
Automated Robustness Testing of Web Services

Evan Martin, Suranjana Basu, and Tao Xie

Department of Computer Science
North Carolina State University

Raleigh, NC 27695
{eemartin,sbasu2}@ncsu.edu,

xie@csc.ncsu.edu
http://ase.csc.ncsu.edu

Abstract. Web services are a popular way of implementing a Service-Oriented
Architecture (SOA), which has gained rapid adoption and support from leading
industrial players such as IBM, Oracle, and Microsoft. Testing can be used to
help assure both the correctness and robustness of a web service. Because manual
testing is tedious, tools are needed to automate test generation and execution for
web services. This paper presents a new framework for automatically generating
and executing web-service requests. Given a service provider’s WSDL, we first
generate the necessary code to implement a client (service requestor). We then
leverage existing automated unit test generation tools to generate unit tests and
finally execute the generated unit tests, which in turn invoke the service under
test. Our preliminary results show that we can quickly generate and execute web-
service requests that may reveal robustness problems with no knowledge of the
underlying web service implementation.

Key words: Web Services, Automated Testing, Service-Oriented Architecture

1 Introduction

Service-Oriented Architecture (SOA) is a software architectural style that aims to achieve
loose coupling among interacting software agents. Serviceproviders and service con-
sumers are both implemented via software agents. A service is a unit of work done by
a service provider to achieve some end result for a service consumer. Each service im-
plements a specific business function and is made available such that the service can
be accessed without knowledge of its underlying implementation. Furthermore, a sin-
gle composite service may be implemented via several other services potentially owned
and operated by different organizations. For example, a company may offer a service
that allows its customers to search the product catalog. Thecompany leverages the
search service provided by Google to implement this functionality and thus relies on
its correct operation. This scenario implies that the service provider becomes the ser-
vice consumer. A service provider may not be willing to shareimplementation details,
source code, or other intellectual property to facilitate web-service testing conducted
by another company. As a result, the ability to perform black-box robustness testing is
needed.

In this paper, we focus on testing web services, which are themost common tech-
nology used to implement SOA nowadays. A web service is a self-contained software



2 Evan Martin, Suranjana Basu, and Tao Xie

component with a well-defined interface that describes a setof operations that are acces-
sible over the Internet. Web services can be implemented using any programming lan-
guage on any platform, provided that a standardized XML interface description called
Web Services Description Language (WSDL) is availableand a standardized messag-
ing protocol called Simple Object Access Protocol (SOAP) isused. Web services often
run over HTTP but may run over other application layer transport protocols as well.

In our research, we develop a framework for automated robustness testing of web
services and its supporting tool. Given a description of thepublic interface to a service
in WSDL, our tool generates code required for the service consumer to perform service
requests on the service provider. The tool also generates a test class that maps a single
method to each available service operation. This test classis supplied to an existing
test generation tool for object-oriented programs such as JCrasher [4], which generates
JUnit [7] tests. The execution of these unit tests automatically result in web-service
requests to the service provider. Our preliminary results indicate that we can easily and
automatically generate test suites for web services, designed specifically for robustness
testing given only a service provider’s WSDL.

The remainder of the paper is organized as follows. Section 2presents related work.
Section 3 describes our approach to robustness testing of web services followed by
some preliminary results in Section 4. Finally, Section 5 concludes with future work.

2 Related Work

Fu et al. [6] developed an approach for testing Java web services at the service-provider
site. Their approach injects faults into service implementations to conduct white-box
coverage testing of error recovery code such as exception handlers. Unlike their ap-
proach, our approach conducts testing at the service-consumer site, without the access
to service implementations. Other previous work on testingweb services is primarily
model-based testing. Nakajima [8] proposed a model checking technique that verifies
service flows using a model checker. Narayanan et al. [9] adopted DAML-S ontology
to describe web service semantics and test web services by simulating their execution
under different input conditions. Foster et al. [5] proposed a finite-state process no-
tation to model and verify service composition. Yi et al. [12] proposed an extended
Petri Net model for specifying and verifying web service composition. Tsai et al. [11]
proposed test-case generation based on OWL-S specification. Bai et al. [3] proposed a
WSDL-based method of test-case generation, execution, andresponse analysis. But to
our knowledge, no other test generation approach for web services leverages existing
unit test generation tools and the JUnit [7] framework for test execution.

