Automated Robustness Testing of Web Services

Evan Martin, Suranjana Basu, and Tao Xie

Department of Computer Science
North Carolina State University
Raleigh, NC 27695
{eemartin, shasu2} @csu. edu,
Xi e@sc. ncsu. edu
http://ase.csc.ncsu. edu

Abstract. Web services are a popular way of implementing a ServicerDet
Architecture (SOA), which has gained rapid adoption ancpsupfrom leading
industrial players such as IBM, Oracle, and Microsoft. ifestan be used to
help assure both the correctness and robustness of a wies&wcause manual
testing is tedious, tools are needed to automate test gemesad execution for
web services. This paper presents a new framework for atitcatip generating
and executing web-service requests. Given a service mosidVSDL, we first
generate the necessary code to implement a client (semigestor). We then
leverage existing automated unit test generation tooleteate unit tests and
finally execute the generated unit tests, which in turn ievtile service under
test. Our preliminary results show that we can quickly gateeand execute web-
service requests that may reveal robustness problems wikmowledge of the
underlying web service implementation.

Key words: Web Services, Automated Testing, Service-Oriented Aechiire

1 Introduction

Service-Oriented Architecture (SOA) is a software ardfiteal style that aims to achieve
loose coupling among interacting software agents. Sepiceiders and service con-
sumers are both implemented via software agents. A serwigainit of work done by
a service provider to achieve some end result for a serviaswoer. Each service im-
plements a specific business function and is made available that the service can
be accessed without knowledge of its underlying implententaFurthermore, a sin-
gle composite service may be implemented via several odineices potentially owned
and operated by different organizations. For example, apeoy may offer a service
that allows its customers to search the product catalog.cbinepany leverages the
search service provided by Google to implement this funetlity and thus relies on
its correct operation. This scenario implies that the seryirovider becomes the ser-
vice consumer. A service provider may not be willing to shierglementation details,
source code, or other intellectual property to facilitatebvservice testing conducted
by another company. As a result, the ability to perform blaok robustness testing is
needed.

In this paper, we focus on testing web services, which arentbh& common tech-
nology used to implement SOA nowadays. A web service is acggifained software

2 Evan Martin, Suranjana Basu, and Tao Xie

componentwith a well-defined interface that describes afsgierations that are acces-
sible over the Internet. Web services can be implementedjwsiy programming lan-
guage on any platform, provided that a standardized XMLrfate description called
Web Services Description Language (WSDL) is availaivid a standardized messag-
ing protocol called Simple Object Access Protocol (SOARjsed. Web services often
run over HTTP but may run over other application layer tramsprotocols as well.

In our research, we develop a framework for automated rabssttesting of web
services and its supporting tool. Given a description ofpthielic interface to a service
in WSDL, our tool generates code required for the servicesgorer to perform service
requests on the service provider. The tool also generats alass that maps a single
method to each available service operation. This test @tasspplied to an existing
test generation tool for object-oriented programs suctCaasher [4], which generates
JUnit [7] tests. The execution of these unit tests autoraicesult in web-service
requests to the service provider. Our preliminary resualigcate that we can easily and
automatically generate test suites for web services, dedigpecifically for robustness
testing given only a service provider's WSDL.

The remainder of the paper is organized as follows. Sectjme&ents related work.
Section 3 describes our approach to robustness testing lofservices followed by
some preliminary results in Section 4. Finally, Section Baodes with future work.

2 Reated Work

Fu et al. [6] developed an approach for testing Java webcsat the service-provider
site. Their approach injects faults into service impleragans to conduct white-box
coverage testing of error recovery code such as exceptindlérs. Unlike their ap-
proach, our approach conducts testing at the service-owgrssite, without the access
to service implementations. Other previous work on testiedp services is primarily
model-based testing. Nakajima [8] proposed a model chgdkichnique that verifies
service flows using a model checker. Narayanan et al. [9]teddpAML-S ontology
to describe web service semantics and test web servicesnyasing their execution
under different input conditions. Foster et al. [5] propbsefinite-state process no-
tation to model and verify service composition. Yi et al. [Ji2oposed an extended
Petri Net model for specifying and verifying web service gasition. Tsai et al. [11]
proposed test-case generation based on OWL-S specificBabet al. [3] proposed a
WSDL-based method of test-case generation, executiomesmpdnse analysis. But to
our knowledge, no other test generation approach for welicesr leverages existing
unit test generation tools and the JUnit [7] framework fat &xecution.

