
https://github.com/openfoodfacts/openfoodfacts-androidapp
https://github.com/OpenLauncherTeam/openlauncher
https://github.com/OpenLauncherTeam/openlauncher
https://en.mail.qq.com
https://github.com/signalapp/Signal-Android
https://github.com/signalapp/Signal-Android
https://github.com/status-im/status-react
https://github.com/status-im/status-react
https://github.com/syncthing/syncthing-android
https://github.com/syncthing/syncthing-android
https://www.tiktok.com
https://www.wechat.com
https://github.com/wordpress-mobile/WordPress-Android
https://github.com/wordpress-mobile/WordPress-Android
https://doi.org/10.1007/s11219-018-9418-6
https://doi.org/10.1007/s11219-018-9418-6
https://github.com/openatx/uiautomator2
https://github.com/openatx/uiautomator2
https://doi.org/10.1109/ICSME.2017.27
https://doi.org/10.1109/ICSME.2017.27
https://doi.org/10.1145/3238147.3240465
https://dl.acm.org/doi/10.5555/3026877.3026925
https://doi.org/10.1145/2043556.2043572
https://doi.org/10.1145/2043556.2043572
https://doi.org/10.1145/2568225.2568251

	Abstract
	1 Introduction
	2 Empirical Study Methodology
	2.1 Summarizing Setting Categories
	2.2 Collecting Bug Reports of Setting Defects
	2.3 Analysis Methods for Research Questions

	3 Study Results and Analysis
	3.1 RQ1: Impact of Settings Defects
	3.2 RQ2: Root Causes of Setting Defects
	3.3 RQ3: Consequences of Setting Defects

	4 Detecting Setting Defects
	4.1 Setting-wise Metamorphic Fuzzing
	4.2 Design and Implementation of SetDroid
	4.3 Evaluation of SetDroid

	5 Threats to Validity
	6 Related Work
	7 conclusion
	Acknowledgments
	References