3 Framework

We develop a framework for robustness testing of web services, as is illustrated in
Figure 1. Given a WSDL from a service provider, we first generate code to facilitate
both test generation and test execution. In conjunction with the generated client code,
a test suite is generated to invoke the web service and collect the results. In particular,
our framework consists of the following three steps:



Automated Robustness Testing of Web Services 3

Fig. 1. Overview of the Framework

1. Code Generation. We generate the necessary code required to implement a ser-
vice consumer. In addition, we generate a test class that canexecute each service
independently.

2. Test Generation. The generated test class is supplied to a test generation tool such
as JCrasher [4] in order to generate JUnit [7] tests.

3. Test Execution. The execution of the generated unit tests causes the web service to
be invoked and its responses to be collected.

3.1 Code Generation

Axis [2] provides a Java implementation of the SOAP protocol. We use Axis to gen-
erate client-side code from a service provider’s WSDL. WSDLis an XML-based lan-
guage that describes the public interface of a service. It defines the protocol bindings,
message formats, and supported operations that are required to interact with the web
services listed in its directory. The Axis utility class,WSDL2Java, parses the WSDL
and generates the necessary WSDL files that facilitate the implementation of service
consumers. A Java class is generated to encapsulate each supported message format
for both the input and output parameters to and from the service. A Java interface is
generated to represent each port type. A stub class is generated for each binding. A
service interface and corresponding implementation is generated for each service. For
our preliminary results, we have manually coded a wrapper class that leverages the
code generated byWSDL2Java. Our future work plans to automate this manual effort
by augmentingWSDL2Java to generate the required wrapper class. This wrapper class
is designed to allow unit-test generation tools to automatically generate unit tests that
exercise the various services offered by the service provider as described in Section 3.2.

3.2 Test Generation

Given the generated wrapper class, we use a unit-test generation tool to generate a test
suite that exercises the services defined in the WSDL. Our approach operates indepen-
dently of the test generation tool and thus other unit test generation tools (such as Agitar



4 Evan Martin, Suranjana Basu, and Tao Xie

Agitator [1] and Parasoft Jtest [10]) may also be used. Our preliminary results are ob-
tained via JCrasher [4], a third-party test generation toolthat automatically generates
JUnit [7] tests for a given Java class. For example, JCrashergenerates−1, 0, and1 for
arguments with the integer type and it can generate method sequences that create values
for those arguments with non-primitive types. JCrasher is designed as a robustness test-
ing tool by causing the program under test to throw an undeclared runtime exception.
More specifically, JCrasher examines the type information of a set of Java classes and
constructs code fragments that create instances of different types to test the behavior
of public methods. These code fragments are used in the generated unit tests to supply
inputs to the public methods under test. In our case, the public methods under test are
in the wrapper class. Each method there corresponds to a service defined in the WSDL
and each method argument corresponds to an input parameter for that service. JCrasher
generates unit tests that instantiate the necessary input parameters to invoke the web
service.

3.3 Test Execution

Given the generated wrapper class, unit test suite, and client-side implementation, we
use JUnit [7] to execute the unit tests against the wrapper class, which invokes the re-
mote web service. JUnit [7] is a regression testing framework that is used to execute
a unit-test suite against the class under test. The test class throws an exception if a
SOAP failure is encountered. Manual inspection and heuristics may be used to deter-
mine whether the exception should be considered to be causedby a bug in the web
service implementation or the supplied inputs’ violation of the service provider’s pre-
conditions. Even for the latter case, the web service implementation should respond
with an informative error message rather than simply crashing information.