3 Framework

We develop a framework for robustness testing of web sesyiae is illustrated in
Figure 1. Given a WSDL from a service provider, we first geteecade to facilitate
both test generation and test execution. In conjunctioh thieé generated client code,
a test suite is generated to invoke the web service and tdilecesults. In particular,
our framework consists of the following three steps:

Automated Robustness Testing of Web Services 3

Generation Generatlon
F‘:
Client Test
Code Suite [
_/

L

Service <::‘,> 3. Test I::> Test
Provider Execution Results ||
\/

Fig. 1. Overview of the Framework

1. Code Generation. We generate the necessary code required to implement a ser-
vice consumer. In addition, we generate a test class thagéxecute each service
independently.

2. Test Generation. The generated test class is supplied to a test generatibsuolo
as JCrasher [4] in order to generate JUnit [7] tests.

3. Test Execution. The execution of the generated unit tests causes the welbes&sv
be invoked and its responses to be collected.

3.1 Code Generation

Axis [2] provides a Java implementation of the SOAP proto¥d use Axis to gen-
erate client-side code from a service provider's WSDL. WS®an XML-based lan-
guage that describes the public interface of a service fiheethe protocol bindings,
message formats, and supported operations that are rédaireteract with the web
services listed in its directory. The Axis utility classsDL2Java, parses the WSDL
and generates the necessary WSDL files that facilitate tppgementation of service
consumers. A Java class is generated to encapsulate egubrteupmessage format
for both the input and output parameters to and from the senA Java interface is
generated to represent each port type. A stub class is deddma each binding. A
service interface and corresponding implementation i®gead for each service. For
our preliminary results, we have manually coded a wrappasscthat leverages the
code generated bysDL2Java. Our future work plans to automate this manual effort
by augmenting\8DL2Java to generate the required wrapper class. This wrapper class
is designed to allow unit-test generation tools to autoca#lti generate unit tests that
exercise the various services offered by the service pepas described in Section 3.2.

3.2 Test Generation

Given the generated wrapper class, we use a unit-test gemet@ol to generate a test
suite that exercises the services defined in the WSDL. Owoagp operates indepen-
dently of the test generation tool and thus other unit tesegation tools (such as Agitar

4 Evan Martin, Suranjana Basu, and Tao Xie

Agitator [1] and Parasoft Jtest [10]) may also be used. Oelipinary results are ob-
tained via JCrasher [4], a third-party test generation tbat automatically generates
JUnit [7] tests for a given Java class. For example, JCragtmeerates-1, 0, and1 for
arguments with the integer type and it can generate metlqpebsees that create values
for those arguments with non-primitive types. JCrasheesghed as a robustness test-
ing tool by causing the program under test to throw an undegleuntime exception.
More specifically, JCrasher examines the type informatioa et of Java classes and
constructs code fragments that create instances of difféypes to test the behavior
of public methods. These code fragments are used in the @fedarnit tests to supply
inputs to the public methods under test. In our case, theé@uoi#thods under test are
in the wrapper class. Each method there corresponds to iaeselefined in the WSDL
and each method argument corresponds to an input parameteaf service. JCrasher
generates unit tests that instantiate the necessary igpatgters to invoke the web
service.

3.3 Test Execution

Given the generated wrapper class, unit test suite, andt-dide implementation, we
use JUnit [7] to execute the unit tests against the wrappasclhich invokes the re-
mote web service. JUnit [7] is a regression testing framkwoat is used to execute
a unit-test suite against the class under test. The test thasws an exception if a
SOAP failure is encountered. Manual inspection and hecsishay be used to deter-
mine whether the exception should be considered to be cdysedbug in the web

service implementation or the supplied inputs’ violatidrifee service provider’s pre-
conditions. Even for the latter case, the web service implgation should respond
with an informative error message rather than simply craghiformation.