4 Preliminary Results

We have successfully implemented our framework and appliedit on web services pro-
vided by Google1 and Amazon2. Thousands of requests have been quickly generated
and executed; however, few interesting robustness problems have been detected. But
we still observed that the Google search service occasionally appeared to hang indef-
initely (though it is not clear why). Such anomalous behavior is a potential candidate
for a bug report. The detection of a small number of potentialrobustness problems is
likely due to the maturity and popularity of these services.We plan to further evaluate
the approach on less mature web services in order to further validate its effectiveness
for robustness testing.

5 Conclusions and Future Work

We have developed a framework for automatically generatingand invoking web ser-
vices given a service provider’s WSDL. We first generate the necessary code to imple-

1 http://www.google.com/apis/index.html
2 https://aws-portal.amazon.com/gp/aws/developer/registration/index.html



Automated Robustness Testing of Web Services 5

ment a client (service requestor) along with a wrapper class. We then leverage existing
automated unit test generation tools to generate unit testsfor the wrapper class and
finally execute the generated unit test cases, which in turn invoke the service under
test. Our preliminary results show that we can quickly generate a large number of web-
service tests and successfully execute them against a service provider. These requests
may reveal robustness problems in the service provider’s code with no knowledge of
the underlying service implementation. Such an approach toweb services testing is
useful when a service provider also relies on a third-party service provider to function
correctly.

In future work, we plan to evaluate our approach on several service providers, in
hopes of revealing robustness problems in their implementations. We plan to automate
the wrapper-class generation as well as response analysis.We also plan to incorpo-
rate more advanced unit test generation tools besides JCrasher [4]. Finally, we plan to
provide tool supports for service providers in conducting white-box testing of service
implementation.

With the increasing proliferation of web services, tools that facilitate their testing
are increasingly important. We hope our work could help leada trend in leveraging
existing powerful tools for object-oriented programs to assist web service development,
test, and deployment.

References

1. Agitar. Agitar Agitatior 2.0, Novermber 2004.http://www.agitar.com/.
2. Apache. Axis.http://ws.apache.org/axis/.
3. X. Bai, W. Dong, W.-T. Tsai, and Y. Chen. WSDL-based automatic test case generation

for web services testing. InProc. IEEE International Workshop on Service-Oriented System
Engineering, pages 215–220, 2005.

4. C. Csallner and Y. Smaragdakis. JCrasher: an automatic robustness tester for Java.Software:
Practice and Experience, 34:1025–1050, 2004.

5. H. Foster, J. Kramer, J. Magee, and S. Uchitel. Model-based verification of web service com-
positions. InProc. 18th IEEE International Conference on Automated Software Engineering,
pages 152–16, 2003.

6. C. Fu, B. G. Ryder, A. Milanova, and D. Wonnacott. Testing of Java web services for robust-
ness. InProc. ACM SIGSOFT International Symposium on Software Testing and Analysis,
pages 23–34, 2004.

7. E. Gamma and K. Beck. JUnit, 2003.http://www.junit.org.
8. S. Nakajima. Model-checking verification for reliable web service. InProc. OOPSLA 2002

Workshop on Object-Oriented Web Services, 2002.
9. S. Narayanan and S. A. McIlraith. Simulation, verification and automated composition of

web services. InProc. 11th International Conference on World Wide Web, pages 77–88,
2002.

10. Parasoft. Jtest.http://www.parasoft.com.
11. W. T. Tsai, Y. Chen, and R. Paul. Specification-based verification and validation of web

services and service-oriented operating systems. InProc. 10th IEEE International Workshop
on Object-Oriented Real-Time Dependable Systems, pages 139–147, 2005.

12. X. Yi and K. J. Kochut. A CP-nets-based design and verification framework for web services
composition. InProc. IEEE International Conference on Web Services, page 756, 2004.