4 Preéiminary Results

We have successfully implemented our framework and apflie web services pro-
vided by Googlé and AmazoA. Thousands of requests have been quickly generated
and executed; however, few interesting robustness prableave been detected. But
we still observed that the Google search service occadjoappeared to hang indef-
initely (though it is not clear why). Such anomalous behgridgca potential candidate
for a bug report. The detection of a small number of potemtiblistness problems is
likely due to the maturity and popularity of these servid&fs. plan to further evaluate
the approach on less mature web services in order to furtietate its effectiveness
for robustness testing.

5 Conclusions and Future Work

We have developed a framework for automatically generadimdy invoking web ser-
vices given a service provider's WSDL. We first generate #gessary code to imple-

Yhttp://ww. googl e. cont api s/ i ndex. ht m
2https://aws-portal .anmazon. com gp/ aws/ devel oper/regi stration/index. htni

Automated Robustness Testing of Web Services

ment a client (service requestor) along with a wrapper cldgsthen leverage existing
automated unit test generation tools to generate unit festthe wrapper class and
finally execute the generated unit test cases, which in tavokie the service under
test. Our preliminary results show that we can quickly gateea large number of web-
service tests and successfully execute them against asgmavider. These requests
may reveal robustness problems in the service provideds @dth no knowledge of
the underlying service implementation. Such an approachel services testing is
useful when a service provider also relies on a third-paetyise provider to function
correctly.

In future work, we plan to evaluate our approach on sever&ice providers, in
hopes of revealing robustness problems in their implentienta We plan to automate
the wrapper-class generation as well as response analysisilso plan to incorpo-
rate more advanced unit test generation tools besideshkerg. Finally, we plan to
provide tool supports for service providers in conductirgterbox testing of service
implementation.

With the increasing proliferation of web services, toolattfacilitate their testing
are increasingly important. We hope our work could help laadend in leveraging
existing powerful tools for object-oriented programs teisisweb service development,
test, and deployment.

References

1. Agitar. Agitar Agitatior 2.0, Novermber 2004t t p: / / ww. agi tar. cont .
2. Apache. Axishtt p://ws. apache. org/ axi s/ .
3. X. Bai, W. Dong, W.-T. Tsai, and Y. Chen. WSDL-based auttengest case generation
for web services testing. IRroc. |EEE International Workshop on Service-Oriented System
Engineering, pages 215-220, 2005.
4. C.Csallner and Y. Smaragdakis. JCrasher: an automatistioess tester for Javéoftware:
Practice and Experience, 34:1025-1050, 2004.
5. H. Foster, J. Kramer, J. Magee, and S. Uchitel. Modeldbassfication of web service com-
positions. InProc. 18th |EEE International Conference on Automated Software Engineering,
pages 152-16, 2003.
6. C. Fu, B. G. Ryder, A. Milanova, and D. Wonnacott. Testihdgava web services for robust-
ness. InProc. ACM SIGSOFT International Symposium on Software Testing and Analysis,
pages 23-34, 2004.
. E. Gamma and K. Beck. JUnit, 2008t t p: / / www. j uni t . or g.
8. S. Nakajima. Model-checking verification for reliablewservice. InProc. OOPSLA 2002
Workshop on Object-Oriented \Web Services, 2002.
9. S. Narayanan and S. A. Mcllraith. Simulation, verificatemd automated composition of
web services. IrProc. 11th International Conference on World Wide Web, pages 77-88,
2002.
10. Parasoft. Jtesht t p: / / www. par asoft. com
11. W. T. Tsai, Y. Chen, and R. Paul. Specification-basediwation and validation of web
services and service-oriented operating systemBrdo. 10th |EEE International Workshop
on Object-Oriented Real-Time Dependable Systems, pages 139-147, 2005.

12. X.Yiand K. J. Kochut. A CP-nets-based design and vetitindramework for web services
composition. InProc. |EEE International Conference on Web Services, page 756, 2004.

~

5

